Cell Encapsulation

  • Abdul Waheed
  • Mohammad Abu Jafar MazumderEmail author
  • Amir Al-Ahmed
  • Partha Roy
  • Nisar Ullah
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


The task of developing novel techniques for curing human illnesses is really a complex and tough challenge. This chapter gives a comprehensive discussion of various materials and techniques used in cell encapsulation. Cell encapsulation is a technique whereby living cells are entrapped into a selectively permeable polymeric materials (membranes/beads) making them a potential tool for the treatment of various human illnesses such as Parkinson’s disease, hemophilia, lysosomal storage disease (LSD), cancer and diabetes. The encapsulated cells become immune, i.e., the immune system of the host could not recognize them; therefore, it does not develop any potential immune response against encapsulated cells. Overall, this chapter reviews wide range of techniques that could potentially use in cell encapsulation and discuss how the capsule properties are related to the performance of the cell to treat various diseases. Furthermore, the use of different materials and their impact on the properties and performance in cell encapsulation are also discussed in detail.


Cell encapsulation Polymer therapeutics Immune-isolation Cytotoxicity Permeability Cell technology 



The authors would like to gratefully acknowledge King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia for providing excellent research facilities.


  1. 1.
    T.M. Chang, Semipermeable microcapsules. Science 146, 524–525 (1964)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    G. Orive, R.M. Hernández, A.R. Gascón, R. Calafiore, T.M.S. Chang, P.D. Vos, G. Hortelano, D. Hunkeler, I. Lacík, A.M.J. Shapiro, J.L. Pedraz, Cell encapsulation: promise and progress. Nat. Med. 9, 104–107 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    U. Matte, V.L. Lagranha, T.G. de Carvalho, F.Q. Mayer, R. Giugliani, Cell microencapsulation: a potential tool for the treatment of neuropathic lysosomal storage diseases. J. Inherit. Metab. Dis. 34, 983–990 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    M.P. Zanin, L.N. Pettingill, A.R. Harvey, D.F. Emerich, C.G. Thanos, R.K. Shepherd, The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J. Control. Release 160, 3–13 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    K. Senior, Encapsulated cell technology provides new treatment options. Drug Discov. Today 6, 6–7 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    G. Orive, R.M. Hernández, A.R. Gascón, M. Igartua, J.L. Pedraz, Encapsulated cell technology: from research to market. Trends Biotechnol. 20, 382–387 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    T. Murua, A. Portero, A. Orive, G. Hernández, R.M. Castro, M. Pedraz, Cell microencapsulation technology: towards clinical application. J. Control. Release 132, 76–83 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    E. Santos, J. Pedraz, R.M. Hernández, G. Orive, Therapeutic cell encapsulation: ten steps towards clinical translation. J. Control. Release 170, 1–14 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    R.M. Hernández, G. Orive, A. Murua, J.L. Pedraz, Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. 62, 711–730 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    A. Prokop, J.M. Davidson, Nanovehicular intracellular delivery systems. J. Pharm. Sci. 97, 3518–3590 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    T. Wang, J. Adcock, W. Kühtreiber, D. Qiang, K.J. Salleng, I. Trenary, P. Williams, Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation 85, 331–337 (2008)PubMedCrossRefGoogle Scholar
  12. 12.
    S. Jolles, Paul Langerhans. J. Clin. Pathol. 55, 243 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    M.A.J. Mazumder, Bio-encapsulation for the immune-protection of therapeutic cells. Adv. Mater. Res. 810, 1–39 (2013)CrossRefGoogle Scholar
  14. 14.
    C. Booth, B. Inusa, S.K. Obaro, Infection in sickle cell disease: a review. Int. J. Infect. Dis. 14, 2–12 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Balyura, E. Gelfgat, M. Ehrhart-Bornstein, B. Ludwig, Z. Gendler, U. Barkai, B. Zimerman, A. Rotem, N.L. Block, A.V. Schally, S.R. Bornstein, Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc. Natl. Acad. Sci. 112, 2527–2532 (2015)PubMedCrossRefGoogle Scholar
  16. 16.
    T. Xu, X. Jha, A. Harrington, D.A. Farach-Carson, Hyaluronic acid – based hydrogel: from a natural polysaccharide to complex networks. Soft Matter 8, 3280–3294 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    T. Matricardi, P. Meo, C. Di, T. Coviello, W.E. Hennink, F. Alhaique, Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 65, 1172–1187 (2013)PubMedCrossRefGoogle Scholar
  18. 18.
    T. Alvarez-Lorenzo, C. Blanco-Fernandez, B. Puga, A.M. Concheiro, Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev. 65, 1148–1171 (2013)PubMedCrossRefGoogle Scholar
  19. 19.
    T. Zhang, Y. Chan, H.F. Leong, Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013)PubMedCrossRefGoogle Scholar
  20. 20.
    D. Guan, M. Ramirez, L. Shao, D. Jacobsen, I. Barrera, J. Lutkenhaus, Z. Chen, Two-component protein hydrogels assembled using an engineered disulfide-forming protein-ligand pair. Biomacromolecules 14, 2909–2916 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Y. Sun, Z. Deng, Y. Tian, C. Lin, Horseradish peroxidase-mediated in situ forming hydrogels from degradable tyramine-based poly(amido amine)s. J. Appl. Polym. Sci. 127, 40–48 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Sakai, T. Ashida, S. Ogino, M. Taya, Horseradish peroxidase-mediated encapsulation of mammalian cells in hydrogel particles by dropping. J. Microencapsul. 31, 100–104 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    L.M. Weber, K.S. Anseth, Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol. 27, 667–673 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    G. Luca, R. Calafiore, G. Basta, M. Ricci, M. Calvitti, L. Neri, C. Nastruzzi, E. Becchetti, S. Capitani, P. Brunetti, C. Rossi, Improved function of rat islets upon co-microencapsulation with Sertoli’s cells in alginate/poly-l-ornithine. AAPS PharmSciTech 2, 48–54 (2001)PubMedCentralCrossRefGoogle Scholar
  25. 25.
    J.A.M. Steele, J.P. Hallé, D. Poncelet, R.J. Neufeld, Therapeutic cell encapsulation techniques and applications in diabetes. Adv. Drug Deliv. Rev. 67–68, 74–83 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    T. Desai, L.D. Shea, Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    G.H. Wolters, W.M. Fritschy, D. Gerrits, R. van Schilfgaarde, A versatile alginate droplet generator applicable for microencapsulation of pancreatic islets. J. Appl. Biomater. 3, 281–286 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    A. Kang, J. Park, J. Ju, G.S. Jeong, S.H. Lee, Cell encapsulation via microtechnologies. Biomaterials 35, 2651–2663 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    S. Moeinzadeh, S.N. Khorasani, J. Ma, X. He, E. Jabbari, Synthesis and gelation characteristics of photo-crosslinkable star poly(ethylene oxide-co-lactide-glycolide acrylate) macromonomers. Polymer (Guildf) 52, 3887–3896 (2011)PubMedCentralCrossRefGoogle Scholar
  30. 30.
    F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    G. Orive, R.M. Hernández, A.R. Gascón, J.L. Pedraz, Challenges in cell encapsulation, in Applications of Cell Immobilisation Biotechnology, ed. by V. Nedović, R. Willaert. Focus on Biotechnology, vol. 8B (2005), Springer, Netherlands, pp. 185–196Google Scholar
  32. 32.
    X. Ma, I. Vacek, A. Sun, Generation of alginate-poly-l-lysine-alginate (APA) biomicrocapsules: the relationship between the membrane strength and the reaction conditions. Artif. Cells Blood Substit. Immobil. Biotechnol. 22, 43–69 (1994)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    K. Malleswari, R.B.D. Reddy, M. Swathi, Microencapsulation: a review a novel approach in drug delivery. Eur. J. Pharm. Med. Res. 3, 186–194 (2016)Google Scholar
  34. 34.
    L. Yu, Y. Li, K. Zhao, Y. Tang, Z. Cheng, J. Chen, J. Wu, L. Kong, S. Liu, W. Lei, Z. Wu, A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One 8(4), e62570 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    G. Orive, E. Santos, J.L. Pedraz, R.M. Hernández, Application of cell encapsulation for controlled delivery of biological therapeutics. Adv. Drug Deliv. Rev. 67–68, 3–14 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    E.C. Opara, J.P. McQuilling, A.C. Farney, Microencapsulation of pancreatic islets for use in a bioartificial pancreas. Methods Mol. Biol. 1001, 261–266 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    M. Golzio, L. Mazzolini, P. Moller, M.P. Rols, J. Teissié, Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther. 12, 246–251 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    S.K. Vishwakarma, A. Bardia, S.K. Tiwari, S.A. Paspala, A.A. Khan, Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J. Adv. Res. 5, 277–294 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    F. Chen, W. Cai, H. Hong, Engineering of mesoporous silica nanoparticles for in vivo cancer imaging and therapy, in Engineering in Translational Medicine, ed. by W. Cai (Springer, London, 2014)Google Scholar
  40. 40.
    K. Nilsson, P. Brodelius, K. Mosbach, Entrapment of microbial and plant cells in beaded polymers. Methods Enzymol. 135, 222–230 (1987)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    K. Nilsson, W. Scheirer, O.W. Merten, H.W. Katinger, K. Mosbach, Entrapment of animal cells for the production of monoclonal antibodies and other biomolecules. Nature 302, 629–630 (1983)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface 10, 589–601 (2006)CrossRefGoogle Scholar
  43. 43.
    V. Aithilingam, M.M.W. Yim, J.L. Foster, T. Stait-Gardner, J. Oberholzer, B.E. Tuch, Noninvasive tracking of encapsulated insulin producing cells labelled with magnetic microspheres by magnetic resonance imaging. J. Diabetes Res. 2016, 6165893 (2016)Google Scholar
  44. 44.
    H. Iwata, H. Amemiya, T. Matsuda, H. Takano, T. Akutsu, Microencapsulation of Langerhans islets in agarose microbeads and their application for a bioartificial pancreas. J. Bioact. Compat. Polym. 3, 356–369 (1988)CrossRefGoogle Scholar
  45. 45.
    L.M. Weber, J. He, B. Bradley, K. Haskins, K.S. Anseth, PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater. 2, 1–8 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    P.J. Stahl, H.R. Nicole, D. Wirtz, S.M. Yu, PEG-based hydrogels with collagen mimetic peptide-mediated and tunable physical cross-links. Biomacromolecules 11, 2336–2344 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    A. Hoshikawa, Y. Nakayama, T. Matsuda, H. Oda, K. Nakamura, K. Mabuchi, Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Eng. 12, 2333–2341 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    J. Kundu, L.A. Poole-Warren, P. Martens, S.C. Kundu, Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomater. 8, 1720–1729 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, D. Seliktar, Photopolymerization of cell encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 8, 1838–1848 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    S.M. Oliveira, G. Turner, S.P. Rodrigues, M.A. Barbosa, M. Alikhani, C.C. Teixeira, Spontaneous chondrocyte maturation on 3d-chitosan scaffolds. J. Tissue Sci. Eng. 4(1), 1000124 (2013)Google Scholar
  51. 51.
    A. Fakhari, C. Berkland, Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 9, 7081–7082 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    K. Beck, I. Hunter, J. Engel, Structure and function of laminin: anatomy of a multi domain glycoprotein. FASEB J. 4, 148–160 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    H. Li, A.M. Koenig, P. Sloan, N.D. Leipzig, In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35, 9049–9057 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    T. Garg, O. Singh, S. Arora, R. Murthy, Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    M.A. Masuelli, C.O. Illanes, Review of the characterization of sodium alginate by intrinsic viscosity measurements. Comparative analysis between conventional and single point methods. Int. J. Biomater. Sci. Eng. 1, 1–11 (2014)Google Scholar
  56. 56.
    S. Szala, J. Szary, T. Cichoń, A. Sochanik, Antiangiogenic gene therapy in inhibition of metastasis. Acta Biochim. Pol. 49, 313–321 (2002)PubMedPubMedCentralGoogle Scholar
  57. 57.
    A. Prokop, Bioartificial pancreas: materials, devices, function, and limitations. Diabetes Technol. Ther. 3, 431–449 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    K.W. Broadhead, P.A. Tresco, Effects of fabrication conditions on the structure and function of membranes formed from poly(acrylonitrile-vinylchloride). J. Membr. Sci. 147, 235–245 (1998)CrossRefGoogle Scholar
  59. 59.
    D.J. Gerbi, G. Dimotsis, J. Morgan, R. Williams, R. Kellman, The effect of water on the formation of polyarylethers via phase-transfer-catalyzed nucleophilic aromatic substitution. J. Polym. Sci. C Polym. Lett. 23, 551–556 (1985)CrossRefGoogle Scholar
  60. 60.
    I.L. Alsvik, M.B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods. Polymers (Basel) 5, 303–327 (2013)CrossRefGoogle Scholar
  61. 61.
    J. Attia, F. Legendre, Q.T. Nguyen, C. Baugé, K. Boumediene, J.P. Pujol, Evaluation of adhesion, proliferation, and functional differentiation of dermal fibroblasts on glycosaminoglycan-coated polysulfone membranes. Tissue Eng. A 14, 1687–1697 (2008)CrossRefGoogle Scholar
  62. 62.
    B. Sarker, D.G. Papageorgiou, R. Silva, T. Zehnder, F. Gul-E-Noor, M. Bertmer, J. Kaschta, K. Chrissafis, R. Detsch, A.R. Boccaccini, Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico chemical properties. J. Mater. Chem. B 2, 1470–1482 (2014)CrossRefGoogle Scholar
  63. 63.
    B. Balakrishnan, N. Joshi, A. Jayakrishnan, R. Banerjee, Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater. 10, 3650–3663 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    A. Thakur, R. Sengupta, H. Matsui, D. Lillicrap, K. Jones, G. Hortelano, Characterization of viability and proliferation of alginate-poly-l-lysine-alginate encapsulated myoblasts using flow cytometry. J. Biomed. Mater. Res. B Appl. Biomater. 94, 296–304 (2010)PubMedPubMedCentralGoogle Scholar
  65. 65.
    S.I. Gundersen, A.F. Palmer, Conjugation of methoxypolyethylene glycol to the surface of bovine red blood cells. Biotechnol. Bioeng. 96, 1199–1210 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    T. Majima, T. Funakosi, N. Iwasaki, S.T. Yamane, K. Harada, S. Nonaka, A. Minami, S. Nishimura, Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J. Orthop. Sci. 10, 302–307 (2005)PubMedCrossRefGoogle Scholar
  67. 67.
    I.F. Farrés, R.J.A. Moakes, I.T. Norton, Designing biopolymer fluid gels: a microstructural approach. Food Hydrocoll. 42, 362–372 (2014)CrossRefGoogle Scholar
  68. 68.
    T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenge. Polymer 49, 1993–2007 (2008)CrossRefGoogle Scholar
  69. 69.
    L.A. Kinard, F.K. Kasper, A.G. Mikos, Synthesis of oligo(poly(ethylene glycol) fumarate). Nat. Protoc. 7, 1219–1227 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31, 487–531 (2006)CrossRefGoogle Scholar
  71. 71.
    T.G. Vladkova, Surface engineered polymeric biomaterials with improved biocontact properties. Int. J. Polym. Sci. 2010, 1–22 (2010)CrossRefGoogle Scholar
  72. 72.
    M.K. Nguyen, E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 39, 1236–1265 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    M.E. Helgeson, S.C. Chapin, P.S. Doyle, Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16, 106–117 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    S. Elmore, Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    S. Jo, H. Shin, A.K. Shung, J.P. Fisher, A.G. Mikos, Synthesis and characterization of oligo-(poly(ethylene glycol) fumarate) macromer. Macromolecules 34, 2839–2844 (2012)CrossRefGoogle Scholar
  76. 76.
    S. Drotleff, U. Lungwitz, M. Breunig, A. Dennis, T. Blunk, J. Tessmar, A. Göpferich, Biomimetic polymers in pharmaceutical and biomedical sciences. Eur. J. Pharm. Biopharm. 58, 385–407 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    J.S. Temenoff, H. Park, E. Jabbari, D.E. Conway, T.L. Sheffield, C.G. Ambrose, A.G. Mikos, Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 5, 5–10 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    M. Hamidi, A. Azadi, P. Rafiei, Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    P.D. Benya, J.D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    J. Liu, D.G. Kerns, Mechanisms of guided bone regeneration: a review. Open Dent. J. 8, 56–64 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, R. Langer, Transdermal photopolymerization for minimally invasive implantation. Proc. Natl. Acad. Sci. 96, 3104–3107 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    M.M. Stevens, H.F. Qanadilo, R. Langer, S.V. Prasad, A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25, 887–894 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    P. Smeriglio, J.H. Lai, F. Yang, N. Bhutani, 3D hydrogel scaffolds for articular chondrocyte culture and cartilage generation. J. Vis. Exp. 104, e53085 (2015)Google Scholar
  84. 84.
    Y. Nakayama, T. Matsuda, Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate. J. Biomed. Mater. Res. B Appl. Biomater. 48, 511–521 (1999)CrossRefGoogle Scholar
  85. 85.
    B.J. Klotz, D. Gawlitta, A.J.W.P. Rosenberg, J. Malda, F.P.W. Melchels, Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 34, 394–407 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    C.W. Patrick, R. Uthamanthil, E. Beahm, C. Frye, Animal models for adipose tissue engineering. Tissue Eng. B Rev. 14, 167–178 (2008)CrossRefGoogle Scholar
  87. 87.
    T. Manabe, H. Okino, M. Tanaka, T. Matsuda, In situ-formed, tissue-adhesive co-gel composed of styrenated gelatin and styrenated antibody: potential use for local anti-cytokine antibody therapy on surgically resected tissues. Biomaterials 25, 5867–5873 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    S.B. Bruehlmann, J.B. Rattner, J.R. Matyas, N.A. Duncan, Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J. Anat. 201, 159–171 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    A. Valiaev, D.W. Lim, S. Schmidler, R.L. Clark, A. Chilkoti, S. Zauscher, Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. J. Am. Chem. Soc. 130, 10939–10946 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    S.R. MacEwan, A. Chilkoti, Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94, 60–77 (2010)PubMedCrossRefGoogle Scholar
  91. 91.
    J.K. Chen, C.J. Chang, Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces, a review. Materials 7, 805–875 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    D.T. Chang, R. Chai, R. DiMarco, S.C. Heilshorn, A.G. Cheng, Protein engineered hydrogel encapsulation for 3-D culture of murine cochlea. Otol. Neurotol. 36, 531–538 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    T. Kowalczyk, K. Hnatuszko-Konka, A. Gerszberg, A.K. Kononowicz, Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol. 30, 2141–2152 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    J.L. Frandsen, H. Ghandehari, Recombinant protein-based polymers for advanced drug delivery. Chem. Soc. Rev. 41, 2696–2706 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    F. Liu, J. Mu, B. Xing, Recent advances on the development of pharmacotherapeutic agents on the basis of human serum albumin. Curr. Pharm. Des. 21, 1866–1888 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    E. Mastria, A. Chilkoti, Genetically encoded ‘smart’ peptide polymers for biomedicine. MRS Bull. 39, 35–43 (2014)CrossRefGoogle Scholar
  97. 97.
    L. Mi, Molecular cloning of protein-based polymers. Biomacromolecules 7, 2099–2107 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    D.L. Nettles, A. Chilkoti, L.A. Setton, Applications of elastin-like polypeptides in tissue engineering. Adv. Drug Deliv. Rev. 62, 1479–1485 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    J. Necas, L. Bartosikova, P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review. Vet. Med. 53, 397–411 (2008)CrossRefGoogle Scholar
  100. 100.
    P. Dahiya, R. Kamal, Hyaluronic acid: a boon in periodontal therapy. N. Am. J. Med. Sci. 5, 309–315 (2015)CrossRefGoogle Scholar
  101. 101.
    D. Vigetti, M. Voila, E. Karousou, G.D. Luca, A. Passi, Metabolic control of hyaluronan synthases. Matrix Biol. 35, 8–13 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    T. Cornelia, M.B. James, Y. Arjang, T. Eva, Hyaluronan and RHAMM in wound repair and the “cancerization” of stromal tissues. Biomed. Res. Int. 2014, 1–18 (2014)Google Scholar
  103. 103.
    B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: general approaches and tissue specific considerations. Eur. Spine J. 17, 467–479 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    K.H. Bae, J.J. Yoon, T.G. Park, Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnol. Prog. 22, 297–302 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    J.M. Macdonald, J.P. Griffin, H. Kubota, L. Griffith, J. Fair, L.M. Reid, Bioartificial livers, in Cell Encapsulation Technology and Therapeutics, ed. by W.M. Kühtreiber, R.P. Lanza, W.L. Chick (Birkhäuser, Boston, 1999)Google Scholar
  106. 106.
    D.G. Wallace, J. Rosenblatt, Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 55, 1631–1649 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    C.M. Pérez, A. Panitch, J. Chmielewski, A collagen peptide-based physical hydrogel for cell encapsulation. Macromol. Biosci. 11, 1426–1431 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    T. Luo, L. He, P. Theato, K.L. Kiick, Thermoresponsive self-assembly of nanostructures from a collagen-like peptide-containing diblock copolymer. Macromol. Biosci. 15, 111–123 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    E. Engvall, Laminin variants: why, where and when? Kidney Int. 43, 2–6 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    S. Suri, C.E. Schmidt, Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater. 5, 2385–2397 (2009)PubMedCrossRefGoogle Scholar
  111. 111.
    A.C. de Luca, S.P. Lacour, W. Raffoul, P.G. Summa, Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration. Neural Regen. Res. 9, 1943–1948 (2014)PubMedPubMedCentralGoogle Scholar
  112. 112.
    D.N. Rockwood, R.C. Preda, T. Yucel, X. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011)PubMedCrossRefGoogle Scholar
  113. 113.
    M. Mondal, K. Trivedy, S.N. Kumar, V. Kumar, Scanning electron microscopic study on the cross sections of cocoon filament and degummed fiber of different breeds/hybrids of mulberry silkworm, Bombyx mori Linn. J. Entomol. 4, 362–370 (2007)CrossRefGoogle Scholar
  114. 114.
    The NIH Public Access Policy. Retrieve date: 23 Dec 2017.
  115. 115.
    M.A. Collin, K. Mita, F. Sehnal, C.Y. Hayashi, Molecular evolution of lepidopteran silk proteins: insights from the ghost moth, Hepialus californicus. J. Mol. Evol. 70, 519–529 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    L. Römer, S. Thomas, The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2, 154–161 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    X. Wang, K. Jon, G.L. Gary, L.K. David, Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29, 1054–1064 (2009)CrossRefGoogle Scholar
  118. 118.
    L. Gasperini, J.F. Mano, R.L. Reis, Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11(100), 20140817 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    W. Zhang, X. Wang, S. Wang, J. Zhao, L. Xu, C. Zhu, D. Zeng, J. Chen, Z. Zhang, D.L. Kaplan, X. Jiang, The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP2 delivery for elevation of the maxillary sinus floor. Biomaterials 32, 9415–9424 (2012)CrossRefGoogle Scholar
  120. 120.
    M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)CrossRefGoogle Scholar
  121. 121.
    K.M. Vårum, M.H. Ottøy, O. Smidsrød, Acid hydrolysis of chitosans. Carbohydr. Polym. 46, 89–98 (2001)CrossRefGoogle Scholar
  122. 122.
    D.W. Lee, Engineered chitosans for drug detoxification preparation, characterization and drug uptake studies. Dissertation, University of Florida, 2004Google Scholar
  123. 123.
    P. de Vos, M.M. Faas, B. Strand, R. Calafiore, Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006)PubMedCrossRefGoogle Scholar
  124. 124.
    W. Zhang, X. Wenshui, Dissolution and stability of chitosan in a sodium hydroxide/urea aqueous solution. J. Appl. Polym. Sci. 131, 1–644 (2014)Google Scholar
  125. 125.
    C.Y. Chen, Y.C. Chung, Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J. Appl. Oral Sci. 20, 620–627 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    H.K. Yang, K.H. Yoon, Current status of encapsulated islet transplantation. J. Diabetes Complicat. 29, 737–743 (2015)PubMedCrossRefGoogle Scholar
  127. 127.
    K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2013)CrossRefGoogle Scholar
  128. 128.
    F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 49, 780–792 (2013)CrossRefGoogle Scholar
  129. 129.
    L. Yonekura, H. Sun, C. Soukoulis, I. Fisk, Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fiber by spray drying: technological characterization, storage stability and survival after in vitro digestion. J. Funct. Foods 6, 205–214 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    B. Jung, P. Theato, Chemical strategies for the synthesis of protein – polymer conjugates. Adv. Polym. Sci. 253, 37–70 (2014)CrossRefGoogle Scholar
  131. 131.
    A. Busilacchi, A. Gigante, M. Mattioli-Belmonte, S. Manzotti, R.A.A. Muzzarelli, Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr. Polym. 98, 665–676 (2013)PubMedCrossRefGoogle Scholar
  132. 132.
    H.L. Zhang, J.F. Li, B.P. Zhang, Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents. Acta Mater. 55, 171–181 (2007)CrossRefGoogle Scholar
  133. 133.
    H. Li, A. Wijekoon, N.D. Leipzig, Encapsulated neural stem cell neuronal differentiation in fluorinated methacrylamide chitosan hydrogels. Ann. Biomed. Eng. 42, 1456–1469 (2014)PubMedCrossRefGoogle Scholar
  134. 134.
    D.J. Kretlow, Injectable biomaterials for regenerating complex craniofacial tissues. Adv. Mater. 21, 3368–3393 (2015)CrossRefGoogle Scholar
  135. 135.
    S. Chaterji, K. Kwon, K. Park, Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci. 32, 1083–1122 (2008)CrossRefGoogle Scholar
  136. 136.
    S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    F. Reyes-Ortega, pH-responsive polymers: properties, synthesis and applications, in Smart 1651 Polymers and Their Applications, ed. by M.R.Aguilar, J.S. Román (Woodhead Publishing, Cambridge, UK 2014)Google Scholar
  138. 138.
    N.H. Romano, D. Sengupta, C. Chung, S.C. Heilshorn, Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810, 339–349 (2011)PubMedCrossRefGoogle Scholar
  139. 139.
    R. Freter, H. Brickner, J. Fekete, M.M. Vickerman, K.E. Carey, Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39, 686–703 (1983)PubMedPubMedCentralGoogle Scholar
  140. 140.
    C.T.S. Wong Po Foo, J.S. Lee, W. Mulyasasmita, A. Parisi-Amon, S.C. Heilshorn, Two component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl. Acad. Sci. 106, 22067–22072 (2009)PubMedCrossRefGoogle Scholar
  141. 141.
    S. Sart, T. Ma, Y. Li, Preconditioning stem cells for in vivo delivery. Biores. Open Access 3, 137–149 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    D. Maric, I. Maric, Y.H. Chang, J.L. Barker, Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J. Neurosci. 23, 240–251 (2003)PubMedCrossRefGoogle Scholar
  143. 143.
    A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. Singh, S. Pillai, Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17, 1974–2005 (2016)PubMedCentralCrossRefPubMedGoogle Scholar
  144. 144.
    R. Langer, Drug delivery and targeting. Nature 392, 5–10 (1998)PubMedGoogle Scholar
  145. 145.
    J. Wu, Z.-G. Su, G.-H. Ma, A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm. 315, 1–11 (2006)PubMedCrossRefGoogle Scholar
  146. 146.
    I. Drachuk, M.K. Gupta, V.V. Tsukruk, Biomimetic coatings to control cellular function through cell surface engineering. Adv. Funct. Mater. 23, 4437–4453 (2013)CrossRefGoogle Scholar
  147. 147.
    H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3, 1746–1767 (2010)PubMedCentralCrossRefGoogle Scholar
  148. 148.
    A. Bhattacharya, P. Ray, Introduction, in Polymer Grafting and Crosslinking, ed. by A. Bhattacharya, J.W. Rawlins, P. Ray (Wiley, Hoboken, 2008)Google Scholar
  149. 149.
    B. Balakrishnan, A. Jayakrishnan, Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26, 3941–3951 (2005)PubMedCrossRefGoogle Scholar
  150. 150.
    G. Selestina, K. Vanja, Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, in Biomaterials Applications for Nanomedicine, ed. by R. Pignatello (In Tech, London, UK 2011)Google Scholar
  151. 151.
    Z. Xue, B. Cao, W. Zhao, J. Wang, T. Yu, T. Mu, Heterogeneous Nb-containing catalyst/N,N-dimethylacetamide–salt mixtures: novel and efficient catalytic systems for the dehydration of fructose. RSC Adv. 6, 1–3 (2016)CrossRefGoogle Scholar
  152. 152.
    B.R. Sharma, L. Naresh, N.C. Dhuldhoya, S.U. Merchant, U.C. Merchant, An overview on pectins. Times Food Process. J. 23, 44–51 (2006)Google Scholar
  153. 153.
    J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials 6, 1285–1309 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    S.H. Cho, S.M. Lim, D.K. Han, S.H. Yuk, G.I. Im, J.H. Lee, Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. J. Biomater. Sci. Polym. Ed. 20, 863–876 (2009)PubMedCrossRefGoogle Scholar
  155. 155.
    D. Chitkara, A. Shikanov, N. Kumar, A.J. Domb, Biodegradable injectable in situ depot forming drug delivery systems. Macromol. Biosci. 6, 977–990 (2006)PubMedCrossRefGoogle Scholar
  156. 156.
    F. Xiao, Y. Wei, L. Yang, X. Zhao, L. Tian, Z. Ding, S. Yuan, Y. Lou, F. Liu, Y. Wen, J. Li, H. Deng, B. Kang, Y. Mao, S. Lei, Q. He, J. Su, Y. Lu, T. Niu, J. Hou, M.J. Huang, A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther. 9, 1207–1213 (2002)PubMedCrossRefGoogle Scholar
  157. 157.
    Q. Zhang, X. Lu, L. Zhao, Preparation of polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes. Membranes (Basel) 4, 81–95 (2014)CrossRefGoogle Scholar
  158. 158.
    D. Rana, T. Matsuura, Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010)PubMedCrossRefGoogle Scholar
  159. 159.
    R.X. Zhang, T.Y. Liu, J. Vanneste, L. Poelmans, A. Sotto, X.L. Wang, B.V.D. Bruggen, A design of composite hollow fiber membranes with tunable performance and reinforced mechanical strength. J. Appl. Polym. Sci. 132, 41247 (2015)Google Scholar
  160. 160.
    M.S. Shoichet, S.R. Winn, Cell delivery to the central nervous system. Adv. Drug Deliv. Rev. 42, 81–102 (2000)PubMedCrossRefGoogle Scholar
  161. 161.
    K.W. Broadhead, R. Biran, P.A. Tresco, Hollow fiber membrane diffusive permeability regulates encapsulated cell line biomass, proliferation, and small molecule release. Biomaterials 23, 4689–4699 (2002)PubMedCrossRefGoogle Scholar
  162. 162.
    D.F. Emerich, H.C. Salzberg, Update on immunoisolation cell therapy for CNS diseases. Cell Transplant. 10, 3–24 (2001)PubMedCrossRefGoogle Scholar
  163. 163.
    B. List, M.V. Gemmeren, Phase-transfer-catalyzed nucleophilic arylation of 3-aryloxindoles. Synfacts 10, 869–869 (2014)CrossRefGoogle Scholar
  164. 164.
    B. Zhang, L. Li, G. He, F. Gai, F. Zhang, Imidazolium functionalized polysulfone electrolyte membranes with varied chain structures: a comparative study. RSC Adv. 6, 31336–31346 (2016)CrossRefGoogle Scholar
  165. 165.
    R.E. Kesting, Phase inversion membranes. ACS Symp. Ser. 269, 131–164 (1985)CrossRefGoogle Scholar
  166. 166.
    B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 315, 36–47 (2008)CrossRefGoogle Scholar
  167. 167.
    C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259–275 (1992)CrossRefGoogle Scholar
  168. 168.
    P. Vandezande, L.E.M. Gevers, I.F. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37, 365–405 (2008)PubMedCrossRefGoogle Scholar
  169. 169.
    R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, R.K. Auddy, A.S. Deuri, A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Engineering 47, 21–25 (2007)Google Scholar
  170. 170.
    T. Böddeker, Membranes and membrane processes. J. Membr. Sci. 31, 343–344 (1987)CrossRefGoogle Scholar
  171. 171.
    R.M. Boom, I.M. Wienk, T.V.D. Boomgaard, C.A. Smolders, Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J. Membr. Sci. 73, 277–292 (1992)CrossRefGoogle Scholar
  172. 172.
    H.T. Yeo, S.T. Lee, M.J. Han, Role of a polymer additive in casting solution in preparation of phase inversion polysulfone membranes. J. Chem. Eng. Jpn. 33, 180–184 (2000)CrossRefGoogle Scholar
  173. 173.
    T. Jung, B. Joon, K.Y. Kim, B. Rhee, Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J. Membr. Sci. 243, 45–57 (2004)CrossRefGoogle Scholar
  174. 174.
    C. Guo, L. Zhou, J. Lv, Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21, 449–456 (2013)Google Scholar
  175. 175.
    A. Chwojnowski, C. Wojciechowski, K. Dudzinski, E. Lukowska, Polysulphone and polyethersulphone hollow fiber membranes with developed inner surface as material for biomedical applications. Biocybern. Biomed. Eng. 29, 47–59 (2009)Google Scholar
  176. 176.
    W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    A. Munin, F. Edwards-Lévy, Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3, 793–832 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    P. Zucca, R. Fernandez-Lafuente, E. Sanjust, Agarose and its derivatives as supports for enzyme immobilization. Molecules 21, 1577–1603 (2016)PubMedCentralCrossRefGoogle Scholar
  179. 179.
    S. Sakai, K. Kawabata, S. Tanaka, N. Harimoto, I. Hashimoto, C. Mu, K. Kawakam, Subsieve size agarose capsules enclosing ifosfamide-activating cells: a strategy toward chemotherapeutic targeting to tumors. Mol. Cancer Ther. 4, 1786–1790 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    M.K. Moghaddam, S.M. Mortazavi, T. Khayamian, Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J. Electrost. 73, 56–64 (2015)CrossRefGoogle Scholar
  181. 181.
    M. Whelehan, I.W. Marison, Microencapsulation using vibrating technology. J. Microencapsul. 28, 669–688 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    V. Shenoy, J. Rosenblatt, J. Vincent, A. Gaigalas, Measurement of mesh sizes in concentrated rigid and flexible polyelectrolyte solutions by an electron spin resonance technique. Macromolecules 28, 525–530 (1995)CrossRefGoogle Scholar
  183. 183.
    H. Uludag, V. De, P.A. Tresco, Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. 42, 29–64 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    G.M. Grass, S.A. Sweetana, In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm. Res. 5, 372–376 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    S. Vasudevan, Membranes and diaphragms for electrochemical processes. Res. J. Chem. Sci. 3, 1–3 (2013)Google Scholar
  186. 186.
    O. Pakhomov, J. Honiger, E. Gouin, R. Cariolet, G. Reach, S. Darquy, Insulin treatment of mice recipients preserves beta-cell function in porcine islet transplantation. Cell Transplant. 11, 721–728 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Y. Mori, M. Watanabe, S. Nakagawa, Y. Asawa, S. Nishizawa, K. Okubo, H. Saijo, S. Nagata, Y. Fujihara, T. Takato, K. Hoshi, Hollow fiber module applied for effective proliferation and harvest of cultured chondrocytes. Mater. Sci. Appl. 4, 62–67 (2013)Google Scholar
  188. 188.
    G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. 14, 149–165 (2008)CrossRefGoogle Scholar
  189. 189.
    V.G. Kadajji, G.V. Betageri, Water soluble polymers for pharmaceutical applications. Polymers 3, 1972–2009 (2011)CrossRefGoogle Scholar
  190. 190.
    R.M. Olabisi, Cell microencapsulation with synthetic polymers. J. Biomed. Mater. Res. A 103, 846–859 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    F.J. Wu, J.R. Friend, A. Lazar, H.J. Mann, R.P. Remmel, F.B. Cerra, W.S. Hu, Hollow fiber bioartificial liver utilizing collagen-entrapped porcine hepatocyte spheroids. Biotechnol. Bioeng. 52, 34–44 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    A. Lathuilière, N. Mach, B.L. Schneider, Encapsulated cellular implants for recombinant protein delivery and therapeutic modulation of the immune system. Int. J. Mol. Sci. 16, 10578–10600 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    K. Leena-Stiina, Cell encapsulation in hydrogels for long-term protein delivery and tissue engineering applications. Dissertation, University of Helsinki, 2014Google Scholar
  194. 194.
    I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 3, 316–342 (2013)Google Scholar
  195. 195.
    M.N. Singh, K.S.Y. Hemant, M. Ram, H.G. Shivakumar, Microencapsulation: a promising technique for controlled drug delivery. Res. Pharm. Sci. 5, 65–77 (2010)PubMedPubMedCentralGoogle Scholar
  196. 196.
    N.V. Jyothi, P.M. Prasanna, S.N. Sakarkar, K.S. Prabha, P.S. Ramaiah, G.Y. Srawan, Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 27, 187–197 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    M. Qi, Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Adv. Med. 2014, 1–15 (2014)CrossRefGoogle Scholar
  198. 198.
    H. Nur, V.T. Pinkrah, J.C. Mitchell, L.S. Benée, M.J. Snowden, Synthesis and properties of polyelectrolyte microgel particles. Adv. Colloid Interf. Sci. 158, 15–20 (2010)CrossRefGoogle Scholar
  199. 199.
    F. Lim, A.M. Sun, Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–1110 (1980)PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    V. Vaithilingam, B.E. Tuch, Islet transplantation and encapsulation: an update on recent developments. Rev. Diabet. Stud. 8, 51–67 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    A. King, B. Strand, A.-M. Rokstad, B. Kulseng, A. Andersson, G. Skjåk-Braek, S. Sandler, Improvement of the biocompatibility of alginate/poly-l-lysine/alginate microcapsules by the use of epimerized alginate as a coating. J. Biomed. Mater. Res. A 64, 533–539 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    M. Peirone, C.J. Ross, G. Hortelano, J.L. Brash, P.L. Chang, Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. Biomed. Mater. Res. 42, 587–596 (1998)CrossRefGoogle Scholar
  203. 203.
    C.J. King, Spray drying food liquids and the retention of volatiles. Chem. Eng. Prog. 6, 33–39 (1990)Google Scholar
  204. 204.
    D.V.S. Elezabeth, P. Ramachandran, Microbiological investigation on Vetiveria lawsonii. Int J Pharm. Bio. Sci 6, 472–475 (2015)Google Scholar
  205. 205.
    F.T. Gentile, E.J. Doherty, D.H. Rein, M.S. Shoichet, S.R. Winn, Polymer science for macroencapsulation of cells for central nervous system transplantation. React. Polym. 25, 207–227 (1995)CrossRefGoogle Scholar
  206. 206.
    B. Dupuy, C. Cadic, H. Gin, C. Baquey, B. Dufy, D. Ducassou, Microencapsulation of isolated pituitary cells by polyacrylamide micro latex coagulation on agarose beads. Biomaterials 12, 493–506 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    E.N. Brown, M.R. Kessler, N.R. Sottos, S.R. White, In situ poly(urea-formaldehyde)microencapsulation of dicyclopentadiene. J. Microencapsul. 20, 719–730 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    A. Tomei, V. Manzoli, C. Fraker, J. Giraldo, D. Velluto, M. Najjar, M. Najjar, A. Pileggi, R.D. Molano, C. Ricordi, C.L. Stabler, J.A. Hubbell, Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl. Acad. Sci. 111, 10514–10519 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    K.P. Peterson, C.M. Peterson, E.J. Pope, Silica sol-gel encapsulation of pancreatic islets. Proc. Soc. Exp. Biol. Med. 218, 365–369 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    M.F. Desimone, G.S. Alvarez, M.L. Foglia, L.E. Diaz, Development of sol-gel hybrid materials for whole cell immobilization. Recent Pat. Biotechnol. 3, 55–60 (2009)PubMedCrossRefGoogle Scholar
  211. 211.
    G.S. Alvarez, F.L. Pieckenstain, M.F. Desimone, M.J. Estrella, O. Ruiz, B. Aires, Evaluation of sol-gel silica matrices as inoculant carriers for Mesorhizobium spp. Cells, in Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, ed. By A. Mendez-Vilas (Formatex, Badajoz, Spain, 2010)Google Scholar
  212. 212.
    H. Almeida, M.H. Amaral, P. Lobão, Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery. J. Appl. Pharm. Sci. 02, 1–10 (2012)Google Scholar
  213. 213.
    L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications – a review. Eur. J. Pharm. Biopharm. 68, 34–45 (2008)PubMedCrossRefGoogle Scholar
  214. 214.
    B. Mukherjee, Nanosize drug delivery system. Curr. Pharm. Biotechnol. 14(15), 1221 (2013)PubMedCrossRefGoogle Scholar
  215. 215.
    J.P. Weick, Functional properties of human stem cell-derived neurons in health and disease. Stem Cells Int. 2016, 1–10 (2016)Google Scholar
  216. 216.
    J.M. Pollok, J.F. Begemann, P.M. Kaufmann, D. Kluth, C.E. Broelsch, J.R. Izbicki, X. Rogiers, Long-term insulin-secretory function of islets of Langerhans encapsulated with a layer of confluent chondrocytes for immunoisolation. Pediatr. Surg. Int. 15, 164–167 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    J.M. Pollok, M. Lorenzen, P.A. Kölln, E. Török, P.M. Kaufmann, D. Kluth, K.H. Bohuslavizki, M. Gundlach, X. Rogiers, In vitro function of islets of Langerhans encapsulated with a membrane of porcine chondrocytes for immunoisolation. Dig. Surg. 18, 204–210 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    D.B. Flagfeldt, V. Siewers, L. Huang, J. Nielsen, Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26, 545–551 (2009)PubMedCrossRefGoogle Scholar
  219. 219.
    Y. Ma, Y. Zhang, Y. Wang, Q. Wang, M. Tan, Y. Liu, X. Ma, Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation. J. Biomed. Mater. Res. A 101, 1007–1015 (2013)PubMedCrossRefGoogle Scholar
  220. 220.
    C.A. Crooks, J.A. Douglas, R.L. Broughton, M.V. Sefton, Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability. J. Biomed. Mater. Res. 24, 1241–1262 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    M. Brissova, I. Lacík, A.C. Powers, A.V. Anilkumar, T. Wang, Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39, 61–70 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    M.A.J. Mazumder, N.A.D. Burke, F. Shen, M.A. Potter, H.D.H. Stöver, Core cross linked alginate microcapsules for cell encapsulation. Biomacromolecules 10, 1365–1373 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    E. Arkhangelsky, V. Gitis, Effect of transmembrane pressure on rejection of viruses by ultrafiltration membranes. Sep. Purif. Technol. 62, 619–628 (2008)CrossRefGoogle Scholar
  224. 224.
    T.A. Desai, D. Hansfordb, M. Ferraric, Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J. Membr. Sci. 159, 221–231 (1999)CrossRefGoogle Scholar
  225. 225.
    H.W. Matthew, S.O. Salley, W.D. Peterson, M.D. Klein, Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol. Prog. 9, 510–519 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    M.A. Jafar Mazumder, N.A.D. Burke, T. Chu, F. Shen, M.A. Potter, H.D.H. Stöver, Synthetic reactive polyelectrolytes for cell encapsulation. ACS Polym. Deliv. Ther. 7, 131–159 (2010)CrossRefGoogle Scholar
  227. 227.
    K.K. Liu, D.R. Williams, B.J. Briscoe, Compressive deformation of a single microcapsule. Phys. Rev. E 54, 6673–6680 (1996)CrossRefGoogle Scholar
  228. 228.
    M.W. Keller, N.R. Sottos, Mechanical properties of microcapsules used in a self-healing polymer. Exp. Mech. 46, 725–733 (2006)CrossRefGoogle Scholar
  229. 229.
    W. Wang, E.Q. Wang, J.P. Balthasar, Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84, 548–558 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    S. Razin, D. Yogev, Y. Naot, Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–1156 (1998)PubMedPubMedCentralGoogle Scholar
  231. 231.
    C.A.J. Janeway, Responses to alloantigens and transplant rejection, in Immunobiology: The Immune System in Health and Disease, 5th edn. (Garland Science, Newyork, USA, 2001)Google Scholar
  232. 232.
    R. Krishnan, M. Alexander, L. Robles, C.E. Foster, J.R.T. Lakey, Islet and stem cell encapsulation for clinical transplantation. Rev. Diabet. Stud. 11, 84–101 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    L.H. Granicka, A. Weryński, J. Kawiak, Polypropylene silanized membranes for immunoisolation. Sep. Purif. Technol. 41, 221–230 (2005)CrossRefGoogle Scholar
  234. 234.
    J.M. Anderson, D.T. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008)PubMedCrossRefGoogle Scholar
  235. 235.
    P. de Vos, A. Andersson, S.K. Tam, M.M. Faas, J.P. Halle, Advances and barriers in mammalian cell encapsulation for treatment of diabetes. Immunol. Endocr. Metab. Agents 6, 139–153 (2006)CrossRefGoogle Scholar
  236. 236.
    U. Zimmermann, S. Mimietz, H. Zimmermann, M. Hillgärtner, H. Schneider, J. Ludwig, C. Hasse, A. Haase, M. Rothmund, G.J. Fuhr, Hydrogel-based non-autologous cell and tissue therapy. BioTechniques 29, 564–572 (2000)PubMedCrossRefGoogle Scholar
  237. 237.
    B.L. Strand, A.E. Coron, G. Skjak-Braek, Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl. Med. 6, 1053–1058 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    J.M. Anderson, Biological responses to materials. Annu. Rev. Mater. Res. 31, 81–110 (2001)CrossRefGoogle Scholar
  239. 239.
    A. Singh, T. Wyant, C. Anaya-Bergman, J. Aduse-Opoku, J. Brunner, M.L. Laine, M.A. Curtis, J.P. Lewis, The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect. Immun. 79, 4533–4542 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    P. Sharma, A.B. Jha, R.S. Dubey, M. Pessarakli, Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012)CrossRefGoogle Scholar
  241. 241.
    D.A. Christian, C.A. Hunter, Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 18, 1199–1216 (2013)Google Scholar
  242. 242.
    M. Qi, Transplantation of encapsulated pancreatic islets as a treatment for patients with type I diabetes mellitus. Adv. Med. 14, 1–15 (2014)CrossRefGoogle Scholar
  243. 243.
    D.G. Birch, F.Q. Liang, Age-related macular degeneration: a target for nanotechnology derived medicines. Int. J. Nanomedicine 2, 65–77 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    J.C. Kraft, J.P. Freeling, Z. Wang, R.J. Ho, Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103, 29–52 (2014)PubMedCrossRefGoogle Scholar
  245. 245.
    J.M. Morais, F. Papadimitrakopoulos, D.J. Burgess, Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12, 188–196 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    P. de Vos, H.A. Lazarjani, D. Poncelet, M.M. Fass, Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 67, 15–34 (2014)PubMedCrossRefGoogle Scholar
  247. 247.
    G. Orive, A.R. Gascón, R.M. Hernández, M. Igartua, J.L. Pedraz, Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol. Sci. 24, 207–210 (2003)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdul Waheed
    • 1
  • Mohammad Abu Jafar Mazumder
    • 1
    Email author
  • Amir Al-Ahmed
    • 2
  • Partha Roy
    • 3
  • Nisar Ullah
    • 1
  1. 1.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Center of Research Excellence in Renewable EnergyKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Department of Pharmaceutical TechnologyAdamas UniversityKolkataIndia

Personalised recommendations