Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management

  • A. R. N. S. SubbannaEmail author
  • J. Stanley
  • H. Rajasekhara
  • K. K. Mishra
  • A. Pattanayak
  • Rakesh Bhowmick
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


In the present-day agriculture, crop protection has become an inevitable event to sustain production. Chemical pesticides are considered to be an excellent strategy to any given pest problem, but overreliance on them raised different environmental concerns besides being ineffective due to resistance development. At this juncture, microbial pesticides had emerged as an alternative strategy due to high target specificity and ecological safety. Although a variety of microbes (bacteria, fungi, and nematodes) are commercially available and in the process of development as well, the actual pathogenicity and host killing are achieved by the metabolites they produce. So, it is obvious that the selection of a strain of any given microbes for pest management is a function of pesticidal metabolites it produces and their bioactivity against target pest. With the advances in applied microbiology and genetic engineering, isolation and characterization of bioactive genes and their products of microbial origin had become one of the fast-growing wing of pesticide chemistry. These efforts lead to commercialization of avermectins and spinosad, the biopesticides with metabolites of microbial origin as active ingredients with wider application in pest management. This chapter includes pesticidal (insecticidal, antifungal, antibacterial, and nematicidal) activities (target pests, modes of action, chemical structures, etc.) of different metabolites produced by diverse pathogenic microorganisms of agricultural importance. The molecular modifications for improving bioactivity, biotechnological approaches, and commercial implications of these microbial origin metabolites are also discussed in view of the existing literature.


Secondary metabolites Microbes Biopesticides Insecticidal Antifungal Nematicidal Formulations Genetic improvements 



Adenosine triphosphate


Bacillus thuringiensis


Compound annual growth rate




Entomopathogenic bacteria


Entomopathogenic fungi


Entomopathogenic nematodes


Gamma-aminobutyric acid




Host-specific phytotoxins




Makes caterpillars floppy


Non-host-specific phytotoxins


Open reading frame


Photorhabdus insect related


Ribonucleic acid


Toxin complex


Vegetative insecticidal proteins



This study was supported by the Indian Council of Agricultural Research (ICAR), New Delhi. Authors are thankful to Director, ICAR-VPKAS, Almora. The technical support provided by entomology staff of VPKAS is greatly acknowledged.


  1. 1.
    Arthurs S, Dara SK (2018) Microbial biopesticides for invertebrate pests and their markets in the United States. J Invertebr Pathol. Scholar
  2. 2.
    Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40(11):1515–1539PubMedCrossRefGoogle Scholar
  3. 3.
    Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206. Scholar
  4. 4.
    Dunham B (2015) Microbial biopesticides: a key role in the multinational portfolio., p 5. Accessed 22 Aug 2017
  5. 5.
    Berg G (2009) Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar KK, Sridhar J, Murali-Baskaran RK, Senthil-Nathan S, Kaushal P, Dara SK, Arthurs S (2018) Microbial biopesticides for insect pest management in India: current status and future prospects. J Invertebr Pathol. Scholar
  7. 7.
    Tanaka Y, Omura S (1993) Agroactive compounds of microbial origin. Annu Rev Microbiol 47(1):57–87PubMedCrossRefGoogle Scholar
  8. 8.
    Saxena S (2014) Microbial metabolites for development of ecofriendly agrochemicals. Allelopath J 33(1):1–24Google Scholar
  9. 9.
    Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111(1):1–12PubMedCrossRefGoogle Scholar
  10. 10.
    Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64. Scholar
  11. 11.
    Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5(5):377PubMedCrossRefGoogle Scholar
  12. 12.
    Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9(3): 283–300PubMedCrossRefGoogle Scholar
  13. 13.
    Schnepf E, Crickmore NV, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) Bacillus thuringiensis. Toxin nomenclature. Available at: Neil_Crickmore/Bt/data.Google Scholar
  15. 15.
    Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis toxins and their potential for insect control. Toxicon 49:423–435PubMedCrossRefGoogle Scholar
  17. 17.
    Sayyed AH, Crickmore N, Wright DJ (2001) Cyt1Aa from Bacillus thuringiensis subsp israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl Environ Microbiol 67:5859–5861PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim Biophys Acta 924(3):509–518CrossRefGoogle Scholar
  19. 19.
    Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80(2):329–350PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Warren G (1997) Vegetative insecticidal proteins: novel proteins for control of corn pests. In: Carozzi N, Koziel M (eds) Advances in insect control: the role of transgenic plants. Taylor & Francis, London, pp 109–121Google Scholar
  21. 21.
    Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liu X, Ruan L, Peng D, Li L, Sun M, Yu Z (2014) Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects. Toxins 6(8):2229–2238PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Binnington KC, Baule VJ (1993) Naturally occurring insecticidal molecules as candidates for genetic engineering. In: Molecular approaches to fundamental and applied entomology. Springer, New York, pp 38–89CrossRefGoogle Scholar
  24. 24.
    Waterfield NR, Bowen DJ, Fetherston JD, Perry RD (2001) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9(4):185–191PubMedCrossRefGoogle Scholar
  25. 25.
    Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280(5372):2129–2132PubMedCrossRefGoogle Scholar
  26. 26.
    Morgan JAW, Sergeant M, Ellis D, Ousley M, Jarrett P (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67(5): 2062–2069PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hurst MR, Jones SA, Binglin T, Harper LA, Jackson TA, Glare TR (2011) The main virulence determinant of Yersinia entomophaga MH96 is a broad-host-range toxin complex active against insects. J Bacteriol 193(8):1966–1980PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49(4):436–451PubMedCrossRefGoogle Scholar
  29. 29.
    Marshall SD, Hares MC, Jones SA, Harper LA, James VR, Harland DP, Jackson TA, Hurst MR (2012) Histopathological effects of the Yen-Tc toxin complex from Yersina entomophaga MH96 (Enterobacteriaceae) on the midgut of Costelytra zealandica (Coleoptera: Scarabaeidae) larvae. Appl Environ Microbiol 78:4835–4847PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24(6): 673PubMedCrossRefGoogle Scholar
  31. 31.
    Chen WJ, Hsieh FC, Hsu FC, Tasy YF, Liu JR, Shih MC (2014) Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects. PLoS Pathog 10(8):e1004288PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hinchliffe SJ, Hares MC, Dowling AJ (2010) Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. Open Toxinology J 3(1):101–118CrossRefGoogle Scholar
  33. 33.
    Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21(11):1307PubMedCrossRefGoogle Scholar
  34. 34.
    Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A 99(16):10742–10747CrossRefGoogle Scholar
  35. 35.
    Ji D, Kim Y (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J Insect Physiol 50:489–496PubMedCrossRefGoogle Scholar
  36. 36.
    Park Y, Herbert EE, Cowles CE, Cowles KN, Menard ML, Orchard SS, Goodrich-Blair H (2007) Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Cell Microbiol 9(3):645–656PubMedCrossRefGoogle Scholar
  37. 37.
    Marokházi J, Lengyel K, Pekár S, Felföldi G, Patthy A, Gráf L, Fodor A, Venekei I (2004) Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain-and phase-dependent heterogeneity in composition and activity of four enzymes. Appl Environ Microbiol 70(12):7311–7320PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Brugirard-Ricaud K, Givaudan A, Parkhill J, Boemare N, Kunst F, Zumbihl R, Duchaud E (2004) Variation in the effectors of the type III secretion system among Photorhabdus species as revealed by genomic analysis. J Bacteriol 186(13):4376–4381PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Butt TM, Jackson C, Magan N (eds) (2001) Fungi as biocontrol agents: progress problems and potential. CABI, WallingfordGoogle Scholar
  40. 40.
    Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59(6):579–596PubMedCrossRefGoogle Scholar
  41. 41.
    Liu BL, Tzeng YM (2012) Development and applications of destruxins: a review. Biotechnol Adv 30(6):1242–1254PubMedCrossRefGoogle Scholar
  42. 42.
    Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56(7):1267–1274PubMedCrossRefGoogle Scholar
  43. 43.
    Krasnoff SB, Gupta S (1991) Identification and directed biosynthesis of efrapeptins in the fungus Tolypocladium geodes gams (Deuteromycotina: Hyphomycetes). J Chem Ecol 17(10): 1953–1962PubMedCrossRefGoogle Scholar
  44. 44.
    Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res 40:241–321CrossRefGoogle Scholar
  45. 45.
    Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Tech 10(6):717–735CrossRefGoogle Scholar
  46. 46.
    Jeffs LB, Khachatourians GG (1997) Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 35:1351–1356PubMedCrossRefGoogle Scholar
  47. 47.
    Steinrauf LK (1985) Beauvericin and other enniatins. In: Sigel H (ed) Metal ions in biological systems. Dekker, New York, pp 140–171Google Scholar
  48. 48.
    Ojcious DM, Zychlinsky A, Zheng LM, Young JDE (1991) Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res 197:43–49CrossRefGoogle Scholar
  49. 49.
    Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura S (1977) Bassianolide a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 25:2167–2170CrossRefGoogle Scholar
  50. 50.
    Omoto C, McCoy CW (1998) Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoptruta oleivora (Ash.). J Invertebr Pathol 72(3):319–322PubMedCrossRefGoogle Scholar
  51. 51.
    Olombrada M, Martínez-del-Pozo Á, Medina P, Budia F, Gavilanes JG, García-Ortega L (2014) Fungal ribotoxins: natural protein-based weapons against insects. Toxicon 83:69–74PubMedCrossRefGoogle Scholar
  52. 52.
    Wang CS, St. Leger RJ (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115PubMedCrossRefGoogle Scholar
  53. 53.
    Gupta S, Krasnoff SB, Renwick JAA, Roberts DW, Steiner JR, Clardy J (1993) Viridoxins A and B: novel toxins from the fungus Metarhizium flavoviride. J Org Chem 58(5):1062–1067CrossRefGoogle Scholar
  54. 54.
    Sparks TC, Dripps JE, Watson GB, Paroonagian D (2012) Resistance and cross-resistance to the spinosyns – a review and analysis. Pestic Biochem Physiol 102(1):1–10CrossRefGoogle Scholar
  55. 55.
    Waldron C, Madduri K, Crawford K, Merlo DJ, Treadway P, Broughton MC, Baltz RH (2000) A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa. Antonie Van Leeuwenhoek 78(3–4):385–390PubMedCrossRefGoogle Scholar
  56. 56.
    Wang JB, Pan HX, Tang GL (2011) Production of doramectin by rational engineering of the avermectin biosynthetic pathway. Bioorg Med Chem Lett 21(11):3320–3323PubMedCrossRefGoogle Scholar
  57. 57.
    Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5(2):54–72Google Scholar
  58. 58.
    Saks E, Jankiewicz U (2010) Chitinolytic activity of bacteria. Adv Biochem 56(4):1–8 in polishGoogle Scholar
  59. 59.
    Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134(169–1):76Google Scholar
  60. 60.
    Wiwat C, Thaithanun S, Pantuwatana S, Bhumiratana A (2000) Toxicity of chitinase-producing Bacillus thuringiensis sp. kurstaki HD-1 toward Plutella xylostella. J Invertebr Pathol 76:270–277PubMedCrossRefGoogle Scholar
  61. 61.
    Subbanna ARNS, Rajasekhara H, Stanley J, Mishra KK, Pattanayak A (2018) Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biol Biochem 116:52–66CrossRefGoogle Scholar
  62. 62.
    Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104(1):65–71CrossRefGoogle Scholar
  63. 63.
    Marche MG, Camiolo S, Porceddu A, Ruiu L (2018) Survey of Brevibacillus laterosporus insecticidal protein genes and virulence factors. J Invertebr Pathol 155:38–43PubMedCrossRefGoogle Scholar
  64. 64.
    Broadway RM, Gongora C, Kain WC, Sanderson JP, Monroy JA, Bennett KC, Warner JB, Hoffmann MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24(6):985–998CrossRefGoogle Scholar
  65. 65.
    Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47(Suppl 1):S53–S71PubMedCrossRefGoogle Scholar
  66. 66.
    Avupati RS, Khan MS, Johnson S, Yogi MK (2017) Diversity and functional annotation of chitinolytic Bacillus and associated chitinases from north western Indian Himalayas. Appl Soil Ecol 119:46–55CrossRefGoogle Scholar
  67. 67.
    Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032PubMedCrossRefGoogle Scholar
  68. 68.
    Lewis RE, Wiederhold NP, Lionakis MS, Prince RA, Kontoyiannis DP (2005) Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. J Clin Microbiol 43:6120–6122PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kupfahl C, Michalka A, Lass-Flörl C, Fischer G, Haase G, Ruppert T, Geginat G, Hof H (2008) Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int J Med Microbiol 298(3–4):319–327PubMedCrossRefGoogle Scholar
  70. 70.
    Walton JD (1996) Host selective toxins. Agents of compatibility. Plant Cell 8:1723–1173PubMedPubMedCentralGoogle Scholar
  71. 71.
    Park P, Tsuda H, Hayashi Y, Uneo T (1977) Effect of host specific toxin (AM toxin-I) produced by Alternaria mali, an apple pathogen, on ultrastructure of plasma membrane of cells in apple and Japanese pear leaves. Can J Bot 55:2383–2393CrossRefGoogle Scholar
  72. 72.
    Holtsmark I, Eijsink VG, Brurberg MB (2008) Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 280(1):1–7PubMedCrossRefGoogle Scholar
  73. 73.
    Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102(31): 11064–11069PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control of common scab diseases by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221PubMedCrossRefGoogle Scholar
  75. 75.
    Bull C, Wadsworth M, Sorensen K, Takemoto J, Austin R, Smilanick J (1998) Syringomycin E produced by the biological control agents control green mold on lemons. Biol Control 12:89–95CrossRefGoogle Scholar
  76. 76.
    Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In vitro and in vivo nematicidal activities of cyclic dodecapeptide Omphalotin A. Pestic Sci 55:27–30CrossRefGoogle Scholar
  77. 77.
    Mayer A, Sterner O, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. 1. Fermentation and biological activity. Nat Prod Lett 10:25–33CrossRefGoogle Scholar
  78. 78.
    Dong J, Zhu Y, Song H, Li R, He H, Liu H, Huang R, Zhou Y, Wang L, Ceo Y, Zhang K (2007) Nematicidal resorcylides from the aquatic fungus Caryospora callicarpa YMF1.01026. J Chem Ecol 33:1115–1126PubMedCrossRefGoogle Scholar
  79. 79.
    Liu YJ, Zhai CY, Liu Y, Zhang KQ (2009) Nematicidal activity of Paecilomyces sp. and isolation of a novel active compound. J Microbiol 47:248–252PubMedCrossRefGoogle Scholar
  80. 80.
    Gonzalez JB, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Indian J Biotechnol 2:322–333Google Scholar
  81. 81.
    Elander RP, Lowe DA (1992) Fungal biotechnology: an overview. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology, vol 4. Marcel Dekker, New York, pp 1–34Google Scholar
  82. 82.
    Pradhan S, Chakraborty A, Sikdar N, Chakraborty S, Bhattacharyya J, Mitra J, Manna A, Dutta Gupta S, Sen SK (2016) Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties. Planta 244(4):789–804PubMedCrossRefGoogle Scholar
  83. 83.
    Bogie CP, Hancock LE, Gilmore MS (1995) The Enterococcus faecalis cytolysin determinant and its relationship to those encoding lantibiotics. Dev Biol Stand 85:627–634PubMedGoogle Scholar
  84. 84.
    McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25(3):285–308PubMedCrossRefGoogle Scholar
  85. 85.
    Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett Appl Microbiol 42(2):109–114PubMedCrossRefGoogle Scholar
  86. 86.
    Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243(2):467–472PubMedCrossRefGoogle Scholar
  87. 87.
    Sattar S, Maiti MK (2011) Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. J Microbiol Biotechnol 21(9):937–946PubMedCrossRefGoogle Scholar
  88. 88.
    Mandaokar ADPA, Kumar RP, Sharma MVS (1999) Bt-transgenic crop plants – progress and prospectus. In: Chopra VL, Malik VS, Bhat SR (eds) Applied plant biotechnology. Oxford & IBH Publishing, New Delhi, pp 285–300Google Scholar
  89. 89.
    Rajesh T, Maruthasalam S, Kalpana K, Poovannan K, Kumar KK, Kokiladevi E, Sudhakar D, Samiyappan R, Balasubramanian P (2016) Stability of sheath blight resistance in transgenic ASD16 rice lines expressing a rice chi11 gene encoding chitinase. Biol Plant 60(4):749–756CrossRefGoogle Scholar
  90. 90.
    Lee J, Hwang Y, Kim S, Kim E, Choi C (2000) Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J Biosci Bioeng 89(6):606–608PubMedCrossRefGoogle Scholar
  91. 91.
    Pacey MS, Dirlam JP, Geldart RW, Leadlay PF, McArthur HA, McCormick EL, Monday RA, O’Connell TN, Staunton J, Winchester TJ (1998) Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338 pIG1. I. Fermentation, isolation and biological activity. J Antibiot 51(11):1029–1034PubMedCrossRefGoogle Scholar
  92. 92.
    Hwang YS, Kim ES, Biró S, Choi CY (2003) Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol 69(2):1263–1269PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ikeda H, Takada Y, Pang CH, Tanaka H, Omura S (1993) Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 175(7): 2077–2082PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Adrio JL, Demain AL (2009) Recombinant organisms for production of industrial products. Bioeng Bugs 1(2):116–131PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zhang X, Chen Z, Li M, Wen Y, Song Y, Li J (2006) Construction of ivermectin producer by domain swaps of avermectin polyketide synthase in Streptomyces avermitilis. Appl Microbiol Biotechnol 72(5):986–994PubMedCrossRefGoogle Scholar
  96. 96.
    Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159(3):655–663PubMedCrossRefGoogle Scholar
  97. 97.
    Madduri K, Waldron C, Matsushima P, Broughton MC, Crawford K, Merlo DJ, Baltz RH (2001) Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J Ind Microbiol Biotechnol 27(6):399–402PubMedCrossRefGoogle Scholar
  98. 98.
    Tang Y, Xia L, Ding X, Luo Y, Huang F, Jiang Y (2011) Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production. FEMS Microbiol Lett 325(1):22–29PubMedCrossRefGoogle Scholar
  99. 99.
    Huang KX, Xia L, Zhang Y, Ding X, Zahn JA (2009) Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol 82(1):13–23PubMedCrossRefGoogle Scholar
  100. 100.
    Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131(1):1–11CrossRefGoogle Scholar
  101. 101.
    Schellenberger U, Oral J, Rosen BA, Wei JZ, Zhu G, Xie W, McDonald MJ, Cerf DC, Diehn SH, Crane VC, Sandahl GA (2016) A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 354:634–637. aaf6056PubMedCrossRefGoogle Scholar
  102. 102.
    Aggarwal N, Thind SK, Sharma S (2016) Role of secondary metabolites of Actinomycetes in crop protection. In: Plant growth promoting Actinobacteria. Springer, Singapore, pp 99–121CrossRefGoogle Scholar
  103. 103.
    Markets and Markets (2016) Biopesticides market – global forecast to 2022. By type (bioinsecticides, biofungicides, bioherbicides, and bionematicides), origin (beneficial insects, microbials, plant-incorporated protectants, and biochemicals), mode of application, formulation, crop type and region. Accessed 24 Nov 2018
  104. 104.
    Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 23:192–208Google Scholar
  105. 105.
    Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258PubMedCrossRefGoogle Scholar
  106. 106.
    Omura S (ed) (1992) The search for bioactive compounds from microorganisms. Springer Science & Business Media, New YorkGoogle Scholar
  107. 107.
    Xu C, Wang BC, Yu Z, Sun M (2014) Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins 6(9):2732–2770PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989) High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus. Nature 338(6213):357PubMedCrossRefGoogle Scholar
  109. 109.
    Horn SJ, Sørlie M, Vaaje-Kolstad G, Norberg AL, Synstad B, Vårum KM, Eijsink VGH (2006) Comparative studies of chitinases A, B and C from Serratia marcescens. Biocatal Biotransform 24(1–2):39–53CrossRefGoogle Scholar
  110. 110.
    Landsberg MJ, Jones SA, Rothnagel R, Busby JN, Marshall SD, Simpson RM, Lott JS, Hankamer B, Hurst MR (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci U S A 108(51):20544–20549PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Donzelli BGG, Krasnoff SB, Sun-Moon Y, Churchill AC, Gibson DM (2012) Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Curr Genet 58(2):105–116CrossRefGoogle Scholar
  112. 112.
    Ortiz-Urquiza A, Keyhani NO (2016) Molecular genetics of Beauveria bassiana infection of insects. Adv Genet 94:165–249PubMedCrossRefGoogle Scholar
  113. 113.
    Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63(3):101PubMedCrossRefGoogle Scholar
  114. 114.
    Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L, Bai L, Deng Z (2011) Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 92(2):337–345PubMedCrossRefGoogle Scholar
  115. 115.
    Li J, Li L, Feng C, Chen Y, Tan H (2012) Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microb Cell Factories 11(1):135CrossRefGoogle Scholar
  116. 116.
    Fukunaga K (1955) Blasticidin, a new antiphytopathogenic fungal substance. Part I. Bull Agric Chem Soc Jpn 19:181–188CrossRefGoogle Scholar
  117. 117.
    Umezawa H, Okami Y, Hashimoto T, Suhara Y, Otake N (1965) A new antibiotic kasugamycin. J Antibiot A 18:101–103Google Scholar
  118. 118.
    Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefGoogle Scholar
  119. 119.
    Fu J, Zhou Y, Li HF, Ye YH, Guo JH (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. Afr J Microbiol Res 5:1231–1236CrossRefGoogle Scholar
  120. 120.
    Zou WX, Meng JC, Lu H, Chen GX, Shi GX, Zhang TY, Tan RX (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530PubMedCrossRefGoogle Scholar
  121. 121.
    Luo D-Q, Wang F, Bian X-Y, Liu JK (2005) Rufuslactone, a new antifungal sesquiterpene from the fruiting bodies of the basidiomycete Lactarius rufus. J Antibiot 58:456–459PubMedCrossRefGoogle Scholar
  122. 122.
    Finlay AC, Hobby GL, P’an SY, Regna PP, Routein JB, Seeley DB, Shull GM, Sobin BA, Solomans IA, Vinson JW, Kane JH (1950) Terramycin, a new antibiotic. Science 111:85PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. R. N. S. Subbanna
    • 1
    Email author
  • J. Stanley
    • 1
  • H. Rajasekhara
    • 1
  • K. K. Mishra
    • 1
  • A. Pattanayak
    • 1
  • Rakesh Bhowmick
    • 1
  1. 1.ICAR-Vivekananda Institute of Hill Agriculture (ICAR-VPKAS)AlmoraIndia

Personalised recommendations