Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away

  • Łukasz StępieńEmail author
  • Justyna Lalak-Kańczugowska
  • Natalia Witaszak
  • Monika Urbaniak
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Fusarium species are casual filamentous fungi, including opportunistic pathogens infecting plants worldwide, but also able to grow as saprotrophs in a range of climatic zones. The genus is extremely variable in terms of genetics, biology, ecology, and, consequently, secondary metabolism, which directly relates to ecological conditions and niches occupied by individual species. Fungal secondary metabolites are the main “weapon” of the pathogenic species before, during, and after the infection process, allowing for the communication with the organism that is being attacked. Many of secondary metabolites are common for diverse fungal microorganisms, and their mode of action is similar for various plant-pathogen systems. Fusaria are able to produce a range of quite specific metabolites, some of which have yet unknown biological functions. Nevertheless, genetic and biochemical pathways responsible for their biosynthesis remain under strong selection pressure, which keeps their structures and functions relatively stable, regardless of the producing organism. Here, we summarize the data available in recent literature reports on genetic and biochemical diversity occurring in the studies of main secondary metabolites produced by Fusarium species differing in origin and ecology.


Fumonisins Fungal ecology Metabolic pathways Mycotoxins Phylogeny Trichothecenes Zearalenone 

List of Abbreviations


Acetylated DON derivatives




Bikaverin biosynthetic gene cluster


Carotenoid biosynthetic gene cluster




Dimethylallyltryptophan synthase






Equisetin biosynthetic gene cluster


Fusaric acid


Fumonisin B


F. equiseti species complex


F. fujikuroi species complex


F. graminearum species complex


F. oxysporum species complex


Farnesyl pyrophosphate


Fusarubin biosynthetic gene cluster


F. solani species complex


Fusaric acid biosynthetic gene cluster


Fumonisin biosynthetic gene cluster


Fusarin C biosynthetic gene cluster




Geranylgeranyl pyrophosphate


Mitogen-activated protein kinase






Nonribosomal peptide synthetase


Polyketide synthase


Primary metabolism


Secondary metabolite


Terpene cyclase


Transcription factor


Trichothecene biosynthetic gene cluster





The study was supported by the Polish National Science Centre grants: 2014/15/B/NZ9/01544 and 2015/17/B/NZ9/03577.


  1. 1.
    Desjardins AE (2006) Fusarium, mycotoxins, chemistry, genetics and biology. APS Press, St. PaulGoogle Scholar
  2. 2.
    Proctor RH, Plattner RD, Desjardins AE et al (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54:2424–2430PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Stępień Ł (2014) The use of Fusarium secondary metabolite biosynthetic genes in chemotypic and phylogenetic studies. Crit Rev Microbiol 40:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Proctor RH, Van Hove F, Susca A et al (2013) Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 90:290–306PubMedPubMedCentralGoogle Scholar
  5. 5.
    Koczyk G, Dawidziuk A, Popiel D (2015) The distant siblings – a phylogenomic roadmap illuminates the origins of extant diversity in fungal aromatic polyketide biosynthesis. Genome Biol Evol 7:3132–3154PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Waalwijk C, van der Lee T, de Vries I et al (2004) Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur J Plant Pathol 110:533–544CrossRefGoogle Scholar
  7. 7.
    Stępień Ł, Koczyk G, Waśkiewicz A (2011a) FUM cluster divergence in fumonisins-producing Fusarium species. Fungal Biol 115:112–123PubMedCrossRefGoogle Scholar
  8. 8.
    Stępień Ł, Koczyk G, Waśkiewicz A (2013) Diversity of Fusarium species and mycotoxins contaminating pineapple. J Appl Genet 54:367–380PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Proctor RH, Busman M, Seo J-A et al (2008) A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol 45:1016–1026PubMedCrossRefGoogle Scholar
  10. 10.
    Scauflaire J, Gourgue M, Callebaut A, Munaut F (2012) Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur J Plant Pathol 133:911–922CrossRefGoogle Scholar
  11. 11.
    Waśkiewicz A Stępień Ł (2012) Mycotoxins biosynthesized by plant-derived Fusarium isolates. Arh Hig Rada Toksikol 63:437–444PubMedCrossRefGoogle Scholar
  12. 12.
    Stępień Ł, Koczyk G, Waśkiewicz A (2011b) Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J Appl Genet 52:487–496PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Stępień Ł, Waśkiewicz A, Wilman K (2015) Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int J Food Microbiol 193:74–81PubMedCrossRefGoogle Scholar
  14. 14.
    Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, AmesCrossRefGoogle Scholar
  15. 15.
    Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201CrossRefGoogle Scholar
  16. 16.
    Watanabe M, Yonezawa T, Lee K et al (2011) Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol Biol 11:322PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Munkvold GP (2017) Fusarium species and their associated mycotoxins. In: Moretti A, Susca A (eds) Mycotoxigenic fungi: methods and protocols. Springer, New YorkGoogle Scholar
  18. 18.
    Garcia-Romera I, Garcia-Garrido JM, Martin J et al (1998) Interactions between Saprotrophic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24:235–246Google Scholar
  19. 19.
    Roncero MIG, Hera C, Ruiz-Rubio M et al (2003) Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol Mol Plant Pathol 62:87–98CrossRefGoogle Scholar
  20. 20.
    Leplat J, Friberg H, Abid M et al (2013) Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron Sustain Dev 33:97CrossRefGoogle Scholar
  21. 21.
    Dweba C, Figlan S, Shimelis H et al (2016) Fusarium head blight of wheat: pathogenesis and control strategies. Crop Prot 91:114–122CrossRefGoogle Scholar
  22. 22.
    Dignani MC, Anaissie E (2004) Human fusariosis. Clin Microbiol Infect 10:67–75PubMedCrossRefGoogle Scholar
  23. 23.
    Antonissen G, Martel A, Pasmans F et al (2014) The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins 6:430–452PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bakker MG, Brown DW, Kelly AC et al (2018) Fusarium mycotoxins: a trans-disciplinary overview. Can J Plant Pathol 40:161–171CrossRefGoogle Scholar
  25. 25.
    Yli-Mattila T, Paavanen-Huhtala S, Bulat SA et al (2002) Molecular, morphological and phylogenetic analysis of the Fusarium avenaceum/F. arthrosporioides/F. tricinctum species complex a polyphasic approach. Mycol Res 106:655–669CrossRefGoogle Scholar
  26. 26.
    Cai L, Giraud T, Zhang N et al (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133CrossRefGoogle Scholar
  27. 27.
    Choi H-W, Hong SK, Lee YK et al (2018) Taxonomy of Fusarium fujikuroi species complex associated with bakanae on rice in Korea. Australasian Plant Pathol 47:23–34CrossRefGoogle Scholar
  28. 28.
    Šišić A, Baćanović-Šišić J, Al-Hatmi AMS et al (2018) The ‘forma specialis’ issue in Fusarium: a case study in Fusarium solani f. sp. pisi. Sci Rep 8:1252PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Moretti ANM (2009) Taxonomy of Fusarium genus: a continuous fight between lumpers and splitters. Proc Nat Sci Matica Srpska Novi Sad 117:7–13CrossRefGoogle Scholar
  30. 30.
    Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp.nov., formerly recognized as the group 1 population of F. graminearum. Mycologia 91:597–609CrossRefGoogle Scholar
  31. 31.
    Taylor JW, Jacobson DJ, Kroken S et al (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedCrossRefGoogle Scholar
  32. 32.
    Marasas WF, Rheeder JP, Lamprecht SC et al (2001) Fusarium andiyazi sp.nov., a new species from sorghum. Mycologia 93:1203–1210CrossRefGoogle Scholar
  33. 33.
    Zeller KA, Summerell BA, Bullock S, Leslie JF (2003) Gibberella konza (Fusarium konzum) sp.nov. from prairie grasses, a new species in the Gibberella fujikuroi species complex. Mycologia 95:943–954PubMedCrossRefGoogle Scholar
  34. 34.
    Kulik T (2008) Detection of Fusarium tricinctum from cereal grain using PCR assay. J Appl Genet 49:305–311PubMedCrossRefGoogle Scholar
  35. 35.
    Jurado M, Marin P, Callejas C et al (2010) Genetic variability and fumonisin production by Fusarium proliferatum. Food Microbiol 27:50–57PubMedCrossRefGoogle Scholar
  36. 36.
    O’Donnell K, Ward TJ, Geiser DM et al (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623PubMedCrossRefGoogle Scholar
  37. 37.
    Summerell BA, Leslie JF (2011) Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers 50:135–144CrossRefGoogle Scholar
  38. 38.
    O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78CrossRefGoogle Scholar
  39. 39.
    Mule G, Gonzalez-Jaen MT, Hornok L et al (2005) Advances in molecular diagnosis of toxigenic Fusarium species: a review. Food Addit Contam 22:316–323PubMedCrossRefGoogle Scholar
  40. 40.
    Waalwijk C, de Koning JRA, Baayen RP, Gams W (1996) Discordant groupings of Fusarium spp. from sections Elegans, Liseola and Dlaminia based on ribosomal ITS1 and ITS2 sequences. Mycologia 88:361–368CrossRefGoogle Scholar
  41. 41.
    O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116PubMedCrossRefGoogle Scholar
  42. 42.
    Yli-Mattila T, Gagkaeva T (2010) Molecular chemotyping of Fusarium gramineaum, F. culmorum and F. cerealis isolates from Finland and Russia. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, BerlinGoogle Scholar
  43. 43.
    O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493CrossRefGoogle Scholar
  44. 44.
    Wulff EG, Sørensen JS, Lübeck M et al (2010) Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ Microbiol 12:649–657PubMedCrossRefGoogle Scholar
  45. 45.
    Stępień Ł, Waśkiewicz A, Urbaniak M (2016) Wildly growing asparagus (Asparagus officinalis L.) hosts pathogenic Fusarium species and accumulates their mycotoxins. Microbial Ecol 71:927–937CrossRefGoogle Scholar
  46. 46.
    Gräfenhan T, Schroers H-J, Nirenberg HI, Seifert KA (2011) An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol 68:79–113PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sampietro DA, Marín P, Iglesias J et al (2010) A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biol 114:74–81PubMedCrossRefGoogle Scholar
  48. 48.
    Geiser DM, del Mar J-GM, Kang S et al (2004) FUSARIUM ID v.1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479CrossRefGoogle Scholar
  49. 49.
    O’Donnell K, Sutton DA, Rinaldi MG et al (2010) An Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol 48:3708–3718PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    O’Donnell K, Ward TJ, Robert VARG et al (2015) DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43:583–595CrossRefGoogle Scholar
  51. 51.
    Waalwijk C, Taga M, Zheng S-L et al (2018) Karyotype evolution in Fusarium. Ima Fungus 9:13–26PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    O’Donnell K, Rooney AP, Proctor RH et al (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Laurence MH, Summerell BA, Burgess LW, Liew ECY (2011) Fusarium burgessii sp.nov. representing a novel lineage in the genus Fusarium. Fungal Divers 49:101–112CrossRefGoogle Scholar
  54. 54.
    Zhou X, O’Donnell K, Aoki T et al (2016) Two novel Fusarium species that cause canker disease of prickly ash (Zanthoxylum bungeanum) in northern China form a novel clade with Fusarium torreyae. Mycologia 108:668–681PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hansen FT, Gardiner DM, Lysøe E et al (2015) An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol 75:20–29PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Brown DW, Proctor RH (2016) Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genet Biol 89:37–51PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kim H-S, Proctor RH, Brown DW (2017) Comparative genomic analyses of secondary metabolite biosynthetic gene clusters in 207 isolates of Fusarium. In: 29th fungal genetics conference. Genetics Society of America, Pacific GroveGoogle Scholar
  58. 58.
    Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84:663–679PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Susca A, Moretti A, Logrieco AF (2017) Mycotoxin biosynthetic pathways: a window on the evolutionary relationships among toxigenic fungi. In: Varma A, Sharma A (eds) Modern tools and techniques to understand microbes. Springer, ChamGoogle Scholar
  60. 60.
    Bertero A, Spicer LJ, Caloni F (2018) Fusarium mycotoxins and in vitro species-specific approach with porcine intestinal and brain in vitro barriers: a review. Food Chem Toxicol 121:666–675PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact 8:593–601PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wiemann P, Sieber CMK, von Bargen KW et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Niehaus EM, Munsterkotter M, Proctor RH et al (2016) Comparative “omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol 8:3574–3599PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ma L-J, Geiser DM, Proctor RH et al (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhang Y, Ma L-J (2017) Deciphering pathogenicity of Fusarium oxysporum from a phylogenomics perspective. Adv Genet 100:179–209PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ma L-J, van der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vesonder RF, Goliński P (1989) Metabolites of Fusarium. In: Chełkowski J (ed) Fusarium mycotoxins: taxonomy and pathogenicity. Elsevier, AmsterdamGoogle Scholar
  68. 68.
    Cole RJ, Schweikert MA (2003) Handbook of secondary fungal metabolites, vol I. Academic, San DiegoGoogle Scholar
  69. 69.
    Hansen FT, Sørensen JL, Giese H et al (2012) Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 155:128–136PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Proctor RH, Butchko RAE, Brown DW, Moretti A (2007) Functional characterization, sequence comparisons and distribution of a polyketide synthase gene required for perithecial pigmentation in some Fusarium species. Food Addit Contam 24:1076–1087PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Studt L, Wiemann P, Kleigrewe K et al (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Proctor RH, Plattner RD, Brown DW et al (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815–822PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kimura M, Tokai T, Takahashi-Ando N et al (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes and evolution. Biosci Biotech Biochem 71:2105–2123CrossRefGoogle Scholar
  75. 75.
    McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes from simple to complex mycotoxins. Toxins 3:802–814PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Merhey J, Richard-Forget F, Barreau C (2011) Regulation of trichothecene biosynthesis in fusarium recent advances and new insights. Appl Microbiol Biotechnol 91:519–528CrossRefGoogle Scholar
  77. 77.
    Varga E, Wiesenberger G, Hametner C et al (2015) New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 17:2588–2600PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kelly AC, Proctor RH, Belzile F et al (2016) The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genet Biol 95:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Strub C, Pocaznoi D, Lebrihi A et al (2010) Influence of barley matling operating parameters on T-2 and HT-2 toxinogenesis of Fusarium langsethiae, a worrying contaminant of malting barley in Europe. Food Addit Contam 27:1247–1252CrossRefGoogle Scholar
  80. 80.
    Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215CrossRefGoogle Scholar
  81. 81.
    Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378PubMedCrossRefGoogle Scholar
  82. 82.
    Goswami RS, Kistler HC (2005) Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95:1397–1404PubMedCrossRefGoogle Scholar
  83. 83.
    Boenisch MJ, Schӓfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Brown DW, McCormick SP, Alexander NJ et al (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32:121–133PubMedCrossRefGoogle Scholar
  85. 85.
    Brown DW, McCormick SP, Alexander NJ et al (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233PubMedCrossRefGoogle Scholar
  86. 86.
    Lee T, Han Y-K, Kim K-H et al (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ward TJ, Bielawski JP, Kistler HC et al (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99:9278–9283PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    McCormick SP, Alexander NJ, Trapp SC, Hohn TM (1999) Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol 65:5252–5256PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Brown DW, Proctor RH, Dyer RB, Plattner RD (2003) Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem 51:7936–7944PubMedCrossRefGoogle Scholar
  90. 90.
    Meek IB, Peplow AW, Ake C et al (2003) Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol 69:1607–1613PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    O’Donnell K, Sutton DA, Rinaldi MG et al (2009) A novel multi-locus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the US. J Clin Microbiol 47:3851–3861PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142PubMedCrossRefGoogle Scholar
  93. 93.
    Seong KY, Pasquali M, Zhou X et al (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol 72:354–367PubMedCrossRefGoogle Scholar
  94. 94.
    Achilladelis B, Hanson JR (1968) Studies in terpenoid biosynthesis I. The biosynthesis of metabolites of Trichothecium roseum. Phytochemistry 7:589–594CrossRefGoogle Scholar
  95. 95.
    Grünler J, Ericsson J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212:259–277PubMedCrossRefGoogle Scholar
  96. 96.
    Hohn TM, Beremand PD (1989) Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79:131–138PubMedCrossRefGoogle Scholar
  97. 97.
    McCormick SP, Alexander NJ (2002) Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol 68:2959–2964PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Alexander NJ, McCormick SP, Waalwijk C et al (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495PubMedCrossRefGoogle Scholar
  99. 99.
    McCormick SP, Harris LJ, Alexander NJ et al (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70:2044–2051PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Stockmann-Juvala H, Savolainen K (2008) A review of the toxic effects and mechanisms of action of fumonisin B1. Human Exp Toxicol 27:799–809CrossRefGoogle Scholar
  101. 101.
    Glenn AE, Zitomer NC, Zimeri AM et al (2008) Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant-Microbe Interact 21:87–97PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang L, Wang J, Zhang C, Wang Q (2012) Analysis of potential fumonisin-producing Fusarium species in corn products from three main maize-producing areas in eastern China. J Sci Food Agric 93:693–701PubMedCrossRefGoogle Scholar
  103. 103.
    Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249PubMedCrossRefGoogle Scholar
  104. 104.
    Ahangarkani F, Rouhi S, Azizi IG (2014) A review on incidence and toxicity of fumonisins. Toxin Rev 33:95–100CrossRefGoogle Scholar
  105. 105.
    Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP et al (1988) Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun 11:743–745Google Scholar
  106. 106.
    Laurent D, Platzer N, Kohler F et al (1989) Macrofusine et micromoniline: duex nouvelles mycotoxines isolées de maïs infesté par Fusarium moniliforme. Microbiol Alim Nutr 7:9–16Google Scholar
  107. 107.
    Domijan AM (2012) Fumonisin B1: a neurotoxic mycotoxin. Arh Hig Rada Toksikol 63:531–544PubMedCrossRefGoogle Scholar
  108. 108.
    Brown DW, Butchko RA, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Van Hove F, Waalwijk C, Logrieco A et al (2011) Gibberella musae (Fusarium musae) sp.nov.: a new species from banana is sister to F. verticillioides. Mycologia 103:570–585PubMedCrossRefGoogle Scholar
  110. 110.
    Gerber R, Lou L, Du L (2009) A PLP-dependent polyketide chain releasing mechanism in the biosynthesis of mycotoxin fumonisins in Fusarium verticillioides. J Am Chem Soc 131:3148–3149PubMedCrossRefGoogle Scholar
  111. 111.
    Seo J-A, Proctor RH, Plattner RD (2001) Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165PubMedCrossRefGoogle Scholar
  112. 112.
    Du L, Zhu X, Gerber R, Huffman J et al (2008) Biosynthesis of sphinganine-analog mycotoxins. J Ind Microbiol Biotechnol 35:455–464PubMedCrossRefGoogle Scholar
  113. 113.
    Bojja RS, Cerny RL, Proctor RH, Du L (2004) Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J Agric Food Chem 52:2855–2860PubMedCrossRefGoogle Scholar
  114. 114.
    Butchko RAE, Plattner RD, Proctor RH (2003b) FUM9 is required for C-5 hydroxylation of fumonisins and complements the meiotically defined Fum3 locus in Gibberella moniliformis. Appl Environ Microbiol 69:6935–6937PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zaleta-Rivera K, Xu C, Yu F et al (2006) A bi-domain non-ribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry 45:2561–2569PubMedCrossRefGoogle Scholar
  116. 116.
    Butchko RAE, Plattner RD, Proctor RH (2003a) FUM13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in Gibberella moniliformis. J Agric Food Chem 51:3000–3006PubMedCrossRefGoogle Scholar
  117. 117.
    Ding Y, Bojja RS, Du L (2004) Fum3p, a 2-ketoglutarate- dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides. Appl Environ Microbiol 70:1931–1934PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Carbone I, Ramirez-Prado JH, Jakobek JL, Horn BW (2007) Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster. BMC Evol Biol 7:111PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Khaldi N, Collemare J, Lebrun M-H, Wolf KH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol 9:R18.1–R18.10CrossRefGoogle Scholar
  120. 120.
    Khaldi N, Wolfe KH (2011) Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int J Evol Biol 2011:423821PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Slot JC, Rokas A (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 21:134–139PubMedCrossRefGoogle Scholar
  122. 122.
    Urry WH, Wehrmeister HL, Hodge EB, Hidy PH (1966) The structure of zearalenone. Tetrahedron Lett 7:3109–3114CrossRefGoogle Scholar
  123. 123.
    Lysøe E, Bone KR, Klemsdal SS (2008) Identification of up-regulated genes during zearalenone biosynthesis in Fusarium. Eur J Plant Pathol 122:505–516CrossRefGoogle Scholar
  124. 124.
    Vesonder RF, Goliński P, Plattner R, Zietkiewicz DL (1991) Mycotoxin formation by different geographic isolates of Fusarium crookwellense. Mycopathologia 113:11PubMedCrossRefGoogle Scholar
  125. 125.
    Stępień Ł, Gromadzka K, Chełkowski J (2012) Polymorphism of mycotoxin biosynthetic genes among Fusarium equiseti isolates from Italy and Poland. J Appl Genet 53:227–236PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Hagler WM, Dankó G, Horváth L et al (1980) Transmission of zearalenone and its metabolite into ruminant milk. Acta Vet Acad Sci Hung 28:209–216PubMedGoogle Scholar
  127. 127.
    Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72:1793–1799PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ivanova L, Skjerve E, Eriksen GS, Uhlig S (2006) Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon 47:868–876PubMedCrossRefGoogle Scholar
  129. 129.
    Liuzzi VC, Mirabelli V, Cimmarusti MT et al (2017) Enniatin and beauvericin biosynthesis in Fusarium species: production profiles and structural determinant prediction. Toxins 9:45PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Stępień Ł, Waśkiewicz A (2013) Sequence divergence of the enniatin synthase gene in relation to production of beauvericin and enniatins in Fusarium species. Toxins 5:537–555PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Xu Y, Zhan J, Wijeratne EM et al (2007) Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. J Nat Prod 70:1467–1471PubMedCrossRefGoogle Scholar
  132. 132.
    Nilanonta C, Isaka M, Kittakoop P et al (2002) Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus BCC 1614. Tetrahedron 58:3355–3360CrossRefGoogle Scholar
  133. 133.
    Shin CG, An DG, Song HH, Lee C (2009) Beauvericin and enniatins H, I and MK1688 are new potent inhibitors of human immunodeficiency virus type-1 integrase. J Antibiot (Tokyo) 62:687–690CrossRefGoogle Scholar
  134. 134.
    Dornetshuber R, Heffeter P, Kamyar MR et al (2007) Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem Res Toxicol 20:465–473PubMedCrossRefGoogle Scholar
  135. 135.
    Wätjen W, Debbab A, Hohlfeld A et al (2009) Enniatins A1, B and B1 from an endophytic strain of Fusarium tricinctum induce apoptotic cell death in H4IIE hepatoma cells accompanied by inhibition of ERK phosphorylation. Mol Nutr Food Res 53:431–440PubMedCrossRefGoogle Scholar
  136. 136.
    Kamyar M, Rawnduzi P, Studenik CR et al (2004) Investigation of the electrophysiological properties of enniatins. Arch Biochem Biophys 429:215–223PubMedCrossRefGoogle Scholar
  137. 137.
    Nilanonta C, Isaka M, Kittakoop P et al (2000) Antimycobacterial and antiplasmodial cyclodepsipeptides from the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Planta Med 66:756–758PubMedCrossRefGoogle Scholar
  138. 138.
    Supothina S, Isaka M, Kirtikara K et al (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738PubMedCrossRefGoogle Scholar
  139. 139.
    Hiraga K, Yamamoto S, Fakuda H et al (2005) Enniatin has a new function as an inhibitor of Pdr-5p one of the ABC transporters in Saccharomyces cerevisiae. Biochem Biophys Res Comm 328:1119–1125PubMedCrossRefGoogle Scholar
  140. 140.
    Xu LJ, Liu YS, Zhou LG, Wu JY (2009) Enhanced beauvericin production with in situ adsorption in mycelial liquid culture of Fusarium redolens Dzf2. Process Biochem 44:1063–1067CrossRefGoogle Scholar
  141. 141.
    Kroslak M (2002) Efficacy, and acceptability of fusafungine, a local treatment for both nose and throat infections, in adult patients with upper respiratory tract infections. Curr Med Res Opin 18:194–200PubMedCrossRefGoogle Scholar
  142. 142.
    Gaumann E, Naef-Roth S, Kern H (1960) Zurphytotoxischen wirksamkeit der enniatine. J Phytopathol 40:45–51CrossRefGoogle Scholar
  143. 143.
    Uhlig S, Jestoi M, Parikka P (2007) Fusarium avenaceum – the North European situation. Int J Food Microbiol 119:17–24PubMedCrossRefGoogle Scholar
  144. 144.
    Jestoi M (2008) Emerging Fusarium-Mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin – a review. Crit Rev Food Sci Nutr 48:21–49PubMedCrossRefGoogle Scholar
  145. 145.
    Steinrauf LK (1985) Beauvericin and the other enniatins. Met Ions Biol Syst 19:139–171Google Scholar
  146. 146.
    Hamill RL, Higgens CE, Boaz ME, Gorman M (1969) The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 10:4255–4258CrossRefGoogle Scholar
  147. 147.
    Zhang L, Yan K, Zhang Y et al (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci U S A 104:4606–4611PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Jow GM, Chou CJ, Chen BF, Tsai JH (2004) Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: the causative role of calcium. Cancer Lett 216:165–173PubMedCrossRefGoogle Scholar
  149. 149.
    Sivanathan S, Scherkenbeck J (2014) Cyclodepsipeptides: a rich source of biologically active compounds for drug research. Molecules 19:12368–12420PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Xu Y, Orozco R, Wijeratne EM et al (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15:898–907PubMedCrossRefGoogle Scholar
  151. 151.
    Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Zhang T, Zhuo Y, Jia X et al (2013) Cloning and characterization of the gene cluster required for beauvericin biosynthesis in Fusarium proliferatum. Science China Life Sci 56:628–637CrossRefGoogle Scholar
  153. 153.
    Zocher R, Keller U, Kleinkauf H (1982) Enniatin synthetase, a novel type of multifunctional enzyme catalyzing depsipeptide synthesis in Fusarium oxysporum. Biochemistry 21:43–48PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Zocher R, Keller U, Kleinkauf H (1983) Mechanism of depsipeptide formation catalyzed by enniatin synthetase. Biochem Biophys Res Comm 110:292–299PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Zocher R, Keller U (1997) Thiol template peptide synthesis systems in bacteria and fungi. Adv Microbial Physiol 38:85–131CrossRefGoogle Scholar
  156. 156.
    Billich A, Zocher R (1987) N-Methyltransferase function of the multifunctional enzyme enniatin synthetase. Biochemistry 26:8417–8423CrossRefGoogle Scholar
  157. 157.
    Glinski M, Urbanke C, Hornbogen T, Zocher R (2002) Enniatin synthetase is a monomer with extended structure: evidence for an intramolecular reaction mechanism. Arch Microbiol 178:267–273PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Hornbogen T, Glinski M, Zocher R (2002) Biosynthesis of depsipeptide mycotoxins in Fusarium. Eur J Plant Pathol 108:713CrossRefGoogle Scholar
  159. 159.
    Matthes D, Richter L, Müller J et al (2012) In vitro chemoenzymatic and in vivo biocatalytic synthesis of new beauvericin analogues. Chem Comm 48:5674–5676PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Peeters H, Zocher R, Madry N et al (1983) Cell-free synthesis of the depsipeptide beauvericin. J Antibiot (Tokyo) 36:1762–1766CrossRefGoogle Scholar
  161. 161.
    Peeters H, Zocher R, Kleinkauf H (1988) Synthesis of beauvericin by a multifunctional enzyme. J Antibiot (Tokyo) 41:352–359CrossRefGoogle Scholar
  162. 162.
    Chełkowski J, Ritieni A, Wiśniewska H et al (2007) Occurrence of toxic hexadepsipeptides in preharvest maize ear rot infected by Fusarium poae in Poland. J Phytopathol 155:8–12CrossRefGoogle Scholar
  163. 163.
    Kulik T, Pszczółkowska A, Fordoński G, Olszewski J (2007) PCR approach based on the esyn1 gene for the detection of potential enniatin-producing Fusarium species. Int J Food Microbiol 116:319–324PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Logrieco A, Rizzo A, Ferracane R, Ritieni A (2002) Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Appl Environ Microbiol 68:82–85PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Jestoi M, Rokka M, Yli-Mattila T et al (2004) Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in Finnish grain samples. Food Addit Contam 21:794–802PubMedCrossRefGoogle Scholar
  166. 166.
    Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Niehaus E-M, Díaz-Sánchez V, von Bargen KW et al (2014a) Fusarins and fusaric acid in Fusaria. In: Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 239–262CrossRefGoogle Scholar
  168. 168.
    Singh VK, Singh HB, Upadhyay RS (2017) Role of fusaric acid in the development of “Fusarium wilt” symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiol Biochem 118:320–332PubMedCrossRefGoogle Scholar
  169. 169.
    May HD, Wu Q, Blake CK (2000) Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium. Can J Microbiol 46:692–699PubMedCrossRefGoogle Scholar
  170. 170.
    Tung TT, Jakobsen TH, Dao TT et al (2017) Fusaric acid and analogues as Gram-negative bacterial quorum sensing inhibitors. Eur J Medicinal Chem 126:1011–1020CrossRefGoogle Scholar
  171. 171.
    Brown DW, Butchko RAE, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532PubMedCrossRefGoogle Scholar
  172. 172.
    Brown DW, Lee SH, Kim LH et al (2015) Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol Plant-Microbe Interact 28:319–332PubMedCrossRefGoogle Scholar
  173. 173.
    Studt L, Janevska S, Niehaus E-M et al (2016) Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi. Environ Microbiol 18:936–956PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Niehaus E-M, von Bargen KW, Espino JJ et al (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762PubMedCrossRefGoogle Scholar
  175. 175.
    Michielse CB, Studt L, Janevska S et al (2015) The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ Microbiol 17:2690–2708PubMedCrossRefGoogle Scholar
  176. 176.
    López-Díaz C, Rahjoo V, Sulyok M et al (2017) Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Plant Pathol 19:440–453PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Pfannmüller A, Leufken J, Studt L et al (2017) Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS One 12:e0176194PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Michielse CB, van Wijk R, Reijnen L et al (2009) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 5:e1000637PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Hou X, An B, Wang Q et al (2018) SGE1 is involved in conidiation and pathogenicity of Fusarium oxysporum f.sp. cubense. Can J Microbiol 64:349–357PubMedCrossRefGoogle Scholar
  180. 180.
    Janevska S, Tudzynski B (2017) Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl Microbiol Biotechnol 102:615–630PubMedCrossRefGoogle Scholar
  181. 181.
    Wiemann P, Brown DW, Kleigrewe K et al (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994PubMedPubMedCentralGoogle Scholar
  182. 182.
    Niehaus E-M, Kleigrewe K, Wiemann P et al (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20:1055–1066PubMedCrossRefGoogle Scholar
  183. 183.
    Studt L, Humpf H-U, Tudzynski B (2013) Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. PLoS One 8:e58185PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Wiebe LA, Bjeldanes LF (1981) Fusarin C, a mutagen from Fusarium moniliforme grown on corn. J Food Sci 46:1424–1426CrossRefGoogle Scholar
  185. 185.
    Song Z, Cox RJ, Lazarus CM, Simpson TJ (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5:1196–1203PubMedCrossRefGoogle Scholar
  186. 186.
    Han Z, Tangni EK, Huybrechts B et al (2014) Screening survey of co-production of fusaric acid, fusarin C, and fumonisins B1, B2 and B3 by Fusarium strains grown in maize grains. Mycotox Res 30:231–240CrossRefGoogle Scholar
  187. 187.
    Jaskiewicz K, van Rensburg SJ, Marasas WFO et al (1987) Carcinogenicity of Fusarium moniliforme culture material in rats. J Nat Cancer Inst 78:321–325PubMedGoogle Scholar
  188. 188.
    Sondergaard TE, Hansen FT, Purup S et al (2011) Fusarin C acts like an estrogenic agonist and stimulates breast cancer cells in vitro. Toxicol Lett 205:116–121PubMedCrossRefGoogle Scholar
  189. 189.
    Bever RJ Jr, Couch LH, Sutherland JB et al (2000) DNA adduct formation by Fusarium culture extracts: lack of role of fusarin C. Chemico-Biol Interact 128:141–157CrossRefGoogle Scholar
  190. 190.
    Steyn PS, Vleggaar R (1985) Mechanistic studies on the biosynthesis of the aurovertins using 18O-labelled precursors. J Chem Soc Chem Commun 24:1796–1798CrossRefGoogle Scholar
  191. 191.
    Cole RJ, Kirksey JW, Cutler HG et al (1973) Toxin from Fusarium moniliforme: effects on plants and animals. Science 179:1324–1326PubMedCrossRefGoogle Scholar
  192. 192.
    Schütt F, Nirenberg HI, Deml G (1998) Moniliformin production in the genus Fusarium. Mycotox Res 14:35–40CrossRefGoogle Scholar
  193. 193.
    Fotso J, Leslie JF, Smith JS (2002) Production of beauvericin, moniliformin, fusaproliferin and fumonisins B1, B2 and B3 by fifteen ex-type strains of Fusarium species. Appl Environ Microbiol 68:5195–5197PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Franck B, Breipohl G (1984) Biosynthesis of moniliformin, a fungal toxin with cyclobutanedione structure. Angew Chem Int Ed Engl 23:996–998CrossRefGoogle Scholar
  195. 195.
    Trisuwan K, Khamthong N, Rukachaisirikul V et al (2010) Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. J Nat Prod 73:1507–1511PubMedCrossRefGoogle Scholar
  196. 196.
    Linnemannstöns P, Prado M, Fernández-Martín R et al (2002) A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: the genes carB and carRA. Mol Genet Genomics 267:593–602PubMedCrossRefGoogle Scholar
  197. 197.
    Avalos J, Pardo-Medina J, Parra-Rivero O et al (2017) Carotenoid biosynthesis in Fusarium. J Fungi 3:39CrossRefGoogle Scholar
  198. 198.
    Wiemann P, Willmann A, Straeten M et al (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Arndt B, Studt L, Wiemann P et al (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Sondergaard T, Fredborg M, Oppenhagen Christensen A-M et al (2016) Fast screening of antibacterial compounds from Fusaria. Toxins 8:355PubMedCentralCrossRefPubMedGoogle Scholar
  201. 201.
    Baker RA, Tatum JH, Nemec S (1990) Antimicrobial activity of naphthoquinones from Fusaria. Mycopathologia 111:9–15PubMedCrossRefGoogle Scholar
  202. 202.
    Kumar KP, Javvaji K, Poornachandra Y et al (2017) Antimicrobial, anti-plasmodial and cytotoxicity properties of bioactive compounds from Fusarium sp. USNPF102. J Microbiol Res 7:23–30Google Scholar
  203. 203.
    Lysøe E, Harris LJ, Walkowiak S et al (2014) The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 9:e112703PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Goliński P, Wnuk S, Chełkowski J et al (1986) Antibiotic Y: biosynthesis by Fusarium avenaceum (Corda ex Fries) Sacc., isolation, and some physicochemical and biological properties. Appl Environ Microbiol 51:743–745PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Goliński P, Wnuk S, Chełkowski J, Schollenberger M (1987) Formation of avenacein Y by Fusarium avenaceum Fries Sacc. isolates from Poland and biological properties of the compound. Mycotox Res 3(S1):49–52CrossRefGoogle Scholar
  206. 206.
    Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med 15:220PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Wheeler MH, Stipanovic RD, Puckhaber LS (1999) Phytotoxicity of equisetin and epi-equisetin isolated from Fusarium equiseti and F. pallidoroseum. Mycol Res 103:967–973CrossRefGoogle Scholar
  208. 208.
    Singh SB, Zink DL, Goetz MA et al (1998) Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett 39:2243–2246CrossRefGoogle Scholar
  209. 209.
    Hazuda D, Blau CU, Felock P et al (1999) Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antivir Chem Chemother 10:63–70PubMedCrossRefGoogle Scholar
  210. 210.
    Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Comm 2:186CrossRefGoogle Scholar
  211. 211.
    Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS–NRPS. RSC Adv 3:18228–18247CrossRefGoogle Scholar
  212. 212.
    Kakule TB, Sardar D, Lin Z, Schmidt EW (2013) Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem Biol 8:1549–1557PubMedCrossRefGoogle Scholar
  213. 213.
    Kato N, Nogawa T, Hirota H et al (2015) A new enzyme involved in the control of the stereochemistry in the decalin formation during equisetin biosynthesis. Biochem Biophys Res Comm 460:210–215PubMedCrossRefGoogle Scholar
  214. 214.
    Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J et al (2018) Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiol Res 208:85–98PubMedCrossRefGoogle Scholar
  215. 215.
    Tudzynski B, Holter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170PubMedCrossRefGoogle Scholar
  216. 216.
    Tudzynski B, Mihlan M, Rojas MC et al (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J Biol Chem 278:28635–28643PubMedCrossRefGoogle Scholar
  217. 217.
    Gale LR, Ward TJ, Balmas V, Kistler HC (2007) Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology 97:1434–1439PubMedCrossRefGoogle Scholar
  218. 218.
    Ward TJ, Clear RM, Rooney AP et al (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484PubMedCrossRefGoogle Scholar
  219. 219.
    Gale LR, Harrison SA, Ward TJ et al (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–134PubMedCrossRefGoogle Scholar
  220. 220.
    Bec S, Ward TJ, Farman M et al (2014) Characterization of Fusarium strains recovered from wheat with symptoms of head blight in Kentucky. Plant Dis 99:1622–1632CrossRefGoogle Scholar
  221. 221.
    Liang JM, Xayamongkhon H, Broz K et al (2014) Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fungal Genet Biol 73:83–92PubMedCrossRefGoogle Scholar
  222. 222.
    Kelly AC, Clear RM, O’Donnell K et al (2015) Diversity of Fusarium head blight populations and trichothecene toxin types reveals regional differences in pathogen composition and temporal dynamics. Fungal Genet Biol 82:22–31PubMedCrossRefGoogle Scholar
  223. 223.
    Liang J, Lofgren L, Ma Z et al (2015) Population subdivision of Fusarium graminearum from barley and wheat in the upper Midwestern United States at the turn of the century. Phytopathology 105:1466–1474PubMedCrossRefGoogle Scholar
  224. 224.
    Niessen L, Vogel RF (1998) Group specific PCR-detection of potential trichothecene-producing Fusarium species in pure cultures and cereal samples. System Appl Microbiol 21:618–631CrossRefGoogle Scholar
  225. 225.
    Bakan B, Giraud-Delville C, Pinson L et al (2002) Identification by PCR of Fusarium culmorum strains producing large and small amounts of deoxynivalenol. Appl Environ Microbiol 68:5472–5479PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Nicholson P, Simpson DR, Wilson AH et al (2004) Detection and differentiation of trichothecene and enniatin-producing Fusarium species on small-grain cereals. Eur J Plant Pathol 110:503–514CrossRefGoogle Scholar
  227. 227.
    Niessen L, Schmidt H, Vogel RF (2004) The use of tri5 gene sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. Int J Food Microbiol 95:305–319PubMedCrossRefGoogle Scholar
  228. 228.
    Quarta A, Mita G, Haidukowski M et al (2005) Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe. Food Addit Contamin 22:309–315CrossRefGoogle Scholar
  229. 229.
    Kim Y-T, Lee Y-R, Jin J et al (2005) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58:1102–1113PubMedCrossRefGoogle Scholar
  230. 230.
    Baturo-Cieśniewska A, Suchorzyńska M (2011) Verification of the effectiveness of SCAR (sequence characterized amplified region) primers for the identification of Polish strains of Fusarium culmorum and their potential ability to produce B-trichothecenes and zearalenone. Int J Food Microbiol 148:168–176PubMedGoogle Scholar
  231. 231.
    González-Jaén T, Mirete S, Patiño B et al (2004) Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains of Fusarium verticillioides. Eur J Plant Pathol 110:525–532CrossRefGoogle Scholar
  232. 232.
    Waśkiewicz A, Irzykowska L, Karolewski Z et al (2009) Mycotoxins biosynthesis by Fusarium oxysporum and F. proliferatum isolates of asparagus origin. J Plant Protect Res 49:369–372CrossRefGoogle Scholar
  233. 233.
    Irzykowska L, Bocianowski J, Waśkiewicz A et al (2012) Genetic variation of Fusarium oxysporum isolates forming fumonisin B1 and moniliformin. J Appl Genet 53:237–247PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Łukasz Stępień
    • 1
    Email author
  • Justyna Lalak-Kańczugowska
    • 1
  • Natalia Witaszak
    • 1
  • Monika Urbaniak
    • 1
  1. 1.Department of Pathogen Genetics and Plant ResistanceInstitute of Plant Genetics, Polish Academy of SciencesPoznańPoland

Personalised recommendations