Plant Allelochemicals and Their Various Applications

  • Archana Bachheti
  • Ashutosh Sharma
  • R. K. BachhetiEmail author
  • Azamal Husen
  • D. P. Pandey
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Allelopathy has shown both inhibitory and stimulatory roles in plant processes such as on seed germination, overall growth, development, reproduction, disease/weed management, cell division, or biosynthesis of photosynthetic pigments of other plants by releasing some allelochemicals, mainly secondary metabolites. It is a multidisciplinary science, and their influences are noted in agriculture as well as forestry sectors. However, in several cases, a proper understanding of released chemical compounds or structure is desirable for the efficient positive application. It has been reported that metabolites, for instance, phenols, alkaloids, terpenoids, benzoxazinoids, glucosinolates, and isothiocyanates, are some important allelochemicals. This chapter is focused on the role of secondary metabolites as allelochemicals and their various applications.


Allelochemicals Agriculture Forestry Plant protection Application 


  1. 1.
    Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020PubMedPubMedCentralGoogle Scholar
  2. 2.
    Duke SO (2015) Proving allelopathy in crop-weed interactions. Weed Sci 63(Species issue):121–132CrossRefGoogle Scholar
  3. 3.
    Masum SM, Hossain MA, Akamine H, Sakagami JI, Ishii T, Gima S, Kensaku T, Bhowmik PC (2018) Isolation and characterization of allelopathic compounds from the indigenous rice variety ‘Boterswar’ and their biological activity against Echinochloa crus-galli L. Allelopath J 43:31–42CrossRefGoogle Scholar
  4. 4.
    Mushtaq W, Ain Q, Siddiqui MB, Hakeem KR (2019) Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: a weed versus weed allelopathy approach. Protoplasma 17:1–5Google Scholar
  5. 5.
    Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20Google Scholar
  6. 6.
    Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011) Role of allelopathy in agricultural pest management. Pest Manag Sci 67:494–506Google Scholar
  7. 7.
    Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636CrossRefGoogle Scholar
  8. 8.
    Mallik AU (2008) Allelopathy: advances, challenges and opportunities. Allelo For Ecol 25–38Google Scholar
  9. 9.
    Field B, Jordan F, Osbourn A (2006) First encounters–deployment of defence-related natural products by plants. New Phytol 172:193–207PubMedCrossRefGoogle Scholar
  10. 10.
    Inderjit, Callaway RM, Vivanco JM (2006) Can plant biochemistry contribute to understanding of invasion ecology? Trends Plant Sci 11:574–580PubMedCrossRefGoogle Scholar
  11. 11.
    Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo, Liao ZY, Lei YB, Barclay GF, Silva-Pereyra C (2015) Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol 205:1350–1359PubMedCrossRefGoogle Scholar
  12. 12.
    Jin ZH, Zhuang YY, Dai SG, Li TL (2003) Isolation and identification of extracts of Eichhornia crassipes and their allelopathic effects on algae. Bull Environ Contam Toxicol 71:1048–1052PubMedCrossRefGoogle Scholar
  13. 13.
    Gao L, Li B (2004) The study of a specious invasive plant, water hyacinth (Eichhornia crassipes): achievements and challenges. Chin J Plant Ecol 28:735–752CrossRefGoogle Scholar
  14. 14.
    Broeckling CD, Vivanco JM (2008) A selective, sensitive, and rapid in-field assay for soil catechin, an allelochemical of Centaurea maculosa. Soil Biol Biochem 40:1189–1196CrossRefGoogle Scholar
  15. 15.
    Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504CrossRefGoogle Scholar
  16. 16.
    Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer Science+Business Media, LLC, New York, ISBN 978-0-387-77337–7CrossRefGoogle Scholar
  17. 17.
    Chou CH, Leu LL (1992) Allelopathic substances and interactions of Delonix regia (BOJ) RAF. J Chem Ecol 18:2285–2303PubMedCrossRefGoogle Scholar
  18. 18.
    Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul 51:119–128CrossRefGoogle Scholar
  19. 19.
    Hiradate S, Morita S, Sugie H, Fujii Y, Harada J (2004) Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry 65:731–739PubMedCrossRefGoogle Scholar
  20. 20.
    Sasikumar K, Vijayalakshmi C, Parthiban KT (2002) Allelopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelopath J 9:205–214Google Scholar
  21. 21.
    Florentine SK, Fox JED (2003) Allelopathic effects of Eucalyptus victrix L. on eucalyptus species and grasses. Allelopath J 11:77–83Google Scholar
  22. 22.
    Da Silva ER, Da Silveira LH, Overbeck GE, Soares GL (2018) Inhibitory effects of Eucalyptus saligna leaf litter on grassland species: physical versus chemical factors. Plant Ecol Divers 11:55–67CrossRefGoogle Scholar
  23. 23.
    Zhang C, Fu S (2010) Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelopath J 26:91–100Google Scholar
  24. 24.
    Nega F, Gudeta T (2019) Allelopathic effect of Eucalyptus globulus Labill. on seed germination and seedling growth of highland teff (Eragrostis tef (Zuccagni) Trotter) and Barely (Hordeum vulgare L.). J Exp Agric Int 30:1–12CrossRefGoogle Scholar
  25. 25.
    Zhao W, Zheng Z, Zhang J, Roger SF, Luo X (2019) Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa. Chemosphere 225:424–433PubMedCrossRefGoogle Scholar
  26. 26.
    Dordevic T, Sarić-Krsmanović M, Gajic Umiljendic J (2019) Phenolic compounds and allelopathic potential of fermented and unfermented wheat and corn straw extracts. Chem Biodivers 16:e1800420PubMedCrossRefGoogle Scholar
  27. 27.
    Batish DR, Kaur S, Singh HP, Kohli RK (2009) Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora 204:388–395CrossRefGoogle Scholar
  28. 28.
    Seziene V, Baležentiene L, Maruska A (2017) Identification and allelochemical activity of phenolic compounds in extracts from the dominant plant species established in clear-cuts of scots pine stands. iForest Biogeosci For 10:309–314CrossRefGoogle Scholar
  29. 29.
    Nishimura H, Mizutani J (1995) Identification of allelochemicals in Eucalyptus citriodora and Polygonum sachalinense. In: Allelopathy: organisms, processes, and applications. Accessed on 20 Feb 2019
  30. 30.
    Mata R, Macias ML, Rojas IS, Hennsen BL, Toscano RA, Anya AL (1998) Phytotoxic compounds from Esenbeckia yaxhoob. Phytochemistry 49:441–449CrossRefGoogle Scholar
  31. 31.
    Razavi SM, Ghasemiyan A, Salehi S, Zahri F (2009) Screening of biological activity of Zosima absinthifolia fruits extracts. Eur Asia J Biosci 4:25–28CrossRefGoogle Scholar
  32. 32.
    Razavi SM, Zarrini G, Zahri S, Mohammadi S (2010) Biological activity of Prangos uloptera DC. roots, a medicinal plants from Iran. Nat Prod Res 24:797–803PubMedCrossRefGoogle Scholar
  33. 33.
    Anya AL, Rubalcava MM, Ortega RC, Santana CG, Monterrubio PNS, Bautista BEH, Mata R (2005) Allelochemicals from Staurantus perforatus, a Rutaceae tree of the Yuctan Pensula, Mexico. Phytochemistry 66:487–494CrossRefGoogle Scholar
  34. 34.
    Razavi SM (2011) Plant coumarins as allelopathic agents. Int J Biol Chem 5:86–90CrossRefGoogle Scholar
  35. 35.
    Friedman J, Waller GR (1985) Allelopathy and autotoxicity. Trends Biochem Sci 10:47–50CrossRefGoogle Scholar
  36. 36.
    Bravo HR, Iglesias MJ, Copaja SV, Argandoña VH (2010) Phytotoxicity of indole alkaloids from cereals. Rev Latinoam Quím 38:123–129Google Scholar
  37. 37.
    Putnam AR, Duke WB (1974) Biological suppression of weeds: evidence for allelopathy in accessions cucumber. Science 185:370–372PubMedCrossRefGoogle Scholar
  38. 38.
    Lovett JV, Potts WC (1987) Primary effects of allelochemicals of Datura stramonium L. Plant Soil 98:137–144CrossRefGoogle Scholar
  39. 39.
    Elisante F, Tarimo MT, Ndakidemi PA (2013) Allelopathic effect of seed and leaf aqueous extracts of Datura stramonium on leaf chlorophyll content, shoot and root elongation of Cenchrus ciliaris and Neonotonia wightii. Am J Plant Sci 4:23–32CrossRefGoogle Scholar
  40. 40.
    Szabó R, Nádasy E, Pásztor G (2018) Study on the allelopathic effect of Amaranthus retroflexus L., Datura stramonium L. and Panicum miliaceum L. on the germination of maize. Julius-Kühn Arch 458:459–468Google Scholar
  41. 41.
    Rajaee V, Gholamalipour AE, Avarseji Z, Naeemi M (2019) Evaluating hetrotoxic potential of aqueous extract of Datura stramonium shoots on germination traits and content of photosynthetic pigments of wheat cultivars. Iran J Seed Res 5:29–41CrossRefGoogle Scholar
  42. 42.
    Pacanoski Z, Velkosa V, Tyr S, Veres T (2014) Allelopathic potential of Jimsonweed on the early growth of maize (Zea mays L) and sunflower (Helianthus annuus L). J Cent Eur Agric 15:198–208CrossRefGoogle Scholar
  43. 43.
    Butnariu M (2012) An analysis of Sorghum halepense’s behavior in presence of tropane alkaloids from Datura stramonium extracts. Chem Cent J 6:1–7CrossRefGoogle Scholar
  44. 44.
    Thakur NS, Kumar D, Chauhan RS, Hegde HT, Gunaga RP (2019) Allelopathic effects of Melia azedarach L. on germination, growth and yield of black gram and chickpea. Allelopath J 46:133–144CrossRefGoogle Scholar
  45. 45.
    Ogunsusi M, Akinlalu AO, Komolafe IJ, Oyedapo OO (2018) Allelopathic effects of alkaloid fraction of Crotalaria retusa Linn on growth and some biochemical parameters of bean seedlings (Phaseolus vulgaris). Int J Plant Physiol Biochem 10:1–9CrossRefGoogle Scholar
  46. 46.
    Romagni JG, Duke SO, Dayan FE (2000) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol 123:725–732PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Scavo A, Rial C, Molinillo JMG, Varela RM, Mauromicale G, Macias FA (2019) The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind Crop Prod 128:479–487CrossRefGoogle Scholar
  48. 48.
    Shiming GWDSL (1998) Ecological characteristic of terpenoids and their allelopathic effects to plants. J South China Agric Univ 4.
  49. 49.
    Penuelas J, Ribas-carbo M, Giles L (1995) Allelochemical effects of plant respiration and on oxygen discrimination by alternative oxidase. J Chem Ecol 22:801–805CrossRefGoogle Scholar
  50. 50.
    Fischer NH (1991) Plant terpenoids as allelopathic agents. In: Harborne JB, Tomes-Barbeeran FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 377–399Google Scholar
  51. 51.
    Fischer NH, Tanrisever N, Williamson GB (1988) Allelopathy in the Florida scrub community as a model for natural herbicide actions. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. American society symposium series, 330. American Chemical Society, Washington, DC, pp 233–249Google Scholar
  52. 52.
    Liu X, Chen Q, Wang Z, Xie L, Xu Z (2008) Allelopathic effects of essential oil from Eucalyptus grandis× E. urophylla on pathogenic fungi and pest insects. Front For China 3:232–236CrossRefGoogle Scholar
  53. 53.
    Zhao X, Zheng GW, Niu XM, Li WQ, Wang FS, Li SH (2009) Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination (dagger). J Agric Food Chem 57:478–482PubMedCrossRefGoogle Scholar
  54. 54.
    Shao H, Wei C, Zhou S, Li W, Jiang C, Yang W, Han C, Zhang C (2019) Chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplex cana Ledeb. (Amaranthaceae) essential oil. Chem Biodivers.
  55. 55.
    Fischer NH, Williamson GB, Weidenhamer JD, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355–1380PubMedCrossRefGoogle Scholar
  56. 56.
    Chotsaeng N, Laosinwattana C, Charoenying P (2017) Herbicidal activities of some allelochemicals and their synergistic behaviors toward Amaranthus tricolor L. Molecules 22:1–16CrossRefGoogle Scholar
  57. 57.
    Young GP, Bush JK (2009) Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. J Chem Ecol 35:74–80PubMedCrossRefGoogle Scholar
  58. 58.
    Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their break down products in food and food plants. Crit Rev Food Sci Nutr 18:123–201PubMedCrossRefGoogle Scholar
  59. 59.
    Bangarwa SK, Norsworthy JK (2016) Glucosinolate and isothiocyanate production for weed control in plasticulture production system. In: Mérillon JM, Ramawat K (eds) Glucosinolates. Reference series in phytochemistry. Springer, Cham, pp 1–35Google Scholar
  60. 60.
    Yamane A, Fujikura J, Ogawa H, Mizutani J (1992) Isothiocyanates as allelopathic compounds from Rorippa indica Hiern. (Cruciferae) roots. J Chem Ecol 18:1941–1954PubMedCrossRefGoogle Scholar
  61. 61.
    Urbancsok J, Bones A, Kissen R (2017) Glucosinolate-derived isothiocyanates inhibit Arabidopsis growth and the potency depends on their side chain structure. Int J Mol Sci 18:2372PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Zhou S, Richter A, Jander G (2018) Beyond defense: multiple functions of benzoxazinoids in maize metabolism. Plant Cell Physiol 59:1528–1537PubMedCrossRefGoogle Scholar
  63. 63.
    Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JM (2013) Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174PubMedCrossRefGoogle Scholar
  64. 64.
    Rice CP, Cai G, Teasdale JR (2012) Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. J Agric Food Chem 60:4471–4479PubMedCrossRefGoogle Scholar
  65. 65.
    Agdam HB, Lisar SYS, Motafakkerazad R (2019) Allelopathic effects of redroot pigweed (Amaranthus retroflexus L.) aqueous extract on cucumber and wheat. Allelopath J 46:55–72CrossRefGoogle Scholar
  66. 66.
    Jiang M, Zhou Y, Wang N, Xu L, Zheng Z, Zhang J (2019) Allelopathic effects of harmful algal extracts and exudates on biofilms on leaves of Vallisneria natans. Sci Total Environ 655:823–830PubMedCrossRefGoogle Scholar
  67. 67.
    Carvalhoa MSS, Andrade-Vieirab LF, Santosb FED, Correab FF, Cardosoc MDG, Vilelaa LR (2019) Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Sci Hortic 245:90–98CrossRefGoogle Scholar
  68. 68.
    Kueh BWB, Yusup S, Osman N, Ramli NH (2019) Analysis of Melaleuca cajuputi extract as the potential herbicides for paddy weeds. Sustain Chem Pharm 11:36–40CrossRefGoogle Scholar
  69. 69.
    Parmar AG, Thakur NS, Gunaga RP (2018) Melia dubia Cav. leaf litter allelochemicals have ephemeral allelopathic proclivity. Agrofor Syst 1–14. Scholar
  70. 70.
    Zhang Y, Jiangtao W, Liju T (2019) Characterization of allelochemicals of the diatom Chaetoceros curvisetus and the effects on the growth of Skeletonema costatum. Sci Total Environ 660:269–276PubMedCrossRefGoogle Scholar
  71. 71.
    Pandey DK (2009) Allelochemicals in Parthenium in response to biological activity and the environment. Indian J Weed Sci 41:111–123Google Scholar
  72. 72.
    Joshi A, Bachheti RK, Sharma A, Mamgain R (2016) Parthenium Hysterophorus. L. (Asteraceae): a boon or curse? (A review). Orient J Chem 32:1283–1294CrossRefGoogle Scholar
  73. 73.
    Srivastava JN, Shukla JP, Srivastava RC (1985) Effect of Parthenium hysterophorus Linn. extract on the seed germination and seedling growth of barley, pea and wheat. Acta Bot Ind 13:194–197Google Scholar
  74. 74.
    Fuentes-Gandara F, Torres A, Fernández-Ponce MT, Casas L, Mantell C, Varela R, Martínez de la Ossa-Fernández EJ, Francisco AM (2019) Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. J Supercrit Fluids 143:32–41CrossRefGoogle Scholar
  75. 75.
    Zhou X, Zhang Y, An X, De Philippis R, Ma X, Ye C, Chen L (2019) Identification of aqueous extracts from Artemisia ordosica and their allelopathic effects on desert soil algae. Chemoecology 29:61–71CrossRefGoogle Scholar
  76. 76.
    Anwar T, Ilyas N, Qureshi R, Munazir M, Rahim B, Qureshi H, Kousar R, Maqsood M, Abbas Q, Bhatti M, Panni M (2019) Allelopathic potential of Pinus roxburghii needles against selected weeds of wheat crop. Appl Ecol Environ Res 17:1717–1739CrossRefGoogle Scholar
  77. 77.
    Abbas T, Nadeem MA, Tanveer A, Ahmad R (2016) Evaluation of fenoxaprop-pethyl resistant littleseed canarygrass (Phalaris minor) in Pakistan. Planta Daninha 34:833–838CrossRefGoogle Scholar
  78. 78.
    Ali HH, Tanveer A, Naeem M, Jamil M, Iqbal M, Javaid MM, Kashif MS (2015a) Efficacy of pre-emergence herbicides in controlling Rhynchosia capitata, an emerging summer weed in Pakistan. Philipp Agric Sci 98:301–311Google Scholar
  79. 79.
    Ali HH, Tanveer A, Naeem M, Jamil M, Iqbal M, Chadhar AR, Kashif MS (2015b) Assessing the competitive ability of Rhynchosia capitata; an emerging summer weed in Asia. Planta Daninha 33:175–182CrossRefGoogle Scholar
  80. 80.
    Ali HH, Peerzada AM, Hanif Z, Hashim S, Chauhan BS (2017) Weed management using crop competition in Pakistan: a review. Crop Prot 95:22–30CrossRefGoogle Scholar
  81. 81.
    Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122PubMedCrossRefGoogle Scholar
  82. 82.
    Liebman M, Davis AS (2000) Integration of soil, crop, and weed management in low-external-input farming systems. Weed Res 40:27–47CrossRefGoogle Scholar
  83. 83.
    Baumann DT, Bastiaans L, Kropff MJ (2002) Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models. Agron J 94:734–742CrossRefGoogle Scholar
  84. 84.
    Ali Z, Malik MA, Cheema MA (2000) Studies on determining a suitable canola-wheat intercropping pattern. Int J Agric Biol 2:42–44Google Scholar
  85. 85.
    Khaliq A, Matloob A, Ihsan MZ, Abbas RN, Aslam Z, Rasul F (2013) Supplementing herbicides with manual weeding improves weed control efficiency, growth and yield of dry seeded rice. Int J Agric Biol 15:191–199Google Scholar
  86. 86.
    Siddiqi MH, Lee SW, Khan AM (2014) Weed image classification using wavelet transform, stepwise linear discriminant analysis, and support vector machines for an automatic spray control system. J Inf Sci Eng 30:1227–1244Google Scholar
  87. 87.
    Teasdale JR, Mohler CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385–392CrossRefGoogle Scholar
  88. 88.
    Bilalis D, Sidiras N, Economou G, Vakali C (2003) Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. J Agron Crop Sci 189:233–241CrossRefGoogle Scholar
  89. 89.
    Narwal SS (2005) Role of allelopathy in crop production. J Herbologia 6:31Google Scholar
  90. 90.
    Younis A, Bhatti MZM, Riaz A, Tariq U, Arfan M, Nadeem M, Ahsan M (2012) Effect of different types of mulching on growth and flowering of Freesia alba CV. Aurora Pak J Agric Sci 49:429–433Google Scholar
  91. 91.
    Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric 23:73–86CrossRefGoogle Scholar
  92. 92.
    Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in semiarid region of Punjab. Agric Ecosyst Environ 79:105–112CrossRefGoogle Scholar
  93. 93.
    Riaz MY (2010) Non-chemical weed management strategies in dry direct seeded fine grain aerobic rice (Oryza sativa L.). M.Sc. (Hons.) thesis, Department of Agronomy, University of Agriculture, Faisalabad, PakistanGoogle Scholar
  94. 94.
    Ikeh AO, Udoh E, Opara A (2019) Effect of mulching on weed, fruit yield and economic returns of garden egg (Solanum melongena) in Okigwe Southeastern Nigeria. J Res Weed Sci 2:52–64Google Scholar
  95. 95.
    Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578PubMedCrossRefGoogle Scholar
  96. 96.
    Cheema ZA, Luqman M, Khaliq A (1997) Use of allelopathic extracts of sorghum and sunflower herbage for weed control in wheat. J Anim Plant Sci 7:91–93Google Scholar
  97. 97.
    Cheema ZA, Khaliq A, Akhtar S (2001) Use of sorghum water extract (sorghum water extract) as a natural weed inhibitor in spring mungbean. Int J Agric Biol 3:515–518Google Scholar
  98. 98.
    Cheema ZA, Iqbal M, Ahmad R (2002) Response of wheat varieties and some rabi weeds to allelopathic effects of sorghum water extract. Int J Agric Biol 4:52–55Google Scholar
  99. 99.
    Irshad A, Cheema ZA (2005) Effect of sorghum extract on management of barnyard grass in rice crop. Allelopath J 14:205–213Google Scholar
  100. 100.
    Iqbal J, Cheema ZA, Mushtaq MN (2009) Allelopathic crop water extracts reduce the herbicide dose for weed control in cotton (Gossypium hirsutum). Int J Agric Biol 11:360–366Google Scholar
  101. 101.
    Jabran K, Cheema ZA, Farooq M, Hussain M (2010) Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus L). Int J Agric Biol 12:335–340Google Scholar
  102. 102.
    Nawaz R, Cheema ZA, Mahmood T (2001) Effect of row spacing and sorghum water extract on sunflower and its weeds. Int J Agric Biol 3:360–362Google Scholar
  103. 103.
    Khaliq A, Cheema ZA, Mukhtar MA, Basra SMA (1999) Evaluation of sorghum (Sorghum bicolor) water extracts for weed control in soybean. Int J Agric Biol 1:23–26Google Scholar
  104. 104.
    Eladel H, Battah M, Dawa A, Abd-Elhay R, Anees D (2019) Effect of rice straw extracts on growth of two phytoplankton isolated from a fish pond. J Appl Phycol 1–7. Scholar
  105. 105.
    Wang C, Wu B, Jiang K (2019) Allelopathic effects of Canada golden rod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 28:103–116PubMedCrossRefGoogle Scholar
  106. 106.
    Bar-Eyal M, Sharon E, Spiegel Y (2006) Nematicidal activity of Chrysanthemum coronarium. Eur J Plant Pathol 114:427–433CrossRefGoogle Scholar
  107. 107.
    Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silvae Genetica 59:124–136CrossRefGoogle Scholar
  108. 108.
    Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202CrossRefGoogle Scholar
  109. 109.
    Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57CrossRefGoogle Scholar
  110. 110.
    Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877Google Scholar
  111. 111.
    Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429Google Scholar
  112. 112.
    Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186CrossRefGoogle Scholar
  113. 113.
    Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br). Agric Food Secur 7:44CrossRefGoogle Scholar
  114. 114.
    Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of Niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:94–104CrossRefGoogle Scholar
  115. 115.
    Farooq M, Nadeem F, Arfat MY, Nabeel M, Musadaq S, Cheema SA, Nawaz A (2018) Exogenous application of allelopathic water extracts helps improving tolerance against terminal heat and drought stresses in bread wheat (Triticum aestivum L. Em. Thell.). J Agron Crop Sci 204:298–312CrossRefGoogle Scholar
  116. 116.
    Javaid A, Shoaib A (2013) Allelopathy for the management of phytopathogens. Springer, Heidelberg, pp 299–319CrossRefGoogle Scholar
  117. 117.
    Singh SP, Gupta KC (1992) Allelopathic effect of some essential oils of plants on phytopathogenic fungi. In: Proceedings of the first national symposium. Allelopathy in agroecosystems (agriculture & forestry), February 12–14, 1992, held at CCS Haryana Agricultural University, Hisar-125 004, India. Indian Society of Allelopathy, CCS Haryana Agricultural University, pp 187–188Google Scholar
  118. 118.
    Yu JQ (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato–Chinese chive (Allium tuberosum) intercropping system. J Chem Ecol 25:2409–2417CrossRefGoogle Scholar
  119. 119.
    Riaz T, Khan SN, Javaid A (2010a) Management of corm-rot disease of gladiolus by plant extracts. Nat Prod Res 24:1131–1138PubMedCrossRefGoogle Scholar
  120. 120.
    Riaz T, Khan SN, Javaid A (2010b) Management of Fusarium corm rot of gladiolus (Gladiolus grandiflorus sect. Blandus cv. Aarti) by using leaves of allelopathic plants. Afr J Biotechnol 8:4681–4686Google Scholar
  121. 121.
    Deepak B (2011) Soil amendments, plant extracts and plant products for integrated disease management in agricultural crops: a review. Afr J Agric Res 6:6790–6797CrossRefGoogle Scholar
  122. 122.
    Javaid A, Saddique A (2011) Management of Macrophomina root rot of mungbean using dry leaves manure of Datura metel as soil amendment. Span J Agric Res 9:901–905CrossRefGoogle Scholar
  123. 123.
    Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123PubMedCrossRefGoogle Scholar
  124. 124.
    Heap I (2018) The international survey of herbicide resistant weeds. Online, September 20, 2018. Accessed 5 Dec 2018
  125. 125.
    Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production chemical nature and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825CrossRefGoogle Scholar
  126. 126.
    Duke SO, Dayan FE, Romagni JG, Rimando AM (2000) Natural products as sources of herbicides: current status and future trends. Weed Res 40:99–111CrossRefGoogle Scholar
  127. 127.
    Jabran K (2017) Allelopathy: introduction and concepts. In: Jabran K (ed) Manipulation of allelopathic crops for weed control. SpringerBriefs in Plant Science. Springer International Publishing AG, Switzerland, pp 1–12CrossRefGoogle Scholar
  128. 128.
    Anaya AL (2006) Allelopathic organisms and molecules: promising bioregulators for the control of plant diseases, weeds, and other pests. In: Allelochemicals: biological control of plant pathogens and diseases. Springer, Dordrecht, pp 31–78CrossRefGoogle Scholar
  129. 129.
    Liu S, Qin FC, Zheng Y, Yu SX (2019) Allelopathic effects of Eucalyptus urophylla on Legume-Rhizobium symbiosis. Allelopath J 46:97–108CrossRefGoogle Scholar
  130. 130.
    Dayan FE, Duke SO (2014) Natural compounds as next-generation herbicides. Plant Physiol 166:1090–1105PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Li ZR, Liu YB, Zhou XM, Li XG, Bai LY (2019) Allelopathic herbicidal effects of crude ethanolic extracts of Veronica persica (Lour.) Merr weeds. Allelopath J 46:85–96CrossRefGoogle Scholar
  132. 132.
    Puig CG, Reigosa MJ, Valentao P, Andrade PB, Pedrol N (2018) Unravelling the bioherbicide potential of Eucalyptus globulus Labill: biochemistry and effects of its aqueous extract. PLoS One 13:e0192872PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Perveen S, Yousaf M, Mushtaq M, Sarwar N, Khaliq A, Hashim S (2019) Selective bioherbicidal potential of delonix regia allelopathic leaf extract on germination and seedling growth of field bindweed and wheat. Appl Ecol Environ Res 17:511–519CrossRefGoogle Scholar
  134. 134.
    Macias FA, Marin D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17:18–23PubMedCrossRefGoogle Scholar
  135. 135.
    Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Han X, Cheng ZH, Meng HW, Yang XL, Ahmad I (2013) Allelopathic effect of decomposed garlic (Allium Sativum L.) stalk on lettuce (L. Sativa Var. Crispa L.). Pak J Bot 45:225–233Google Scholar
  137. 137.
    Jabran K, Mhajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed controling agricultural systems. Crop Prot 72:57–65CrossRefGoogle Scholar
  138. 138.
    Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit Rev Plant Sci 22:239–311CrossRefGoogle Scholar
  139. 139.
    Khanh TD, Chung MI, Xuan TD, Tawata S (2005) The exploitation of crop allelopathy in sustainable agricultural production. J Agron Crop Sci 191:172–184CrossRefGoogle Scholar
  140. 140.
    Reeves DW, Price AJ, Patterson MG (2005) Evaluation of three winter cereals for weed control in conservation-tillage non transgenic cotton. Weed Technol 19:731–736CrossRefGoogle Scholar
  141. 141.
    Yildirim E, Guvenc I (2005) Intercropping based on cauliflower: more productive, profitable and highly sustainable. Eur J Agron 22:11–18CrossRefGoogle Scholar
  142. 142.
    Iqbal J, Cheema ZA, An M (2007) Intercropping of field crops in cotton for the management of purple nut sedge (Cyperus rotundus L.). Plant Soil 300:163–171CrossRefGoogle Scholar
  143. 143.
    Mahmood A, Cheema ZA, Mushtaq MN, Farooq M (2013) Maize- sorghum intercropping systems for purple nut sedge management. Arch Agron Soil Sci 59:1279–1288CrossRefGoogle Scholar
  144. 144.
    Wortman SE, Drijber RA, Francis CA, Lindquist JL (2013) Arable weeds, cover crops and tillage drive soil microbial community composition in organic cropping systems. Appl Soil Ecol 72:232–241CrossRefGoogle Scholar
  145. 145.
    Farooq M, Hussain T, Wakeel A, Cheema ZA (2014) Differential response of maize and mungbean to tobacco allelopathy. Exp Agric 50:611–624CrossRefGoogle Scholar
  146. 146.
    Silva RMG, Brante RT, Santos VHM, Mecina GF, Silva LP (2014) Phytotoxicity of ethanolic extract of turnip leaves (Raphanus Sativus L.). Biosci J 30:891–902Google Scholar
  147. 147.
    Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigne J (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20CrossRefGoogle Scholar
  148. 148.
    Haider G, Cheema ZA, Farooq M, Wahid A (2015) Performance and nitrogenuse of wheat cultivars in response to application of allelopathic crop residues and 3,4-dimethylpyrazolephosphate. Int J Agric Biol 17:261–270Google Scholar
  149. 149.
    Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:1–8CrossRefGoogle Scholar
  150. 150.
    Loreto F, Csengele B, Brilli F, Nogués I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828PubMedCrossRefGoogle Scholar
  151. 151.
    Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166PubMedCrossRefGoogle Scholar
  152. 152.
    Dicke M, Baldwin IT (2010) The evolutionary context for herbivore induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175PubMedCrossRefGoogle Scholar
  153. 153.
    Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  154. 154.
    Moola F, Mallik AU, Lautenschlager RA (1998) Effects of conifer release treatments on the growth and fruit production of Vaccinium spp. in north western Ontario. Can J For Res 28:841–851CrossRefGoogle Scholar
  155. 155.
    Jobidon R (1989) Phytotoxic effects barley, oat and wheat straw mulches in eastern Quebec forest plantations. I. Effects on red raspberry (Rubus idaeus). For Ecol Manag 29:277–294CrossRefGoogle Scholar
  156. 156.
    Jobidon R (1991) Some future directions for biologically based vegetation control in forestry research. For Chron 67:514–529CrossRefGoogle Scholar
  157. 157.
    Vivanco JM, Bais HP, Stermitz TR, Thelen GC, Callaway RM (2004) Biogeochemical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecol Lett 7:285–292CrossRefGoogle Scholar
  158. 158.
    Birkett MA, Chamberlain K, Hooper AM, Pickett JA (2001) Does allelOpathy offer real promise for practical weed management and for explaining rhizosphere interactions involving plants? Plant Soil 232:31–39Google Scholar
  159. 159.
    Duke SO, Dayan FE, Rimando AM, Schrader KK, Aliotta G, Oliva A, Romagni JG (2002) Chemicals from nature for weed management. Weed Sci 50:138–151CrossRefGoogle Scholar
  160. 160.
    Aliotta G, Mallik AU, Pollio A (2008) Historical examples of allelopathy and ethnobotany from the Mediterranean region. Allelo Forest Ecol 11–24.
  161. 161.
    Huang J, Hu R, Rozelle S, Pray C (2005) Insect resistance GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–690PubMedCrossRefGoogle Scholar
  162. 162.
    Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487PubMedCrossRefGoogle Scholar
  163. 163.
    Mallik AU (2008) Allelopathy: advances, challenges and opportunities. In: Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 25–38CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Archana Bachheti
    • 1
  • Ashutosh Sharma
    • 2
  • R. K. Bachheti
    • 3
    Email author
  • Azamal Husen
    • 4
  • D. P. Pandey
    • 5
  1. 1.Department of Environment ScienceGraphic Era UniversityDehradunIndia
  2. 2.Department of ChemistryGraphic Era UniversityDehradunIndia
  3. 3.Department of Industrial ChemistryAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
  4. 4.Department of Biology, College of Natural and Computational SciencesUniversity of GondarGondarEthiopia
  5. 5.Department of ChemistryGovt. P. G. CollegeUttarkashiIndia

Personalised recommendations