Saponins in Insect Pest Control

  • Muhammad QasimEmail author
  • Waqar Islam
  • Hafiza Javaria Ashraf
  • Imran Ali
  • Liande WangEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Insect herbivores are dangerous to all stages of plants, e.g., vegetative as well as reproductive growth, leaves, and shoots. Some of the herbivores feed by sucking plant sap, whereas some insects choose to chew various parts of plants. Thus, all types of herbivores damage plants by feeding directly and cause multiple diseases to plants, leading to plant damage indirectly. However, due to insect attack, plants produce some bioactive compounds (which are known as saponins) to improve their defense mechanism against herbivores. These saponins are further divided into two main categories, i.e., steroidal saponins and terpenoidal saponins. Here, we have highlighted the importance of saponins from multiple plant families against various herbivores. Saponins are present in different wild plants as well as cultivated crops (e.g., soybean, tea, spinach, oat, pepper, capsicum, quinoa, and allium). Some of the saponins play a role as antifeedant while some are insecticidal to different life stages of insect pests. Thus, these saponins play an important role in plant defense against different insect pests. Moreover, different saponins are effective against stored grain pests as well as cosmopolitan insect pests. Therefore, these plant bioactive compounds could be helpful for integrated pest management in different ecosystems.


Antifeedant Biological control Herbivores Plant bioactive compounds Residual toxicity Saponin purification Steroidal saponins Triterpenoid saponins 


  1. 1.
    De Geyter E, Lambert E, Geelen D, Smagghe G (2007) Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol 1:96–105Google Scholar
  2. 2.
    Singh B, Kaur A (2018) Control of insect pests in crop plants and stored food grains using plant saponins: a review. LWT Food Sci Technol 87:93–101CrossRefGoogle Scholar
  3. 3.
    Noman A, Aqeel M, Qasim M, Haider I, Lou Y (2020) Plant-insect-microbe interaction: a love triangle between enemies in ecosystem. Sci Total Environ 699:134181PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmed S, Qasim M (2011) Foraging and chemical control of subterranean termites in a farm building at Faisalabad, Pakistan. Pak J Life Soc Sci 9:58–62Google Scholar
  5. 5.
    Husain D, Qasim M, Saleem M, Akhter M, Khan K (2014) Bioassay of insecticides against three honey bee species in laboratory conditions. Cercet Agron Mold 47:69–79CrossRefGoogle Scholar
  6. 6.
    Nawaz A, Ali H, Sufyan M, Gogi MD, Arif MJ et al (2019) Comparative bio-efficacy of nuclear polyhedrosis virus (NPV) and Spinosad against American bollwormm, Helicoverpa armigera (Hubner). Rev Bras Entomol.
  7. 7.
    Hafeez M, Jan S, Nawaz M, Ali E, Ali B et al (2019) Sub-lethal effects of lufenuron exposure on spotted bollworm Earias vittella (Fab): key biological traits and detoxification enzymes activity. Environ Sci Pollut Res 26:14300–14312CrossRefGoogle Scholar
  8. 8.
    Qasim M, Hussian D (2015) Efficacy of insecticides against citrus psylla (Diaphorina citri Kuwayama) in field and laboratory conditions. Cercet Agron Mold 48:91–97CrossRefGoogle Scholar
  9. 9.
    da Silva P, Eyraud V, Carre-Pierrat M, Sivignon C, Rahioui I et al (2012) High toxicity and specificity of the saponin 3-GlcA-28-AraRhaxyl-medicagenate, from Medicago truncatula seeds, for Sitophilus oryzae. BMC Chem Biol 12:3PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Qasim M, Husain D, Islam SU, Ali H, Islam W et al (2018) Effectiveness of Trichogramma chilonis Ishii against spiny bollworm in Okra and susceptibility to insecticides. J Entomol Res Stud 6:1576–1581Google Scholar
  11. 11.
    Hussain D, Hussain A, Qasim M, Khan J (2015) Insecticidal susceptibility and effectiveness of Trichogramma chilonis as parasitoids of tomato fruit borer, Helicoverpa armigera. Pak J Zool 47:1427–1432Google Scholar
  12. 12.
    Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ntalli NG, Menkissoglu-Spiroudi U (2011) Pesticides of botanical origin: a promising tool in plant protection. In: Pesticides – formulations, effects, fate. IntechOpen, Rijeka, pp 1–23Google Scholar
  14. 14.
    Campos EVR, Proença PLF, Oliveira JL, Bakshi M, Abhilash PC et al (2019) Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic 105:483–495CrossRefGoogle Scholar
  15. 15.
    Nawrot J, Harmatha J (2012) Phytochemical feeding deterrents for stored product insect pests. Phytochem Rev 11:543–566CrossRefGoogle Scholar
  16. 16.
    Kanda D, Kaur S, Koul O (2017) A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: acute toxins or feeding deterrents. J Pest Sci 90:531–545CrossRefGoogle Scholar
  17. 17.
    Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phytochem Rev 9:425–474PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hussain M, Debnath B, Qasim M, Bamisile BS, Islam W et al (2019) Role of saponins in plant defense against specialist herbivores. Molecules 24:2067PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Díaz AEC, Herfindal L, Rathe BA, Sletta KY, Vedeler A et al (2019) Cytotoxic saponins and other natural products from flowering tops of Narthecium ossifragum L. Phytochemistry 164:67–77CrossRefGoogle Scholar
  20. 20.
    Vincken J-P, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Khan NT (2019) Therapeutic properties of saponins. Int Invent Sci J 3:409–411Google Scholar
  22. 22.
    Balandrin MF (1996) Commercial utilization of plant-derived saponins: an overview of medicinal, pharmaceutical, and industrial applications. In: Saponins used in traditional and modern medicine. Springer, Boston, MA pp 1–14Google Scholar
  23. 23.
    Addisu S, Assefa A (2016) Role of plant containing saponin on livestock production; a review. Adv Biol Res 10:309–314Google Scholar
  24. 24.
    Sparg SG, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kregiel D, Berlowska J, Witonska I, Antolak H, Proestos C et al (2017) Saponin-based, biological-active surfactants from plants. In: Application and characterization of surfactants. IntechOpen, Rijeka, pp 183–205Google Scholar
  26. 26.
    Koczurkiewicz P, Klaś K, Grabowska K, Piska K, Rogowska K et al (2019) Saponins as chemosensitizing substances that improve effectiveness and selectivity of anticancer drug – minireview of in vitro studies. Phytother Res 33:2141–2151PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hameed IH, Cotos MRC, Hadi MY (2017) A review: Solanum nigrum L. antimicrobial, antioxidant properties, hepatoprotective effects and analysis of bioactive natural compounds. Res J Pharm Technol 10:4063–4068CrossRefGoogle Scholar
  28. 28.
    Islam W, Qasim M, Ali N, Tayyab M, Chen S et al (2018) Management of Tobacco mosaic virus through natural metabolites. Rec Nat Prod 12:403–415CrossRefGoogle Scholar
  29. 29.
    Lin Y, Qasim M, Hussain M, Akutse KS, Avery PB et al (2017) The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi. Sci Rep 7:40494PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Stevenson PC, Dayarathna TK, Belmain SR, Veitch NC (2009) Bisdesmosidic saponins from Securidaca longepedunculata roots: evaluation of deterrency and toxicity to Coleopteran storage pests. J Agric Food Chem 57:8860–8867PubMedCrossRefGoogle Scholar
  31. 31.
    Yang C, Zhang M, Lei B, Gong G, Yue G et al (2017) Active saponins from root of Pueraria peduncularis (Grah. ex Benth.) Benth. and their molluscicidal effects on Pomacea canaliculata. Pest Manag Sci 73:1143–1147PubMedCrossRefGoogle Scholar
  32. 32.
    Chen H, Zhao X, Lv T, Qiu X, Luo L et al (2019) Compounds from the root of Pueraria peduncularis (Grah. ex Benth.) Benth. and their antimicrobial effects. Pest Manag Sci. Scholar
  33. 33.
    Applebaum SW, Marco S, Birk Y (1969) Saponins as possible factors of resistance of legume seeds to the attack of insects. J Agric Food Chem 17:618–622CrossRefGoogle Scholar
  34. 34.
    Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lei Z, Watson BS, Huhman D, Yang DS, Sumner LW (2019) Large-scale profiling of saponins in different ecotypes of Medicago truncatula. Front Plant Sci 10:850PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mithöfer A, Boland W, Maffei ME (2018) Chemical ecology of plant–insect interactions. Annu Plant Rev online 34:261–291CrossRefGoogle Scholar
  37. 37.
    Pickett JA, Khan ZR (2016) Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol 212:856–870PubMedCrossRefGoogle Scholar
  38. 38.
    Nowacka J, Oleszek W (1992) High performance liquid chromatography of zanhic acid glycoside in alfalfa (Medicago sativa). Phytochem Anal 3:227–230CrossRefGoogle Scholar
  39. 39.
    Tava A, Biazzi E, Mella M, Quadrelli P, Avato P (2017) Artefact formation during acid hydrolysis of saponins from Medicago spp. Phytochemistry 138:116–127PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jain D, Tripathi A (1991) Insect feeding-deterrent activity of some saponin glycosides. Phytother Res 5:139–141CrossRefGoogle Scholar
  41. 41.
    Goławska S, Łukasik I, Goławski A, Kapusta I, Janda B (2010) Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Pol J Environ Stud 19:913–919Google Scholar
  42. 42.
    Thakur M, Melzig MF, Fuchs H, Weng A (2011) Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Bot Targets Ther 1:19–29Google Scholar
  43. 43.
    Sami AJ, Bilal S, Khalid M, Nazir MT, Shakoori AR (2018) A comparative study of inhibitory properties of saponins (derived from Azadirachta indica) for acetylcholinesterase of Tribolium castaneum and Apis mellifera. Pak J Zool 50:725–733CrossRefGoogle Scholar
  44. 44.
    Faizal A, Geelen D (2013) Saponins and their role in biological processes in plants. Phytochem Rev 12:877–893CrossRefGoogle Scholar
  45. 45.
    Cai F, Watson BS, Meek D, Huhman DV, Wherritt DJ et al (2017) Medicago truncatula oleanolic-derived saponins are correlated with caterpillar deterrence. J Chem Ecol 43:712–724PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Badenes-Perez FR, Gershenzon J, Heckel DG (2014) Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS One 9:e95766PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cheok CY, Salman HAK, Sulaiman R (2014) Extraction and quantification of saponins: a review. Food Res Int 59:16–40CrossRefGoogle Scholar
  48. 48.
    Ligor M, Ratiu IA, Kiełbasa A, Al-Suod H, Buszewski B (2018) Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material. Electrophoresis 39:1860–1874CrossRefGoogle Scholar
  49. 49.
    Moghimipour E, Handali S (2015) Saponin: properties, methods of evaluation and applications. Annu Res Rev Biol 5:207–220CrossRefGoogle Scholar
  50. 50.
    Zhou Q-L, Zhu D-N, Yang X-W, Xu W, Wang Y-P (2018) Development and validation of a UFLC–MS/MS method for simultaneous quantification of sixty-six saponins and their six aglycones: application to comparative analysis of red ginseng and white ginseng. J Pharm Biomed Anal 159:153–165PubMedCrossRefGoogle Scholar
  51. 51.
    Hayashi H, Fukui H, Tabata M (1993) Distribution pattern of saponins in different organs of Glycyrrhiza glabra. Planta Med 59:351–353PubMedCrossRefGoogle Scholar
  52. 52.
    Achakzai AKK, Achakzai P, Masood A, Kayani SA, Tareen RB (2009) Response of plant parts and age on the distribution of secondary metabolites on plants found in Quetta. Pak J Bot 41:2129–2135Google Scholar
  53. 53.
    Wei G, Dong L, Yang J, Zhang L, Xu J et al (2018) Integrated metabolomic and transcriptomic analyses revealed the distribution of saponins in Panax notoginseng. Acta Pharm Sin B 8:458–465PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Phrompittayarat W, Jetiyanon K, Wittaya-Areekul S, Putalun W, Tanaka H et al (2011) Influence of seasons, different plant parts, and plant growth stages on saponin quantity and distribution in Bacopa monnieri. Songklanakarin J Sci Technol 33:193–199Google Scholar
  55. 55.
    Singh B, Singh JP, Singh N, Kaur A (2017) Saponins in pulses and their health promoting activities: a review. Food Chem 233:540–549PubMedCrossRefGoogle Scholar
  56. 56.
    Mroczek A, Kapusta I, Stochmal A, Janiszowska W (2019) MS/MS and UPLC-MS profiling of triterpenoid saponins from leaves and roots of four red beet (Beta vulgaris L.) cultivars. Phytochem Lett 30:333–337CrossRefGoogle Scholar
  57. 57.
    Colson E, Decroo C, Cooper-Shepherd D, Caulier G, Henoumont C et al (2019) Discrimination of regioisomeric and stereoisomeric saponins from Aesculus hippocastanum seeds by ion mobility mass spectrometry. J Am Soc Mass Spectrom 30(11):2228–2237PubMedCrossRefGoogle Scholar
  58. 58.
    Nomura Y, Seki H, Suzuki T, Ohyama K, Mizutani M et al (2019) Functional specialization of UDP-glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. Plant J. Scholar
  59. 59.
    Yang H, Piao X, Zhang L, Song S, Xu Y (2018) Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus). Ind Crop Prod 124:412–417CrossRefGoogle Scholar
  60. 60.
    Heinz P, Glomb MA (2018) Characterization and quantitation of steryl glycosides in Solanum melongena. J Agric Food Chem 66:11398–11406PubMedCrossRefGoogle Scholar
  61. 61.
    Siddiqui MA, Ali Z, Chittiboyina AG, Khan IA (2018) Hepatoprotective effect of steroidal glycosides from Dioscorea villosa on hydrogen peroxide-induced hepatotoxicity in HepG2 cells. Front Pharmacol 9:797PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sun Z, Huang X, Kong L (2010) A new steroidal saponin from the dried stems of Asparagus officinalis L. Fitoterapia 81:210–213PubMedCrossRefGoogle Scholar
  63. 63.
    Yahara S, Ura T, Sakamoto C, Nohara T (1994) Steroidal glycosides from Capsicum annuum. Phytochemistry 37:831–835PubMedCrossRefGoogle Scholar
  64. 64.
    Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258PubMedCrossRefGoogle Scholar
  65. 65.
    Hassan SM, Byrd JA, Cartwright AL, Bailey CA (2010) Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Appl Biochem Biotechnol 162:1008–1017PubMedCrossRefGoogle Scholar
  66. 66.
    Zehring J, Reim V, Schröter D, Neugart S, Schreiner M et al (2015) Identification of novel saponins in vegetable amaranth and characterization of their hemolytic activity. Food Res Int 78:361–368PubMedCrossRefGoogle Scholar
  67. 67.
    Ling Y, Lin Z, Zha W, Lian T, You S (2016) Rapid detection and characterisation of triterpene saponins from the root of Pulsatilla chinensis (Bunge) Regel by HPLC-ESI-QTOF-MS/MS. Phytochem Anal 27:174–183PubMedCrossRefGoogle Scholar
  68. 68.
    Böttcher S, Drusch S (2016) Interfacial properties of saponin extracts and their impact on foam characteristics. Food Biophys 11:91–100CrossRefGoogle Scholar
  69. 69.
    Guajardo-Flores D, García-Patiño M, Serna-Guerrero D, Gutiérrez-Uribe JA, Serna-Saldívar SO (2012) Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem 134:1312–1319PubMedCrossRefGoogle Scholar
  70. 70.
    Ha TJ, Lee BW, Park KH, Jeong SH, Kim H-T et al (2014) Rapid characterisation and comparison of saponin profiles in the seeds of Korean Leguminous species using ultra performance liquid chromatography with photodiode array detector and electrospray ionisation/mass spectrometry (UPLC–PDA–ESI/MS) analysis. Food Chem 146:270–277PubMedCrossRefGoogle Scholar
  71. 71.
    Lee YH, Kim B, Hwang S-R, Kim K, Lee JH (2018) Rapid characterization of metabolites in soybean using ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) and screening for α-glucosidase inhibitory and antioxidant properties through different solvent systems. J Food Drug Anal 26:277–291PubMedCrossRefGoogle Scholar
  72. 72.
    Bitencourt RG, Queiroga CL, Duarte GHB, Eberlin MN, Kohn LK et al (2014) Sequential extraction of bioactive compounds from Melia azedarach L. in fixed bed extractor using CO2, ethanol and water. J Supercrit Fluids 95:355–363CrossRefGoogle Scholar
  73. 73.
    Nguyen VT, Vuong QV, Bowyer MC, Van Altena IA, Scarlett CJ (2017) Microwave-assisted extraction for saponins and antioxidant capacity from Xao tam phan (Paramignya trimera) root. J Food Process Preserv 41:e12851CrossRefGoogle Scholar
  74. 74.
    Mohaddes-Kamranshahi M, Jafarizadeh-Malmiri H, Simjoo M, Jafarizad A (2019) Evaluation of the saponin green extraction from Ziziphus spina-christi leaves using hydrothermal, microwave and Bain-Marie water bath heating methods. Green Process Synth 8:62–67CrossRefGoogle Scholar
  75. 75.
    Elhag HEEA, Naila A, Ajit A, Aziz BA, Sulaiman AZ (2018) Sequential extraction of saponins from Eurycoma longifolia roots by water extraction and ultrasound-assisted extraction. Mater Today Proc 5:21672–21681CrossRefGoogle Scholar
  76. 76.
    Khan H, Khan MA, Abdullah (2012) Antibacterial, antioxidant and cytotoxic studies of total saponin, alkaloid and sterols contents of decoction of Joshanda: identification of components through thin layer chromatography. Toxicol Ind Health 31:202–208PubMedCrossRefGoogle Scholar
  77. 77.
    Dinda B, Debnath S, Mohanta BC, Harigaya Y (2010) Naturally occurring triterpenoid saponins. Chem Biodivers 7:2327–2580PubMedCrossRefGoogle Scholar
  78. 78.
    Niiho Y, Nakajima Y, Yamazaki T, Okamoto M, Tsuchihashi R et al (2010) Simultaneous analysis of isoflavones and saponins in Pueraria flowers using HPLC coupled to an evaporative light scattering detector and isolation of a new isoflavone diglucoside. J Nat Med 64:313–320PubMedCrossRefGoogle Scholar
  79. 79.
    Ma Y, Shang Y, Zhong Z, Zhang Y, Yang Y et al (2019) A new isoflavone glycoside from flowers of Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep. Nat Prod Res 1–6 In press,
  80. 80.
    Oleszek WA (2002) Chromatographic determination of plant saponins. J Chromatogr A 967:147–162PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Reim V, Rohn S (2015) Characterization of saponins in peas (Pisum sativum L.) by HPTLC coupled to mass spectrometry and a hemolysis assay. Food Res Int 76:3–10CrossRefGoogle Scholar
  82. 82.
    Hassan SA, Jassim EH (2018) Effect of l-phenylalanine on the production of some alkaloids and steroidal saponins of fenugreek cotyledons derived callus. Pak J Biotechnol 15:481–486Google Scholar
  83. 83.
    Sharma V, Paliwal R (2014) Potential chemoprevention of 7,12-dimethylbenz[a]anthracene induced renal carcinogenesis by Moringa oleifera pods and its isolated saponin. Indian J Clin Biochem 29:202–209PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Malongane F, McGaw LJ, Nyoni H, Mudau FN (2018) Metabolic profiling of four South African herbal teas using high resolution liquid chromatography-mass spectrometry and nuclear magnetic resonance. Food Chem 257:90–100PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ge Y, Chen X, Gođevac D, Bueno PCP, Abarca LFS et al (2019) Metabolic profiling of saponin-rich Ophiopogon japonicus roots based on 1H NMR and HPTLC platforms. Planta Med 85:917–924PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Chaieb I (2010) Saponins as insecticides: a review. Tunis J Plant Prot 5:39–50Google Scholar
  87. 87.
    Adel MM, Sehnal F, Jurzysta M (2000) Effects of alfalfa saponins on the moth Spodoptera littoralis. J Chem Ecol 26:1065–1078CrossRefGoogle Scholar
  88. 88.
    Cai H, Bai Y, Wei H, Lin S, Chen Y et al (2016) Effects of tea saponin on growth and development, nutritional indicators, and hormone titers in diamondback moths feeding on different host plant species. Pestic Biochem Physiol 131:53–59PubMedCrossRefGoogle Scholar
  89. 89.
    Taylor WG, Fields PG, Sutherland DH (2004) Insecticidal components from field pea extracts: soyasaponins and lysolecithins. J Agric Food Chem 52:7484–7490PubMedCrossRefGoogle Scholar
  90. 90.
    De Geyter E, Smagghe G, Rahbé Y, Geelen D (2012) Triterpene saponins of Quillaja saponaria show strong aphicidal and deterrent activity against the pea aphid Acyrthosiphon pisum. Pest Manag Sci 68:164–169PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    De Geyter E (2012) Toxicity and mode of action of steroid and terpenoid secondary plant metabolites against economically important pest insects in agriculture. Ghent University, p 137Google Scholar
  92. 92.
    Pedersen MW, Barnes DK, Sorensen EL, Griffin GD, Nielson MW et al (1976) Effects of low and high saponin selection in alfalfa on agronomic and pest resistance traits and the interrelationship of these traits. Crop Sci Washington, D.C. USA 16:193–199Google Scholar
  93. 93.
    Sylwia G, Leszczynski B, Wieslaw O (2006) Effect of low and high-saponin lines of alfalfa on pea aphid. J Insect Physiol 52:737–743PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Goławska S, Łukasik I, Kapusta I, Janda B (2012) Do the contents of luteolin, tricin, and chrysoeriol glycosides in alfalfa (Medicago sativa L.) affect the behavior of pea aphid (Acyrthosiphon pisum)? Pol J Environ Stud 21:1613–1619Google Scholar
  95. 95.
    Nozzolillo C, Arnason JT, Campos F, Donskov N, Jurzysta M (1997) Alfalfa leaf saponins and insect resistance. J Chem Ecol 23:995–1002CrossRefGoogle Scholar
  96. 96.
    Agerbirk N, Olsen CE, Bibby BM, Frandsen HO, Brown LD et al (2003) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Shinoda T, Nagao T, Nakayama M, Serizawa H, Koshioka M et al (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Gao G, Lu Z, Tao S, Zhang S, Wang F (2011) Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae). Carbohydr Res 346:2200–2205PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Rattan R, Reddy SGE, Dolma SK, Fozdar BI, Gautam V et al (2015) Triterpenoid saponins from Clematis graveolens and evaluation of their insecticidal activities. Nat Prod Commun 10:1525–1528PubMedPubMedCentralGoogle Scholar
  100. 100.
    Mudalungu CM (2013) Mosquito larvicidal compounds from the plant Fagaropsis angolensis (Engl. Dale) against Anopheles gambiae. MS thesis, Egerton UniversityGoogle Scholar
  101. 101.
    Liu X-Y, Li C-J, Chen F-Y, Ma J, Wang S et al (2018) Nototronesides A–C, three triterpene saponins with a 6/6/9 fused tricyclic tetranordammarane carbon skeleton from the leaves of Panax notoginseng. Org Lett 20:4549–4553PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Zhang A, Liu Z, Lei F, Fu J, Zhang X et al (2017) Antifeedant and oviposition-deterring activity of total ginsenosides against Pieris rapae. Saudi J Biol Sci 24:1751–1753PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    De Geyter E, Geelen D, Smagghe G (2007) First results on the insecticidal action of saponins. Commun Agric Appl Biol Sci 72:645PubMedPubMedCentralGoogle Scholar
  104. 104.
    Soulé S, Güntner C, Vazquez A, Argandona V, Moyna P et al (2000) An aphid repellent glycoside from Solanum laxum. Phytochemistry 55:217–222PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ray DP, Dutta D, Srivastava S, Kumar B, Saha S (2013) Insect growth regulatory activity of Thevetia nerifolia Juss. against Spodoptera litura (Fab.). J Appl Bot Food Qual 85:212–215Google Scholar
  106. 106.
    Pemonge J, Pascual-Villalobos MJ, Regnault-Roger C (1997) Effects of material and extracts of Trigonella foenum-graecum L. against the stored product pests Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 33:209–217CrossRefGoogle Scholar
  107. 107.
    Lanzotti V (2005) Bioactive saponins from Allium and Aster plants. Phytochem Rev 4:95–110CrossRefGoogle Scholar
  108. 108.
    Kim HK, Khan S, Wilson EG, Kricun SDP, Meissner A et al (2010) Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry 71:773–784PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kothiyal SK, Sati SC, Rawat MSM, Sati MD, Semwal DK et al (2012) Chemical constituents and biological significance of the genus Ilex (Aquifoliaceae). Nat Prod J 2:212–224Google Scholar
  110. 110.
    Kreuger B, Potter DA (1994) Changes in saponins and tannins in ripening holly fruits and effects of fruit consumption on nonadapted insect herbivores. Am Midl Nat 132:183–191CrossRefGoogle Scholar
  111. 111.
    Brito FCd, Gosmann G, Oliveira GT (2019) Extracts of the unripe fruit of Ilex paraguariensis as a potential chemical control against the golden apple snail Pomacea canaliculata (Gastropoda, Ampullariidae). Nat Prod Res 33:2379–2382CrossRefGoogle Scholar
  112. 112.
    Colpo AC, Lima ME, da Rosa HS, Leal AP, Colares CC et al (2018) Ilex paraguariensis extracts extend the lifespan of Drosophila melanogaster fed a high-fat diet. Braz J Med Biol Res 51:e6784CrossRefGoogle Scholar
  113. 113.
    Frodin DG, Dassanayake MD (2017) Araliaceae. In: A revised handbook to the flora of Ceylon, University of Peradeniya, Sri Lanka vol 10. RoutledgeGoogle Scholar
  114. 114.
    Kemertelidze ÉP, Kemoklidze ZS, Dekanosidze GE, Bereznyakova AI (2001) Isolation and pharmacological characterization of triterpenoid glycosides from Fatsia japonica cultivated in Georgia. Pharm Chem J 35:429–432CrossRefGoogle Scholar
  115. 115.
    Cheng H-L, Cheng S-Y, Huang S-D, Lu Y-T, Wang X-W et al (2013) Anti-inflammatory effects and mechanisms of Fatsia polycarpa Hayata and its constituents. Evid Based Complement Alternat Med 2013:857213PubMedPubMedCentralGoogle Scholar
  116. 116.
    Liu J, Xu Q, Zhao X (2010) Extraction of total saponins in Aralia elata Seem by herbal flash extractor. Mod Food Sci Technol 26:622–624Google Scholar
  117. 117.
    Lan-xiang PU (2010) Analysis on volatile constituents of Aralia cordata Thunb. from different places. J Anhui Agric Sci 38(17): 8946–8948Google Scholar
  118. 118.
    Ye X, Yu S, Lian X-Y, Zhang Z (2014) Quantitative determination of triterpenoid glycosides in Fatsia japonica Decne. & Planch. using high performance liquid chromatography. J Pharm Biomed Anal 88:472–476PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Park S-J, Lee S-G, Shin S-C, Lee B-Y, Ahn Y-J (1997) Larvicidal and antifeeding activities of oriental medicinal plant extracts against four species of forest insect pests. Appl Entomol Zool 32:601–608CrossRefGoogle Scholar
  120. 120.
    Zhang A-H, Tan S-Q, Zhao Y, Lei F-J, Zhang L-X (2015) Effects of total ginsenosides on the feeding behavior and two enzymes activities of Mythimna separata (Walker) larvae. Evid Based Complement Alternat Med 2015:451828PubMedPubMedCentralGoogle Scholar
  121. 121.
    Liu S, Wang X, Xu Y, Zhang R, Xiao S et al (2019) Antifeedant and ovicidal activities of ginsenosides against Asian corn borer, Ostrinia furnacalis (Guenee). PLoS One 14:e0211905PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Feng Y, Wu M-L, Li T-L, Fan W-L (2010) Purification of saponin from edible stems of Aralia continentalis using macroporous adsorption resin. Food Sci 31:73–76Google Scholar
  123. 123.
    Pérez AJ, Simonet AM, Calle JM, Pecio Ł, Guerra JO et al (2014) Phytotoxic steroidal saponins from Agave offoyana leaves. Phytochemistry 105:92–100PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Sharma U, Kumar N, Singh B (2012) Furostanol saponin and diphenylpentendiol from the roots of Asparagus racemosus. Nat Prod Commun 7:995–998PubMedPubMedCentralGoogle Scholar
  125. 125.
    Onlom C, Nuengchamnong N, Phrompittayarat W, Putalun W, Waranuch N et al (2017) Quantification of saponins in Asparagus racemosus by HPLC-Q-TOF-MS/MS. Nat Prod Commun 12:7–10PubMedPubMedCentralGoogle Scholar
  126. 126.
    de Oliveira LHG, de Sousa PAPS, Hilario FF, Nascimento GJ, Morais JPS et al (2016) Agave sisalana extract induces cell death in Aedes aegypti hemocytes increasing nitric oxide production. Asian Pac J Trop Biomed 6:396–399CrossRefGoogle Scholar
  127. 127.
    Zhou L, Cheng Z, Chen D (2012) Simultaneous determination of six steroidal saponins and one ecdysone in Asparagus filicinus using high performance liquid chromatography coupled with evaporative light scattering detection. Acta Pharm Sin B 2:267–273CrossRefGoogle Scholar
  128. 128.
    Herbert-Doctor LA, Saavedra-Aguilar M, Villarreal ML, Cardoso-Taketa A, Vite-Vallejo O (2016) Insecticidal and nematicidal effects of Agave tequilana juice against Bemisia tabaci and Panagrellus redivivus. Southwest Entomol 41:27–41CrossRefGoogle Scholar
  129. 129.
    Barkley T, Brouillet L, Strother J (2006) Flora of North America, Asteraceae, part 1. Oxford University Press, New YorkGoogle Scholar
  130. 130.
    Afzal H, Ahmed S, Khan RR, Sufyan M, Arshid M et al (2019) Management of house fly, Musca domestica L. (Muscidae: Diptera), through botanical baits. Rev Bras Entomol. Accepted In pressGoogle Scholar
  131. 131.
    Obeng-Ofori D, Akuamoah RK (2000) Biological effects of plant extracts against the rice weevil Sitophilus oryzae in stored maize. J Ghana Sci Assoc 2:62–69Google Scholar
  132. 132.
    Udebuani AC, Abara PC, Obasi KO, Okuh SU (2015) Studies on the insecticidal properties of Chromolaena odorata (Asteraceae) against adult stage of Periplaneta americana. J Entomol Zool Stud 3:318–321Google Scholar
  133. 133.
    Al-Shehbaz I, Beilstein MA, Kellogg E (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  134. 134.
    Kuzina V, Ekstrøm CT, Andersen SB, Nielsen JK, Olsen CE et al (2009) Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol 151:1977–1990PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Nielsen JK, Nagao T, Okabe H, Shinoda T (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285PubMedCrossRefGoogle Scholar
  136. 136.
    Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301CrossRefGoogle Scholar
  137. 137.
    Idris AB, Grafius E (1996) Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ Entomol 25:825–833CrossRefGoogle Scholar
  138. 138.
    Badenes-Perez FR, Reichelt M, Heckel DG (2010) Can sulfur fertilisation improve the effectiveness of trap crops for diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)? Pest Manag Sci 66:832–838PubMedGoogle Scholar
  139. 139.
    Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG (2014) Using plant chemistry and insect preference to study the potential of Barbarea (Brassicaceae) as a dead-end trap crop for diamondback moth (Lepidoptera: Plutellidae). Phytochemistry 98:137–144PubMedCrossRefGoogle Scholar
  140. 140.
    Wojciechowski MF, Mahn J, Jones B (2006) Fabaceae legumes. Version 14 June 2006Google Scholar
  141. 141.
    Wiersema JH, Kirkbride JH, Gunn CR (1990) Legume (Fabaceae) nomenclature in the USDA germplasm system. US Department of Agriculture, Agricultural Research Service, Beltsville, pp 1–10Google Scholar
  142. 142.
    Goławska S (2007) Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. J Chem Ecol 33:1598–1606PubMedCrossRefGoogle Scholar
  143. 143.
    Goławska S, Łukasik I (2009) Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid (Homoptera: Aphididae). Biologia 64:377–382CrossRefGoogle Scholar
  144. 144.
    Goławska S, Sprawka I, Łukasik I (2014) Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem Syst Ecol 55:137–144CrossRefGoogle Scholar
  145. 145.
    Mazahery-Laghab H (1997) Endogenous resistance to insect pests in alfalfa: engineering for enhanced resistance. Durham University, DurhamGoogle Scholar
  146. 146.
    Horber E, Leath KT, Berrang B, Marcarian V, Hanson CH (1974) Biological activities of saponin components from Dupuits and Lahontan alfalfa. Entomol Exp Appl 17:410–424CrossRefGoogle Scholar
  147. 147.
    Applebaum SW, Gestetner BE, Birk Y (1965) Physiological aspects of host specificity in the Bruchidae – IV. Developmental incompatibility of soybeans for Callosobruchus. J Insect Physiol 11:611–616CrossRefGoogle Scholar
  148. 148.
    Shany S, Gestetner B, Birk Y, Bondi A (1970) Lucerne saponins III. Effect of lucerne saponins on larval growth and their detoxification by various sterols. J Sci Food Agric 21:508–510PubMedCrossRefGoogle Scholar
  149. 149.
    Szczepaniak M, Krystkowiak K, Jurzysta M, Biały Z (2001) Biological activity of saponins from alfalfa tops and roots against Colorado potato beetle larvae. Acta Agrobot 54:35–45CrossRefGoogle Scholar
  150. 150.
    Szczepanik M, Bialy Z, Jurzysta M (2004) The insecticidal activity of saponins from various Medicago spp. against Colorado potato beetle, Leptinotarsa decemlineata Say. Allelopath J 14:177–185Google Scholar
  151. 151.
    Hussein HM, Dimetry N, Zidan Z, Iss-hak RR, Sehnal F (2005) Effects of insect growth regulators on the hairy rose beetle, Tropinota squalida (Col., Scarabeidae). J Appl Entomol Springer, Berlin, Heidelberg 129:142–148CrossRefGoogle Scholar
  152. 152.
    Feuillet C, MacDougal J (2007) Passifloraceae. In: Flowering plants· eudicots. Springer, pp 270–281Google Scholar
  153. 153.
    Holm-Nielsen LB, Jørgensen PM, Lawesson JE (1988) Passifloraceae. Flora of Ecuador, no 3. Pontificia Universidad Católica del Ecuador, Stockholm, p 124Google Scholar
  154. 154.
    D’Incao MP, Gosmann G, Machado V, Fiuza LM, Moreira GR (2012) Effect of saponin extracted from Passiflora alata Dryander (Passifloraceae) on development of the Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae). Int J Plant Res 2:151–159CrossRefGoogle Scholar
  155. 155.
    Mason PG, Weiss RM, Olfert O, Appleby M, Landry JF (2011) Actual and potential distribution of Acrolepiopsis assectella (Lepidoptera: Acrolepiidae), an invasive alien pest of Allium spp. in Canada. Can Entomol 143:185–196CrossRefGoogle Scholar
  156. 156.
    Luebert F (2014) Taxonomy and distribution of the genus Quillaja Molina (Quillajaceae). Feddes Repert 124:157–162CrossRefGoogle Scholar
  157. 157.
    Waligóra D (2006) Activity of the saponin extract from the bark of Quillaja saponaria Molina, against Colorado potato beetle (Leptinotarsa decemlineata Say). J Plant Prot Res 46:199–206Google Scholar
  158. 158.
    Wegorek P (2005) Current status of resistance in Colorado potato beetle (Leptinotarsa decemlineata Say) to selected active substances of insecticides in Poland. J Plant Prot Res 45:309–319Google Scholar
  159. 159.
    Waligora D (1999) Biological activity of secondary plant substances glucosinolates, alkaloids and saponins, expressed by their effects on development of Colorado potato beetle, Leptinotarsa decemlineata Say. J Plant Prot Res 38:158–173Google Scholar
  160. 160.
    Robbrecht E (1988) Tropical woody Rubiaceae: characteristic features and progressions. National Botanic Garden of Belgium, MeiseGoogle Scholar
  161. 161.
    Mocan A, Crisan G, Vlase L, Ivanescu B, Badarau AS et al (2016) Phytochemical investigations on four Galium species (Rubiaceae) from Romania. Farmacia 64:95–99Google Scholar
  162. 162.
    Pavela R (2010) Antifeedant activity of plant extracts on Leptinotarsa decemlineata Say. and Spodoptera littoralis Bois. larvae. Ind Crop Prod 32:213–219CrossRefGoogle Scholar
  163. 163.
    Acevedo-Rodríguez P, Van Welzen P, Adema F, Van der Ham R (2010) Sapindaceae. In: Flowering plants eudicots. Springer, Berlin, Heidelberg pp 357–407CrossRefGoogle Scholar
  164. 164.
    Bürki S (2009) Worldwide biogeography and systematics of Sapindaceae. Université de Neuchâtel UniMail building, 2000 Neuchâtel - SwitzerlandGoogle Scholar
  165. 165.
    Saha S, Walia S, Kumar J, Dhingra S, Parmar BS (2010) Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J Agric Food Chem 58:434–440PubMedCrossRefGoogle Scholar
  166. 166.
    Lavaud C, Crublet M-L, Pouny I, Litaudon M, Sévenet T (2001) Triterpenoid saponins from the stem bark of Elattostachys apetala. Phytochemistry 57:469–478PubMedCrossRefGoogle Scholar
  167. 167.
    Pertuit D, Mitaine-Offer A-C, Miyamoto T, Tanaka C, Tran DK et al (2019) Triterpenoid saponins from the root bark of Haplocoelum congolanum. Nat Prod Commun 14. Scholar
  168. 168.
    Eddaya T, Boughdad A, Sibille E, Chaimbault P, Zaid A et al (2013) Biological activity of Sapindus mukorossi Gaerten (Sapindaceae) aqueous extract against Thysanoplusia orichalcea (Lepidoptera: Noctuidae). Ind Crop Prod 50:325–332CrossRefGoogle Scholar
  169. 169.
    Sharma A, Sati SC, Sati OP, Sati MD, Kothiyal SK (2012) Triterpenoid saponins from the pericarps of Sapindus mukorossi. J Chem 2013:613190Google Scholar
  170. 170.
    Li R, Wu ZL, Wang YJ, Li LL (2013) Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Ind Crop Prod 51:163–170CrossRefGoogle Scholar
  171. 171.
    Olmstead RG, Bohs L (2007) A summary of molecular systematic research in Solanaceae: 1982–2006. Acta Hort. 745, ISHS 2007, VIth International Solanaceae Conference, 255–268Google Scholar
  172. 172.
    D’Arcy WG (1986) Solanaceae, biology and systematics. Columbia University Press, New YorkGoogle Scholar
  173. 173.
    Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF et al (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181CrossRefGoogle Scholar
  174. 174.
    Raman K, Tingey WM, Gregory P (1979) Potato glycoalkaloids: effect on survival and feeding behavior of the potato leafhopper. J Econ Entomol 72:337–341CrossRefGoogle Scholar
  175. 175.
    Sanford LL, Deahl KL, Sinden SL, Ladd TL (1990) Foliar solanidine glycoside levels in Solanum tuberosum populations selected for potato leafhopper resistance. Am Potato J 67:461–466CrossRefGoogle Scholar
  176. 176.
    Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61:83–111CrossRefGoogle Scholar
  177. 177.
    Sanford LL, Domek JM, Cantelo WW, Kobayashi RS, Sinden SL (1996) Mortality of potato leafhopper adults on synthetic diets containing seven glycoalkaloids synthesized in the foliage of various Solanum species. Am Potato J 73:79–88CrossRefGoogle Scholar
  178. 178.
    Iorizzi M, Lanzotti V, Ranalli G, De Marino S, Zollo F (2002) Antimicrobial furostanol saponins from the seeds of Capsicum annuum L. var. acuminatum. J Agric Food Chem 50:4310–4316PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Shukla YN, Rani A, Tripathi AK, Sharma S (1996) Antifeedant activity of ursolic acid isolated from Duboisia myoporoides. Phytother Res 10:359–360CrossRefGoogle Scholar
  180. 180.
    Ikbal C, Monia BH-K, Mounir T, Wassila H, Najet R et al (2007) Pesticidal potentialities of Cestrum parqui saponins. Int J Agric Res 2:275–281CrossRefGoogle Scholar
  181. 181.
    Stevens PF, Dressler S, Weitzman AL (2004) Theaceae. In: The families of and genera of flowering plants, vol 6. Flowering plants· Dicotyledons. Springer, Berlin, Heidelberg pp 463–471CrossRefGoogle Scholar
  182. 182.
    Liang D, Baas P (1991) The wood anatomy of the Theaceae. IAWA J 12:333–353CrossRefGoogle Scholar
  183. 183.
    Luna I, Ochoterena H (2004) Phylogenetic relationships of the genera of Theaceae based on morphology. Cladistics 20:223–270CrossRefGoogle Scholar
  184. 184.
    Hui W, Shixi Z, Jinfeng H (2006) Influence of host plants on the resistance recession and esterase activity of Plutella xylostella L. field population. J Fujian Agric For Univ 35:138–142Google Scholar
  185. 185.
    Dolma SK, Sharma E, Gulati A, Reddy SGE (2018) Insecticidal activities of tea saponin against diamondback moth, Plutella xylostella and aphid, Aphis craccivora. Toxin Rev 37:52–55CrossRefGoogle Scholar
  186. 186.
    Lin S, Chen Y, Bai Y, Cai H, Wei H et al (2018) Effect of tea saponin-treated host plants on activities of antioxidant enzymes in larvae of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Environ Entomol 47:749–754PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Wang X-Y, Huang B-Q (1999) Studies on modes and mechanisms of antifeeding action of tea saponin against imported cabbage worm Pieris rapae L. Entomol Knowl 23:22–24Google Scholar
  188. 188.
    Su Y, Ye Y (2012) Tea saponin biological pesticide and preparation method as well as application thereof. Patent no CN102511510-AGoogle Scholar
  189. 189.
    Adebisi O, Dolma SK, Verma PK, Singh B, Reddy SE (2019) Volatile, non-volatile composition and insecticidal activity of Eupatorium adenophorum Spreng against diamondback moth, Plutella xylostella (L.), and aphid, Aphis craccivora Koch. Toxin Rev 38:143–150CrossRefGoogle Scholar
  190. 190.
    Roof M, Horber E, Sorensen EL (1974) Effect of saponin on the potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae). J Kansas Entomol Soc 47:538–539Google Scholar
  191. 191.
    Zeng C, Wu L, Zhao Y, Yun Y, Peng Y (2018) Tea saponin reduces the damage of Ectropis obliqua to tea crops, and exerts reduced effects on the spiders Ebrechtella tricuspidata and Evarcha albaria compared to chemical insecticides. PeerJ 6:e4534PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.College of GeographyFujian Normal UniversityFuzhouPeople’s Republic of China
  3. 3.College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
  4. 4.Entomological Research Institute, Ayub Agricultural Research InstituteFaisalabadPakistan

Personalised recommendations