Blood Compatible Polymers

  • Sara AlibeikEmail author
  • Kyla N. Sask
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Medical devices made from polymeric materials come in contact with blood in a wide range of applications, including stents, artificial vascular grafts, hemodialysis membranes, catheters, and sutures, among others. In this chapter, an overview of the ongoing investigations with blood compatible polymers is provided. A summary of polymers used in blood contacting devices will be given, followed by details focusing on each of the types of polymers that are most commonly used. Furthermore, a description of the efforts made in improving the blood compatibility of these polymers will be provided, as most synthetic polymers are required to go through some level of modification in order to be used in blood contacting devices. Most modification strategies address the changes in surface properties of these polymers with the aim of controlling the interactions between blood components and the polymeric surface. Among these modification techniques, use of bioinert molecules, bioactive molecules, and a combination of the two molecules are the subject of most studies.

List of Abbreviations


Albumin-coated vascular graft


Atomic force microscopy


Activated partial thromboplastin time








Bovine serum albumin






Conjugated linoleic acid




Castor-oil-mono- hydrogenated acetates






Di(2-ethylhexyl) terephthalate


Cyclohexane 1,2-dicarboxylate


Di-iso-nonyl phthalate


Endothelial cell(s)


Extracorporeal circulation




Endothelial progenitor cells


Ethylene vinyl alcohol copolymer


Glycidyl methacrylate


Human serum albumin


Low-molecular-weight heparin


Left ventricular assist device




2-methacryloyloxethyl phosphorylcholine


Molecular weight(s)


Nitric oxide






Poly(acrylonitrile-co-maleic anhydride)






Polyethylene glycol


Poly(ethylene glycol) methacrylate


Polyethylene oxide




Polyethylene terephthalate








Poly(2-methoxyethyl acrylate)






Poly hydroxyl-ethylmethacrylate


Poly(2-methacryloyloxyethyl phosphorylcholine)


Poly(oligo(ethylene glycol) methacrylate)




Poly(propylene oxide)


Plasma recalcification time






Polytetramethylene oxide








Poly(vinyl alcohol)




Polyvinylidine fluoride




Recombinant hirudin


Surface initiated atom transfer radical polymerization




Segmented polyurethane


Segmented polyurethanes






Tri-2-ethylhexyl trimellitate


Tris-octyl tri-mellitate


Tissue plasminogen activator


Unfractionated heparin


  1. 1.
    E.N.K. Chan, P. Huynh, T.T. Nguyen, in An Investigation on the Effects of Chamber Wall’s Elasticity on Blood Flow in a LVAD Pump. 19th Australasian Fluid Mechanics Conference, Melbourne (2014)Google Scholar
  2. 2.
    A.Z. Okkema, T.G. Grasel, R.J. Zdrahala, D.D. Solomon, S.L. Cooper, Bulk, surface, and blood-contacting properties of polyetherurethanes modified with polyethylene oxide. J. Biomater. Sci. Polym. Ed. 1, 43–62 (1989)PubMedCrossRefGoogle Scholar
  3. 3.
    A. Takahara, A.Z. Okkema, S.L. Cooper, A.J. Coury, Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes. Biomaterials 12, 324–334 (1991)PubMedCrossRefGoogle Scholar
  4. 4.
    A.Z. Okkema, D.J. Fabrizius, T.G. Grasel, S.L. Cooper, R.J. Zdrahala, Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimetnylsiloxane macroglycols. Biomaterials 10, 23–32 (1989)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Takahara, J. Tashita, T. Kajiyama, M. Takayanagi, W.J. MacKnight, Microphase separated structure, surface composition and blood compatibility of segmented poly(urethaneureas) with various soft segment component. Polymer 26, 987–996 (1985)CrossRefGoogle Scholar
  6. 6.
    T.G. Grasel, S.L. Cooper, Properties and biological inteactions of polyurethane anionomers: Effect of sulfonate incorporation. J. Biomed. Mater. Res. 23, 311–338 (1989)PubMedCrossRefGoogle Scholar
  7. 7.
    A.Z. Okkema, S.A. Visser, S.L. Cooper, Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. J. Biomed. Mater. Res. 25, 1371–1395 (1991)PubMedCrossRefGoogle Scholar
  8. 8.
    J.H. Silver, J.W. Marchant, S.L. Cooper, Effect of polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes. J. Biomed. Mater. Res. 27, 1443–1457 (1993)PubMedCrossRefGoogle Scholar
  9. 9.
    J.P. Santerre, P. Ten Hove, N.H. VanderKamp, J.L. Brash, Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: Possible correlation with anticoagulant behavior. J. Biomed. Mater. Res. 26, 39–57 (1992)PubMedCrossRefGoogle Scholar
  10. 10.
    G.A. Skarja, J.L. Brash, Physicochemical properties and platelet interactions of segmented polyurethanes containing sulfonate groups in the hard segment. J. Biomed. Mater. Res. 34, 439–455 (1997)PubMedCrossRefGoogle Scholar
  11. 11.
    K.Y. Chen, J.F. Kuo, C.Y. Chen, Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials 21, 161–171 (2000)PubMedCrossRefGoogle Scholar
  12. 12.
    L. Poussard, F. Burel, J.P. Couvercelle, O. Lesouhaitier, Y. Merhi, M. Tabrizian, C. Bunel, In vitro thrombogenicity investigation of new water-dispersible polyurethane anionomers bearing carboxylate groups. J. Biomater. Sci. Polym. Ed. 16, 335–351 (2005)PubMedCrossRefGoogle Scholar
  13. 13.
    S. Alibeik, A. Rizkalla, K. Mequanint, The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes. Eur. Polym. J. 43, 1415–1427 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Alibeik, H. Sheardown, A.S. Rizkalla, K. Mequanint, Protein adsorption and platelet adhesion onto ion-containing polyurethanes. J. Biomater. Sci. Polym. Ed. 18, 1195–1210 (2007)PubMedCrossRefGoogle Scholar
  15. 15.
    D.K. Han, K.D. Park, G.H. Ryu, U.Y. Kim, B.G. Min, Y.H. Kim, Plasma protein adsorption to sulfonated poly(ethylene oxide)-grafted polyurethane surface. J. Biomed. Mater. Res. 30, 23–30 (1996)PubMedCrossRefGoogle Scholar
  16. 16.
    D.K. Han, G.H. Ryu, K.D. Park, S.Y. Jeong, Y.H. Kim, B.G. Min, Adsorption behavior of fibrinogen to sulfonated polyethyleneoxide-grafted polyurethane surfaces. J. Biomater. Sci. Polym. Ed. 4, 401–413 (1993)PubMedCrossRefGoogle Scholar
  17. 17.
    J.G. Archambault, J.L. Brash, Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): Effects of protein size and charge. Colloids Surf. B Biointerfaces 33, 111–120 (2004)CrossRefGoogle Scholar
  18. 18.
    J.G. Archambault, J.L. Brash, Protein resistant polyurethane surfaces by chemical grafting of PEO: Amino-terminated PEO as grafting reagent. Colloids Surf. B Biointerfaces 39, 9–16 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    H. Chen, X. Hu, Y. Zhang, D. Li, Z. Wu, T. Zhang, Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces. Colloids Surf. B Biointerfaces 61, 237–243 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Z. Jin, W. Feng, K. Beisser, S. Zhu, H. Sheardown, J.L. Brash, Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: Effects of main chain and side chain lengths of grafts. Colloids Surf. B Biointerfaces 70, 53–59 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    C. Wang, C. Ma, C. Mu, W. Lin, A novel approach for synthesis of zwitterionic polyurethane coating with protein resistance. Langmuir 30, 12860–12867 (2014)PubMedCrossRefGoogle Scholar
  22. 22.
    Z. Jin, W. Feng, S. Zhu, H. Sheardown, J.L. Brash, Protein-resistant materials via surface-initiated atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine. J. Biomater. Sci. Polym. Ed. 21, 1331–1344 (2010)PubMedCrossRefGoogle Scholar
  23. 23.
    H. Tan, J. Liu, J. Li, X. Jiang, X. Xie, Y. Zhong, Q. Fu, Synthesis and hemocompatibility of biomembrane mimicing poly (carbonate urethane) s containing fluorinated alkyl phosphatidylcholine side groups. Biomacromolecules 7, 2591–2599 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Yuan, F. Ai, X. Zang, W. Zhuang, J. Shen, S. Lin, Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloids Surf. B Biointerfaces 35, 1–5 (2004)PubMedCrossRefGoogle Scholar
  25. 25.
    J. Yuan, L. Chen, X. Jiang, J. Shen, S. Lin, Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion. Colloids Surf. B Biointerfaces 39, 87–94 (2004)PubMedCrossRefGoogle Scholar
  26. 26.
    J. Yuan, S. Lin, J. Shen, Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Colloids Surf. B Biointerfaces 66, 90–95 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    J. Yuan, J. Zhang, J. Zhou, Y.L. Yuan, J. Shen, S.C. Lin, Platelet adhesion onto segmented polyurethane surfaces modified by carboxybetaine. J. Biomater. Sci. Polym. Ed. 14, 1339–1349 (2003)PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Ito, Antithrombogenic heparin-bound polyurethanes. J. Biomater. Appl. 2, 235–265 (1987)PubMedCrossRefGoogle Scholar
  29. 29.
    R. Eloy, J. Belleville, M.C. Rissoan, J. Baguet, Heparinization of medical grade polyurethanes. J. Biomater. Appl. 2, 475–519 (1988)PubMedCrossRefGoogle Scholar
  30. 30.
    E.A. Aksoy, V. Hasirci, N. Hasirci, A. Motta, M. Fedel, C. Migliaresi, Plasma protein adsorption and platelet adhesion on heparin-immobilized polyurethane films. J. Bioact. Compat. Polym. 23, 505–519 (2008)CrossRefGoogle Scholar
  31. 31.
    L.S. Liu, Y. Ito, Y. Imanishi, Synthesis and antithrombogenicity of heparinized polyurethanes with intervening spacer chains of various kinds. Biomaterials 12, 390–396 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    C. Nojiri, T. Okano, H.A. Jacobs, Ki Dong Park, S.F. Mohammad, D.B. Olsen, Sung Wan Kim, Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces. J. Biomed. Mater. Res. 24, 1151–1171 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    J.-S. Bae, E.-J. Seo, I.-K. Kang, Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials 20, 529–537 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    M. Wan, D.K. Baek, J.H. Cho, I.K. Kang, K.H. Kim, In vitro blood compatibility of heparin-immobilized polyurethane containing ester groups in the side chain. J. Mater. Sci. Mater. Med. 15, 1079–1087 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    K.D. Park, T. Okano, C. Nojiri, S.W. Kim, Heparin immobilization onto segmented polyurethaneurea surfaces – Effect of hydrophilic spacers. J. Biomed. Mater. Res. 22, 977–992 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    P. Klement, Y.J. Du, L. Berry, M. Andrew, A.K.C. Chan, Blood-compatible biomaterials by surface coating with a novel antithrombin-heparin covalent complex. Biomaterials 23, 527–535 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Y.J. Du, P. Klement, L.R. Berry, P. Tressel, A.K.C. Chan, In vivo rabbit acute model tests of polyurethane catheters coated with a novel antithrombin-heparin covalent complex. Thromb. Haemost. 94, 366–372 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Y.J. Du, J.L. Brash, G. McClung, L.R. Berry, P. Klement, A.K.C. Chan, Protein adsorption on polyurethane catheters modified with a novel antithrombin-heparin covalent complex. J. Biomed. Mater. Res. A 80A, 216–225 (2007)CrossRefGoogle Scholar
  39. 39.
    P. Klement, Y.J. Du, L.R. Berry, P. Tressel, A.K.C. Chan, Chronic performance of polyurethane catheters covalently coated with ATH complex: A rabbit jugular vein model. Biomaterials 27, 5107–5117 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Y.J. Du, L.R. Berry, A. Chan, Chemical-physical characterization of polyurethane catheters modified with a novel antithrombin-heparin covalent complex. Aust. J. Biol. Sci. 22, 2277–2294 (2011)Google Scholar
  41. 41.
    K.N. Sask, L.R. Berry, A.K.C. Chan, J.L. Brash, Modification of polyurethane surface with an antithrombin − Heparin complex for blood contact: Influence of molecular weight of polyethylene oxide used as a linker/spacer. Langmuir 28, 2099–2106 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    K.N. Sask, L.R. Berry, A.K.C. Chan, J.L. Brash, Polyurethane modified with an antithrombin-heparin complex via polyethylene oxide linker/spacers : Influence of PEO molecular weight and PEO-ATH bond on catalytic and direct anticoagulant functions. J. Biomed. Mater. Res. A 100A, 2821–2828 (2012)CrossRefGoogle Scholar
  43. 43.
    M.D. Phaneuf, S.A. Berceli, M.J. Bide, W.G. Quist, F.W. LoGerfo, Covalent linkage of recombinant hirudin to poly(ethylene terephthalate)(Dacron): Creation of a novel antithrombin surface. Biomaterials 18, 755–765 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    M.D. Phaneuf, D.J. Dempsey, M.J. Bide, M. Szycher, W.C. Quist, F.W. LoGerfo, Bioengineering of a novel small diameter polyurethane vascular graft with covalently bound recombinant hirudin. ASAIO J. 44, M653–M658 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    W.G. McClung, D.L. Clapper, A.B.. Anderson, D.E. Babcock, J.L. Brash, Interactions of fibrinolytic system proteins with lysine-containing surfaces. J. Biomed. Mater. Res. A 66, 795–801 (2003)Google Scholar
  46. 46.
    W.G. McClung, D.L. Clapper, S.P. Hu, J.L. Brash, Adsorption of plasminogen from human plasma to lysine-containing surfaces. J. Biomed. Mater. Res. 49, 409–414 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    W.G. McClung, D.L. Clapper, S.P. Hu, J.L. Brash, Lysine-derivatized polyurethane as a clot lysing surface: Conversion of adsorbed plasminogen to plasmin and clot lysis in vitro. Biomaterials 22, 1919–1924 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    H. Chen, Y. Zhang, D. Li, X. Hu, L. Wang, W.G. McClung, J.L. Brash, Surfaces having dual fibrinolytic and protein resistant properties by immobilization of lysine on polyurethane through a PEG spacer. J. Biomed. Mater. Res. A 90, 940–946 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Z. Wu, H. Chen, D. Li, J.L. Brash, Tissue plasminogen activator-containing polyurethane surfaces for fibrinolytic activity. Acta Biomater. 7, 1993–1998 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    M. Belanger, Y. Marois, Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primanry reference materials low-density polyethylene and polydiemthylsiloxane: A review. J. Biomed. Mater. Res. 58, 467–477 (2001)PubMedCrossRefGoogle Scholar
  51. 51.
    F. Abbasi, H. Mirzadeh, A.A. Katbab, Modification of polysiloxane polymers for biomedical applications: A review. Polym. Int. 50, 1279–1287 (2001)CrossRefGoogle Scholar
  52. 52.
    M.T. Khorasani, H. Mirzadeh, In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J. Appl. Polym. Sci. 91, 2042–2047 (2004)CrossRefGoogle Scholar
  53. 53.
    L. Cheng, Q. Liu, Y. Lei, Y. Lin, A. Zhang, The synthesis and characterization of carboxybetaine functionalized polysiloxanes for the preparation of anti-fouling surfaces. RSC Adv. 4, 54372–54381 (2014)CrossRefGoogle Scholar
  54. 54.
    A. Zhang, L. Cheng, S. Hong, C. Yang, Y. Lin, Preparation of anti-fouling silicone elastomers by covalent immobilization of carboxybetaine. RSC Adv. 5, 88456–88463 (2015)CrossRefGoogle Scholar
  55. 55.
    H. Chen, M.A. Brook, H. Sheardown, Silicone elastomers for reduced protein adsorption. Biomaterials 25, 2273–2282 (2004)PubMedCrossRefGoogle Scholar
  56. 56.
    H. Chen, M.A. Brook, Y. Chen, H. Sheardown, Surface properties of PEO-silicone composites: Reducing protein adsorption. J. Biomater. Sci. Polym. Ed. 16, 531–548 (2005)PubMedCrossRefGoogle Scholar
  57. 57.
    H. Chen, Z. Zhang, Y. Chen, M.A. Brook, H. Sheardown, Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials 26, 2391–2399 (2005)PubMedCrossRefGoogle Scholar
  58. 58.
    H. Chen, M.A. Brook, H.D. Sheardown, Y. Chen, B. Klenkler, Generic bioaffinity silicone surfaces. Bioconjug. Chem. 17, 21–28 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    J.M. Leung, L.R. Berry, A.K.C. Chan, J.L. Brash, Surface modification of polydimethylsiloxane with a covalent antithrombin-heparin complex to prevent thrombosis. J. Biomater. Sci. Polym. Ed. 25, 786–801 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    J.M. Leung, L.R. Berry, H.M. Atkinson, R.M. Cornelius, D. Sandejas, N. Rochow, P.R. Selvaganapathy, C. Fusch, A.K.C. Chan, J.L. Brash, Surface modification of poly(dimethylsiloxane) with a covalent antithrombin–heparin complex for the prevention of thrombosis: Use of polydopamine as bonding agent. J. Mater. Chem. B 3, 6032–6036 (2015)CrossRefGoogle Scholar
  61. 61.
    H. Chen, L. Wang, Y. Zhang, D. Li, W.G. McClung, M.A. Brook, H. Sheardown, J.L. Brash, Fibrinolytic poly(dimethyl siloxane) surfaces. Macromol. Biosci. 8, 863–870 (2008)PubMedCrossRefGoogle Scholar
  62. 62.
    H. Zhang, G.M. Annich, J. Miskulin, K. Osterholzer, S.I. Merz, R.H. Bartlett, M.E. Meyerhoff, Nitric oxide releasing silicone rubbers with improved blood compatibility: Preparation, characterization, and in vivo evaluation. Biomaterials 23, 1485–1494 (2002)PubMedCrossRefGoogle Scholar
  63. 63.
    M.R. Kapadia, D.A. Popowich, M.R. Kibbe, Modified prosthetic vascular conduits. Circulation 117, 1873–1882 (2008)PubMedCrossRefGoogle Scholar
  64. 64.
    J. Yang, D. Motlagh, J.B. Allen, A.R. Webb, M.R. Kibbe, O. Aalami, M. Kapadia, T.J. Carroll, G.A. Ameer, Modulating expanded polytetrafluoroethylene vascular graft host response via citric acid-based biodegradable elastomers. Adv. Mater. 18, 1493–1498 (2006)CrossRefGoogle Scholar
  65. 65.
    C. Sato, M. Aoki, M. Tanaka, Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of endothelial and smooth muscle cells. Colloids Surf. B Biointerfaces 145, 586–596 (2016)PubMedCrossRefGoogle Scholar
  66. 66.
    L. Karrer, J. Duwe, A.H. Zisch, E. Khabiri, M. Cikirikcioglu, A. Napoli, A. Goessl, T. Schaffner, O.M. Hess, T. Carrel, et al., PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts. Int. J. Artif. Organs 28, 993–1002 (2005)PubMedCrossRefGoogle Scholar
  67. 67.
    S.W. Jordan, K.M. Faucher, J.M. Caves, R.P. Apkarian, S.S. Rele, X.L. Sun, S.R. Hanson, E.L. Chaikof, Fabrication of a phospholipid membrane-mimetic film on the luminal surface of an ePTFE vascular graft. Biomaterials 27, 3473–3481 (2006)PubMedCrossRefGoogle Scholar
  68. 68.
    G. Jin, Q. Yao, S. Zhang, L. Zhang, Surface modifying of microporous PTFE capillary for bilirubin removing from human plasma and its blood compatibility. Mater. Sci. Eng. C 28, 1480–1488 (2008)CrossRefGoogle Scholar
  69. 69.
    C. Li, A. Hill, M. Imran, In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J. Biomater. Sci. Polym. Ed. 16, 875–891 (2005)PubMedCrossRefGoogle Scholar
  70. 70.
    J.I. Rotmans, J.M.M. Heyligers, H.J.M. Verhagen, E. Velema, M.M. Nagtegaal, D.P.V. De Kleijn, F.G. De Groot, E.S.G. Stroes, G. Pasterkamp, In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112, 12–18 (2005)PubMedCrossRefGoogle Scholar
  71. 71.
    X. Kapfer, W. Meichelboeck, F.M. Groegler, Comparison of carbon-impregnated and standard ePTFE prostheses in extra-anatomical anterior tibial artery bypass: A prospective randomized multicenter study. Eur. J. Vasc. Endovasc. Surg. 32, 155–168 (2006)PubMedCrossRefGoogle Scholar
  72. 72.
    P.H. Lin, R.L. Bush, Q. Yao, A.B.. Lumsden, C. Chen, Evaluation of platelet deposition and neointimal hyperplasia of heparin-coated small-caliber ePTFE grafts in a canine femoral artery bypass model. J. Surg. Res. 118, 45–52 (2004)Google Scholar
  73. 73.
    P.C. Begovac, R.C. Thomson, J.L. Fisher, A. Hughson, A. Gällhagen, Improvements in GORE-TEX® vascular graft performance by Carmeda® BioActive Surface heparin immobilization. Eur. J. Vasc. Endovasc. Surg. 25, 432–437 (2003)PubMedCrossRefGoogle Scholar
  74. 74.
    M. Bosiers, K. Deloose, J. Verbist, H. Schroë, G. Lauwers, W. Lansink, P. Peeters, Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting: 1-year results. J. Vasc. Surg. 43, 313–318 (2006)PubMedCrossRefGoogle Scholar
  75. 75.
    J.S. Lindholt, B. Gottschalksen, N. Johannesen, D. Dueholm, H. Ravn, E.D. Christensen, B. Viddal, T. Flørenes, G. Pedersen, M. Rasmussen, et al., The Scandinavian Propaten trial-1-year patency of PTFE vascular prostheses with heparin-bonded luminal surfaces compared to ordinary pure PTFE vascular prostheses – A randomised clinical controlled multi-centre trial. Eur. J. Vasc. Endovasc. Surg. 41, 668–673 (2011)PubMedCrossRefGoogle Scholar
  76. 76.
    R.A. Hoshi, R. Van Lith, M.C. Jen, J.B. Allen, K.A. Lapidos, G. Ameer, The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 34, 30–41 (2013)PubMedCrossRefGoogle Scholar
  77. 77.
    S. Lu, P. Zhang, X. Sun, F. Gong, S. Yang, L. Shen, Z. Huang, C. Wang, Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl. Mater. Interfaces 5, 7360–7369 (2013)PubMedCrossRefGoogle Scholar
  78. 78.
    A.P. Zhu, Z. Ming, S. Jian, Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft. Appl. Surf. Sci. 241, 485–492 (2005)CrossRefGoogle Scholar
  79. 79.
    H.P. Greisler, D.J. Cziperle, D.U. Kim, J.D. Garfield, D. Petsikas, P.M. Murchan, E.O. Applegren, W. Drohan, W.H. Burgess, Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112, 244–254 (1992)PubMedGoogle Scholar
  80. 80.
    M. Heise, G. Schmidmaier, I. Husmann, C. Heidenhain, J. Schmidt, P. Neuhaus, U. Settmacher, PEG-hirudin/iloprost coating of small diameter ePTFE grafts effectively prevents pseudointima and intimal hyperplasia development. Eur. J. Vasc. Endovasc. Surg. 32, 418–424 (2006)PubMedCrossRefGoogle Scholar
  81. 81.
    R.S. Greco, H.C. Kim, A.P. Donetz, R.A. Harvey, Patency of a small vessel prosthesis bonded to tissue-plasminogen activator and iloprost. Ann. Vasc. Surg. 9, 140–145 (1995)PubMedCrossRefGoogle Scholar
  82. 82.
    M. Deutsch, J. Meinhart, T. Fischlein, P. Preiss, P. Zilla, Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery 126, 847–855 (1999)PubMedCrossRefGoogle Scholar
  83. 83.
    H. Magometschnigg, M. Kadletz, M. Vodrazka, W. Dock, M. Grimm, M. Grabenwöger, E. Minar, M. Staudacher, G. Fenzl, E. Wolner, Prospective clinical-study with invitro endothelial-cell lining of expanded polytetrafluoroethylene grafts in crural repeat reconstruction. J. Vasc. Surg. 15, 527–535 (1992)PubMedCrossRefGoogle Scholar
  84. 84.
    H.R. Laube, J. Duwe, W. Rutsch, W. Konertz, Clinical experience with autologous endothelial cell–seeded polytetrafluoroethylene coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 120, 134–141 (2000)PubMedCrossRefGoogle Scholar
  85. 85.
    D.P. Griese, A. Ehsan, L.G. Melo, D. Kong, L. Zhang, M.J. Mann, R.E. Pratt, R.C. Mulligan, V.J. Dzau, Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: Implications for cell-based vascular therapy. Circulation 108, 2710–2715 (2003)PubMedCrossRefGoogle Scholar
  86. 86.
    D.J. Smith, D. Chakravarthy, M.L. Simm, J.A. Hrabie, Nitric oxide-releasing polymers containing the [N(O)NO]- group. J. Med. Chem. 39, 1148–1156 (1996)PubMedCrossRefGoogle Scholar
  87. 87.
    G. Odian, Polyesters, in Principles of Polymerization, 4th edn., (Wiley, New York, 2004), pp. 92–96CrossRefGoogle Scholar
  88. 88.
    N.P. Desai, J.A. Hubbell, Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12, 144–153 (1991)PubMedCrossRefGoogle Scholar
  89. 89.
    N.P. Desai, J.A. Hubbell, Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J. Biomed. Mater. Res. 25, 829–843 (1991)PubMedCrossRefGoogle Scholar
  90. 90.
    W.R. Gombotz, G.H. Wang, T.A. Horbett, A.S. Hoffman, Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25, 1547–1562 (1991)PubMedCrossRefGoogle Scholar
  91. 91.
    A. Kidane, T. Mcpherson, H.S. Shim, K. Park, Surface modification of polyethylene terephthalate using PEO-polybutadiene-PEO triblock copolymers. Colloids Surf. B Biointerfaces 18, 347–353 (2000)PubMedCrossRefGoogle Scholar
  92. 92.
    J. Li, D. Tan, X. Zhang, H. Tan, M. Ding, C. Wan, Q. Fu, Preparation and characterization of nonfouling polymer brushes on poly (ethylene terephthalate) film surfaces. Colloids Surf. B Biointerfaces 78, 343–350 (2010)PubMedCrossRefGoogle Scholar
  93. 93.
    K. Kottke-mar, J.M. Anderson, R.E. Marchant, Effect of albumin coating on the in vitro blood compatibility of Dacron arterial prostheses. Biomaterials 10, 147–155 (1989)CrossRefGoogle Scholar
  94. 94.
    M. Patel, R.E. Arnell, L.R. Sauvage, H.-D. Wu, Q. Shi, A.R. Wechezak, D. Mungin, M. Walker, Experimental evaluation of ten clinically used arterial prostheses. Ann. Vasc. Surg. 6, 244–251 (1992)PubMedCrossRefGoogle Scholar
  95. 95.
    Y. Marois, N. Chakfe, R. Guidoin, R.C. Duhamel, R. Roy, M. Marois, M.W. King, Y. Douville, An albumin-coated polyester arterial graft: In vivo assessment of biocompatibility and healing characteristics. Biomaterials 17, 3–14 (1996)PubMedCrossRefGoogle Scholar
  96. 96.
    Y.J. Kim, I.K. Kang, M.W. Huh, S.C. Yoon, Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 21, 121–130 (2000)PubMedCrossRefGoogle Scholar
  97. 97.
    A.W. Lambert, A.D. Fox, D.J. Williams, M. Horrocks, J.S. Budd, Experience with heparin-bonded collagen-coated grafts for infrainguinal bypass. Cardiovasc. Surg. 7, 491–494 (1999)PubMedCrossRefGoogle Scholar
  98. 98.
    C. Devine, C. Mccollum, N. West, Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: Five-year results of a prospective randomized multicenter clinical trial. J. Vasc. Surg. 40, 924–931 (2004)PubMedCrossRefGoogle Scholar
  99. 99.
    S.A. Berceli, M.D. Phaneuf, B.S. Phaneuf, F.W. LoGerfo, Evaluation of a novel hirudin-coated polyester graft to physiologic flow conditions: Hirudin bioavailability and thrombin uptake. J. Vasc. Surg. 27, 1117–1127 (1998)PubMedCrossRefGoogle Scholar
  100. 100.
    M.C. Wyers, M.D. Phaneuf, E.M. Rzucidlo, M.A. Contreras, F.W. Logerfo, W.C. Quist, In vivo assessment of a novel Dacron surface with covalently bound recombinant Hirudin. Cardiovasc. Pathol. 8, 153–159 (1999)PubMedCrossRefGoogle Scholar
  101. 101.
    P. Li, X. Cai, J. Yuan, S. Chen, L. Li, J. Shen, Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Colloids Surf. B Biointerfaces 110, 327–332 (2013)PubMedCrossRefGoogle Scholar
  102. 102.
    X. Duan, R.S. Lewis, Improved haemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials 23, 1197–1203 (2002)PubMedCrossRefGoogle Scholar
  103. 103.
    H. Gappa-Fahlenkamp, R.S. Lewis, Improved hemocompatibility of poly(ethylene terephthalate) modified with various thiol-containing groups. Biomaterials 26, 3479–3485 (2005)PubMedCrossRefGoogle Scholar
  104. 104.
    Y. Liu, Y. Yang, F. Wu, Effects of l-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films. Appl. Surf. Sci. 256, 3977–3981 (2010)CrossRefGoogle Scholar
  105. 105.
    SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks). Scientific opinion on the safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015)Google Scholar
  106. 106.
    T. Gourlay, L. Shedden, D. Horne, D.M. Stefanou, Simple surface sulfonation retards plasticiser migration and impacts upon blood/material contact activation processes. Perfusion 25, 31–39 (2010)PubMedCrossRefGoogle Scholar
  107. 107.
    X. Zhao, J.M. Courtney, H.Q. Yin, R.H. West, G.D. Lowe, Blood interactions with plasticised poly (vinyl chloride): influence of surface modification. J. Mater. Sci. Mater. Med. 19, 713–719 (2008)PubMedCrossRefGoogle Scholar
  108. 108.
    F. Marcella, C. Federica, P. Giorgio, G. Luca, E.T. Florio, P. Stefania, C. Francesco, L. Giuseppe, Di-(2-ethylhexyl)-phthalate migration from irradiated poly(vinyl chloride) blood bags for graft-vs-host disease prevention. Int. J. Pharm. 430, 86–88 (2012)PubMedCrossRefGoogle Scholar
  109. 109.
    B.Y. Yu, J.W. Chung, S.-Y. Kwak, Reduced migration from flexible poly (vinyl chloride) of a plasticizer containing β-cyclodextrin derivative. Environ. Sci. Technol. 42, 7522–7527 (2008)PubMedCrossRefGoogle Scholar
  110. 110.
    E.D.S. Van Vliet, E.M. Reitano, J.S. Chhabra, G.P. Bergen, R.M. Whyatt, A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. J. Perinatol. 31, 551–560 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    J. Sampson, D. De Korte, DEHP-plasticised PVC: Relevance to blood services. Transfus. Med. 21, 73–83 (2011)PubMedCrossRefGoogle Scholar
  112. 112.
    J. Simmchen, R. Ventura, J. Segura, Progress in the removal of Di-[2-Ethylhexyl]-phthalate as plasticizer in blood bags. Transfus. Med. Rev. 26, 27–37 (2012)PubMedCrossRefGoogle Scholar
  113. 113.
    K. Johansson, G. Greis, B. Johansson, A. Grundtmann, Y. Pahlby, S. Törn, H. Axelberg, P. Carlsson, Evaluation of a new PVC-free catheter material for intermittent catheterization: A prospective, randomized, crossover study. Scand. J. Urol. 47, 33–37 (2013)PubMedCrossRefGoogle Scholar
  114. 114.
    N.S. Harada, H.T. Oyama, J.R. Bártoli, D. Gouvêa, I.A. Cestari, S.H. Wang, Quantifying adsorption of heparin on a PVC substrate using ATR-FTIR. Polym. Int. 54, 209–214 (2005)CrossRefGoogle Scholar
  115. 115.
    A. Röckel, J. Hertel, P. Fiegel, S. Abdelhamid, N. Panitz, D. Walb, Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 30, 429–432 (1986)PubMedCrossRefGoogle Scholar
  116. 116.
    A. Higuchi, K. Shirano, M. Harashima, B.O. Yoon, M. Hara, M. Hattori, K. Imamura, Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 23, 2659–2666 (2002)PubMedCrossRefGoogle Scholar
  117. 117.
    M. Hayama, K.I. Yamamoto, F. Kohori, K. Sakai, How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility? J. Memb. Sci. 234, 41–49 (2004)CrossRefGoogle Scholar
  118. 118.
    M. Matsuda, K. Ichiro Yamamoto, T. Yakushiji, M. Fukuda, T. Miyasaka, K. Sakai, Nanotechnological evaluation of protein adsorption on dialysis membrane surface hydrophilized with polyvinylpyrrolidone. J. Memb. Sci. 310, 219–228 (2008)CrossRefGoogle Scholar
  119. 119.
    J.Y. Park, M.H. Acar, A. Akthakul, W. Kuhlman, A.M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials 27, 856–865 (2006)PubMedCrossRefGoogle Scholar
  120. 120.
    A. Higuchi, K. Sugiyama, B.O. Yoon, M. Sakurai, M. Hara, M. Sumita, S.I. Sugawara, T. Shirai, Serum protein adsorption and platelet adhesion on pluronic-adsorbed polysulfone membranes. Biomaterials 24, 3235–3245 (2003)PubMedCrossRefGoogle Scholar
  121. 121.
    A. Roy, P. Dadhich, S. Dhara, S. De, In vitro cytocompatibility and blood compatibility of polysulfone blend, surface-modified polysulfone and polyacrylonitrile membranes for hemodialysis. RSC Adv. 5, 7023–7034 (2015)CrossRefGoogle Scholar
  122. 122.
    K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1 Surface characterization. Biomaterials 20, 1545–1551 (1999)PubMedCrossRefGoogle Scholar
  123. 123.
    K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2 Protein adsorption and platelet adhesion. Biomaterials 20, 1553–1559 (1999)PubMedCrossRefGoogle Scholar
  124. 124.
    T. Hasegawa, Y. Iwasaki, K. Ishihara, Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials 22, 243–251 (2001)PubMedCrossRefGoogle Scholar
  125. 125.
    F.C. Kung, M.C. Yang, The effect of covalently bonded conjugated linoleic acid on the reduction of oxidative stress and blood coagulation for polysulfone hemodialyzer membrane. Int. J. Biol. Macromol. 38, 157–164 (2006)PubMedCrossRefGoogle Scholar
  126. 126.
    X.J. Huang, D. Guduru, Z.K. Xu, J. Vienken, T. Groth, Blood compatibility and permeability of heparin-modified Polysulfone as potential membrane for simultaneous hemodialysis and LDL removal. Macromol. Biosci. 11, 131–140 (2011)PubMedCrossRefGoogle Scholar
  127. 127.
    M.C. Yang, W.C. Lin, Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polym. Adv. Technol. 14, 103–113 (2003)CrossRefGoogle Scholar
  128. 128.
    B. Xie, R. Zhang, H. Zhang, A. Xu, Y. Deng, Y. Lv, F. Deng, S. Wei, Decoration of heparin and bovine serum albumin on polysulfone membrane assisted via polydopamine strategy for hemodialysis. J. Biomater. Sci. Polym. Ed. 27, 880–897 (2016)PubMedCrossRefGoogle Scholar
  129. 129.
    J. Barzin, C. Feng, K.C. Khulbe, T. Matsuura, S.S. Madaeni, H. Mirzadeh, Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J. Memb. Sci. 237, 77–85 (2004)CrossRefGoogle Scholar
  130. 130.
    H. Wang, T. Yu, C. Zhao, Q. Du, Improvement of hydrophilicity and blood compatibility on Polyethersulfone membrane by adding Polyvinylpyrrolidone. Fibers Polym. 10, 1–5 (2009)CrossRefGoogle Scholar
  131. 131.
    J.Y. Ho, T. Matsuura, J.P. Santerre, The effect of fluorinated surface modifying macromolecules on the surface morphology of polyethersulfone membranes. J. Biomater. Sci. Polym. Ed. 11, 1085–1104 (2000)PubMedCrossRefGoogle Scholar
  132. 132.
    M.L. Lopez-Donaire, J.P. Santerre, Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. J. Appl. Polym. Sci. 131, 40328 (2014)CrossRefGoogle Scholar
  133. 133.
    C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes – a review of methods. Prog. Mater. Sci. 58, 76–150 (2013)CrossRefGoogle Scholar
  134. 134.
    E. Klein, The modern history of haemodialysis membranes and controllers. Nephrology 4, 255–265 (1998)CrossRefGoogle Scholar
  135. 135.
    T.Y. Liu, W.C. Lin, L.Y. Huang, S.Y. Chen, M.C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polym. Adv. Technol. 16, 413–419 (2005)CrossRefGoogle Scholar
  136. 136.
    L.S. Wan, Z.K. Xu, X.J. Huang, Asymmetric membranes fabricated from poly(acrylonitrile-co-N-vinyl-2-pyrrolidone)s with excellent biocompatibility. J. Appl. Polym. Sci. 102, 4577–4583 (2006)CrossRefGoogle Scholar
  137. 137.
    L.S. Wan, Z.K. Xu, X.J. Huang, Z.G. Wang, J.L. Wang, Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile. Polymer 46, 7715–7723 (2005)CrossRefGoogle Scholar
  138. 138.
    T. McPherson, A. Kidane, I. Szleifer, K. Park, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: Experiments and single-chain mean-field analysis. Langmuir 14, 176–186 (1998)CrossRefGoogle Scholar
  139. 139.
    Z.-W. Dai, F.-Q. Nie, Z.-K. Xu, Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. J. Memb. Sci. 264, 20–26 (2005)CrossRefGoogle Scholar
  140. 140.
    A.F. Che, F.Q. Nie, X.D. Huang, Z.K. Xu, K. Yao, Acrylonitrile-based copolymer membranes containing reactive groups: Surface modification by the immobilization of biomacromolecules. Polymer 46, 11060–11065 (2005)CrossRefGoogle Scholar
  141. 141.
    M. Ulbricht, G. Belfortt, Surface modification of ultrafiltration membranes by low temperature plasma II graft polymerization onto polyacrylonitrile and polysulfone. J. Memb. Sci. 111, 193–215 (1996)CrossRefGoogle Scholar
  142. 142.
    W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25, 1947–1957 (2004)PubMedCrossRefGoogle Scholar
  143. 143.
    F.-C. Kung, M.-C. Yang, Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane. Polym. Adv. Technol. 17, 419–425 (2006)CrossRefGoogle Scholar
  144. 144.
    M.F. Maitz, Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 1, 161–176 (2015)CrossRefGoogle Scholar
  145. 145.
    G. Shmack, V. Dutschk, E. Pisanova, Modification of polyamide fibers to improve their biocompatibility. Fibre Chem. 32, 48–55 (2000)CrossRefGoogle Scholar
  146. 146.
    R.K. Dey, A.R. Ray, Synthesis, characterization, and blood compatibility of polyamidoamines copolymers. Biomaterials 24, 2985–2993 (2003)PubMedCrossRefGoogle Scholar
  147. 147.
    J.P. Singhal, A.R. Ray, Synthesis of blood compatible polyamide block copolymers. Biomaterials 23, 1139–1145 (2002)PubMedCrossRefGoogle Scholar
  148. 148.
    J.L. Brash, The fate of fibrinogen following adsorption at the blood-biomaterial Interface. Ann. N. Y. Acad. Sci. 516, 206–222 (1987)PubMedCrossRefGoogle Scholar
  149. 149.
    I. Reviakine, F. Jung, S. Braune, J.L. Brash, R. Latour, M. Gorbet, W. Van Oeveren, Stirred, shaken, or stagnant: What goes on at the blood – Biomaterial interface. Blood Rev. 31, 11–21 (2016)PubMedCrossRefGoogle Scholar
  150. 150.
    M. Tanzi, Bioactive technologies for hemocompatibility. Expert Rev. Med. Devices 2, 473–492 (2015)CrossRefGoogle Scholar
  151. 151.
    R.J. Zdrahala, I.J. Zdrahala, Biomedical applications of polyurethanes: A review of past promises, present realities and a vibrant future. J. Biomater. Appl. 14, 67–90 (1999)PubMedCrossRefGoogle Scholar
  152. 152.
    M. Szycher, Szycher’s Handbook of Polyurethanes (CRC Press, New York, 1999)Google Scholar
  153. 153.
    B.L. Wilkoff, J. Rickard, E. Tkatchouk, A.D. Padsalgikar, G. Gallagher, J. Runt, The biostability of cardiac lead insulation materials as assessed from long-term human implants. J. Biomed. Mater. Res. B Appl. Biomater. 104, 411–421 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    J. Pant, M.J. Goudie, E. Brisbois, H. Handa, Nitric oxide-releasing polyurethanes, in Advances in Polyurethane Biomaterials, ed. by S. L. Cooper, J. Guan, (Woodhead Publishing, Duxford, 2016), pp. 417–449Google Scholar
  155. 155.
    E.J. Brisbois, T.C. Major, M.J. Goudie, R.H. Bartlett, M.E. Meyerhoff, H. Handa, Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model. Acta Biomater. 37, 111–119 (2015)CrossRefGoogle Scholar
  156. 156.
    S. Post, T. Kraus, U. Müller-Reinartz, C. Weiss, H. Kortmann, A. Quentmeier, M. Winkler, K.J. Husfeldt, J.R. Allenberg, Dacron vs polytetrafluoroethylene grafts for femoropopliteal bypass: A prospective randomised multicentre trial. Eur. J. Vasc. Endovasc. Surg. 22, 226–231 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    R.W. Hobson, J.A. O’Donnell, Z. Jamil, K. Mehta, Below-knee bypass for limb salvage: Comparison of autogenous saphenous-vein, polytetrafluoroethylene, and composite Dacron-autogenous vein grafts. Arch. Surg. 115, 833–837 (1980)PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    S.K. Pulfer, D. Ott, D.J. Smith, Incorporation of nitric oxide-releasing crosslinked polyethyleneimine microspheres into vascular grafts. J. Biomed. Mater. Res. 37, 182–189 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Y. Liu, J. Chen, Y. Yang, F. Wu, Improved blood compatibility of poly (ethylene terephthalate) films modified with L -arginine. J. Biomater. Sci. Polym. Ed. 19, 497–507 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    C.V. Prowse, D. de Korte, J.R. Hess, P.F. van der Meer, Commercially available blood storage containers. Vox Sang. 106, 1–13 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    M. Lozano, J. Cid, DEHP plasticizer and blood bags: Challenges ahead. ISBT Sci. Ser. 8, 127–130 (2013)CrossRefGoogle Scholar
  162. 162.
    S. Nagaoka, A. Nakao, Clinical application of antithrombogenic hydrogel with long poly (ethylene oxide) chains. Biomaterials 11, 119–121 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    P.R. Craddock, J. Fehr, A.P. Dalmasso, K.L. Brighan, H.S. Jacob, Hemodialysis leukopenia pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J. Clin. Invest. 59, 879–888 (1977)PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    A. Kato, T. Takita, M. Furuhashi, T. Takahashi, T. Watanabe, Y. Maruyama, A. Hishida, Polymethylmethacrylate efficacy in reduction of renal itching in hemodialysis patients: Crossover study and role of tumor necrosis factor-α. Artif. Organs 25, 441–447 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    A. Kato, M. Hamada, T. Maruyama, Y. Maruyama, A. Hishida, Pruritus and hydration state of stratum corneum in hemodialysis patients. Am. J. Nephrol. 20, 437–442 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    N. Dimković, L. Djukanović, A. Radmilović, P. Bojić, T. Juloski, Uremic pruritus and skin mast cell. Nephron 61, 5–9 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    W.R. Clark, D. Gao, Properties of membranes used for hemodialysis therapy. Semin. Dial. 15, 191–195 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    M. Irfan, A. Idris, Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques. Mater. Sci. Eng. C Mater. Biol. Appl. 56, 574–592 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    T.Y. Liu, W.C. Lin, L.Y. Huang, S.Y. Chen, M.C. Yang, Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 26, 1437–1444 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    H. Sugaya, Y. Sakai, Polymethylmethacrylate: from polymer to dialyzer, in Polymethylmethacrylate, (Karger Publishers, Basel, 1999), pp. 1–8Google Scholar
  171. 171.
    A. Albertazzi, M. Bonomini: Clinical experience with PMMA membrane, in Polymethylmethacrylate, (Karger Publishers, 1999), pp. 213–221Google Scholar
  172. 172.
    G. Cohen, M. Rudnicki, S. Schmaldienst, W.H. Hörl, Effect of dialysis on serum/plasma levels of free immunoglobulin light chains in end-stage renal disease patients. Nephrol. Dial. Transplant. 17, 879–883 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    M. Bonomini, B. Fiederling, T. Bucciarelli, V. Manfrini, C. Di Ilio, A. Albertazzi, A new polymethylmethacrylate membrane for hemodialysis. Int. J. Artif. Organ 19, 232–239 (1996)CrossRefGoogle Scholar
  174. 174.
    F. Aucella, M. Vigilante, A. Gesuete, Review: The effect of polymethylmethacrylate dialysis membranes on uraemic pruritus. NDT Plus 3, i8–i11 (2010)PubMedPubMedCentralGoogle Scholar
  175. 175.
    S. Itoh, C. Susuki, T. Tsuji, Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. J. Biomed. Mater. Res. A 77, 294–303 (2006)PubMedCrossRefGoogle Scholar
  176. 176.
    V. Sirolli, E. Ballone, S. Di Stante, L. Amoroso, M. Bonomini, Cell activation and cellular-cellular interactions during hemodialysis: Effect of dialyzer membrane. Int. J. Artif. Organs 25, 539–537 (2002)CrossRefGoogle Scholar
  177. 177.
    Y. Nagase, K. Horiguchi, Biocompatible polyamides and polyurethanes containing phospholipid moiety, in Biomedical Engineering: Frontiers and Challenges, ed. By R. Fazel (INTECH Open Access Publisher, 2007) pp. 217–232Google Scholar
  178. 178.
    R. Waksman, Biodegradable stents: They do their job and disappear. J. Invasive Cardiol. 18, 70–74 (2006)PubMedGoogle Scholar
  179. 179.
    A.M. Lincoff, J.G. Furst, S.G. Ellis, R.J. Tuch, E.J. Topol, Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol. 29, 808–816 (1997)PubMedCrossRefGoogle Scholar
  180. 180.
    H. Tamai, K. Igaki, T. Tsuji, E. Kyo, K. Kosuga, A.S.M. Kawashima, H. Komori, S. Motohara, H. Uehata, E. Takeuchi, A biodegradable poly-l-lactic acid coronary stent in porcine coronary artery. J. Interv. Cardiol. 12, 443–450 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Wentworth Institute of TechnologyBostonUSA
  2. 2.McMaster UniversityHamiltonCanada

Personalised recommendations