Advertisement

Quince Seed Mucilage: A Stimuli-Responsive/Smart Biopolymer

  • Muhammad Ajaz HussainEmail author
  • Gulzar Muhammad
  • Muhammad Tahir Haseeb
  • Muhammad Nawaz Tahir
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Biopolymers are functional materials that offer structural integrity to sense external stimuli such as temperature, pH, or ionic strength. Therefore, they are the ideal candidate for a variety of technological applications especially in biomedical sciences. Quince seed mucilage (QCM), composed of glucuronic acid and xylose (glucuronoxylan)-based biomaterial. Glucuronoxylan is an inexpensive and biocompatible polysaccharide hydrogel which is extruded from the seeds of different plants including quince (Cydonia oblonga). It is insoluble in water and swells significantly. QCM is also a smart stimuli-responsive biomaterial which can act as matrix for the sustained release of different drugs in response to environmental stimuli such as temperature, ionic strength, or pH. QCM normally swells in water or basic buffers and deswells under acidic conditions, organic solvents, or salt solutions. Therefore, QCM qualifies as potential smart biomaterial to be used in different biomedical as well as other industrial applications. This review will focus to summarize the current methods used for the isolation of QCM and various factors affecting the quality and yield of the product. It will further showcase their potential usage in advanced drug delivery systems (DDS), cosmetic industry, food industry (both as additives and packaging material), water purification, and in other biomedical applications. Moreover, the use of QCM as a smart/stimuli responsive biomaterial for food, medicinal and pharmaceutical applications is highlighted.

References

  1. 1.
    M.S. Karawya, G.M. Wassel, H.H. Baghdadi, N.M. Ammar, Mucilages and pectins of Opuntia, Tamarindus and Cydonia. Planta Med. 40, 68–75 (1980)CrossRefGoogle Scholar
  2. 2.
    J.N. BeMiller: Quince Seed Gum, in Industrial Gums: Polysaccharides and Their Derivatives, ed by J. N. BeMiller, R. L. Whistler, (Academic Press, New York, 1993), pp. 244–246Google Scholar
  3. 3.
    G. Muhammad, M.A. Hussain, I. Jantan, S.N.A. Bukhari, Mimosa pudica L., a high value medicinal plant as a source of bioactives for pharmaceuticals. Compr. Rev. Food Sci. Food Saf. 15, 303–315 (2016)CrossRefGoogle Scholar
  4. 4.
    M.R. Vignon, C. Gey, Isolation, 1H and 13C NMR studies of (4-O-methyl-D-glucurono)-D-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohydr. Res. 307, 107–111 (1998)CrossRefGoogle Scholar
  5. 5.
    A. Abbas, M.A. Hussain, M. Amin, M.N. Tahir, I. Jantan, A. Hameed, S.N.A. Bukhari, Multiple cross-linked hydroxypropylcellulose-succinate-salicylate: Prodrug design, characterization, stimuli responsive swelling-deswelling and sustained drug release. RSC Adv. 5, 43440–43448 (2015)CrossRefGoogle Scholar
  6. 6.
    M.T. Haseeb, M.A. Hussain, S.H. Yuk, S. Bashir, M. Nauman, Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on-off switching and drug release. Carbohydr. Polym. 136, 750–756 (2016)CrossRefGoogle Scholar
  7. 7.
    N.A. Peppas, B.V. Slaughter, M.A. Kanzelberger: Hydrogels, in Polymer Science: A Comprehensive Reference, ed. by M. Moeller, K. Matyjaszewski (Elsevier, Amsterdam, 2012) pp. 385–395Google Scholar
  8. 8.
    A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002)CrossRefGoogle Scholar
  9. 9.
    A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)CrossRefGoogle Scholar
  10. 10.
    V.D. Prajapati, G.K. Jani, N.G. Moradiya, N.P. Randeria, P.M. Maheriya, B.J. Nagar, Locust bean gum in the development of sustained release mucoadhesive macromolecules of aceclofenac. Carbohydr. Polym. 113, 138–148 (2014)CrossRefGoogle Scholar
  11. 11.
    M.U. Ashraf, M.A. Hussain, G. Muhammad, M.T. Haseeb, S. Bashir, S.Z. Hussain, I. Hussain, A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): Stimuli responsive swelling, on-off switching and drug release. Int. J. Biol. Macromol. 95, 138–144 (2017)CrossRefGoogle Scholar
  12. 12.
    N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)CrossRefGoogle Scholar
  13. 13.
    N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRefGoogle Scholar
  14. 14.
    A.R. Khare, N.A. Peppas, Release behavior of bioactive agents from pH-sensitive hydrogels. J. Biomater. Sci. Polym. Ed. 4, 275–289 (1993)CrossRefGoogle Scholar
  15. 15.
    K.D. Yao, T. Peng, H.B. Feng, Y.Y. He, Swelling kinetics and release characteristic of crosslinked chitosan: Polyether polymer network (semi-IPN) hydrogels. J. Poly. Sci. A Polym. Chem. 32, 1213–1223 (1994)CrossRefGoogle Scholar
  16. 16.
    H. Katono, A. Maruyama, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly-(acrylamide–co-butyl methacrylate) and poly(acrylic acid). J. Control. Release 16, 215–227 (1991)CrossRefGoogle Scholar
  17. 17.
    L.E. Bromberg, E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 31, 197–221 (1998)CrossRefGoogle Scholar
  18. 18.
    Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)CrossRefGoogle Scholar
  19. 19.
    M.T. Haseeb, M.A. Hussain, S. Bashir, M.U. Ashraf, N. Ahmad, Evaluation of superabsorbent linseed polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system. Drug Dev. Ind. Pharm. 43, 409–420 (2017)CrossRefGoogle Scholar
  20. 20.
    M.S. Iqbal, J. Akbar, M.A. Hussain, S. Saghir, M. Sher, Evaluation of hot water extracted arabinoxylans from ispaghula seeds as drug carriers. Carbohydr. Polym. 83, 1218–1225 (2011)CrossRefGoogle Scholar
  21. 21.
    M.A. Hussain, G. Muhammad, I. Jantan, S.N.A. Bukhari, Psyllium arabinoxylan: A versatile biomaterial for potential medicinal and pharmaceutical applications. Polym. Rev. 56, 1–30 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Lindberg, M. Mosihuzzaman, N. Nahar, R.M. Abeysekera, R.G. Brown, J.H.M. Willison, An unusual (4-O-methyl-D-glucurono)-D-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga). Carbohydr. Res. 207, 307–310 (1990)CrossRefGoogle Scholar
  23. 23.
    F. Rezagholi, S.M.B. Hashemi, A. Gholamhosseinpour, M.H. Sherahi, M.A. Hesarinejad, M.T. Ale, Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. J. Sci. Food Agric. 99, 143 (2018).  https://doi.org/10.1002/jsfa.9155CrossRefPubMedGoogle Scholar
  24. 24.
    N. Fekri, M. Khayami, R. Heidari, R. Jamee, Chemical analysis of flaxseed, sweet basil, dragon head and quince seed mucilages. Res. J. Biol. Sci. 3, 166–170 (2008)Google Scholar
  25. 25.
    A.S. Shekarabi, A.R. Oromiehie, A. Vaziri, M. Ardjmand, A.A. Safekordi, Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films. Food Sci. Nutr. 2, 821–827 (2014)CrossRefGoogle Scholar
  26. 26.
    A.D. Sekachaei, A.S. Mahoonak, M. Ghorbani, M.K. Nezhad, Y. Maghsoudlou, Optimization of ultrasound-assisted extraction of Quince seed gum through response surface methodology. J. Agric. Sci. Technol. 19, 323–333 (2017)Google Scholar
  27. 27.
    E. Kirtil, M.H. Oztop, Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Res. Int. 85, 84–94 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Turkoz, S. Kusmenoglu, U. Koca, Studies on the seeds of Cydonia oblonga miller. Acta Pharm. Sci. 40, 39–42 (1998)Google Scholar
  29. 29.
    G.K. Jani, D.P. Shah, V.D. Prajapati, V.C. Jain, Gums and mucilages: Versatile excipients for pharmaceutical formulations. Asian J. Pharm. Sci. 4, 308–322 (2009)Google Scholar
  30. 30.
    A.G. Renfrew, L.H. Cretcher, Quince seed mucilage. J. Biol. Chem. 97, 503–510 (1932)Google Scholar
  31. 31.
    B. Abbastabar, M.H. Azizi, A. Adnani, S. Abbasi, Determining and modeling rheological characteristics of quince seed gum. Food Hydrocoll. 43, 259–264 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nano 5, 2054–2130 (2015)Google Scholar
  33. 33.
    B. Singh, A. Kumar, Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties. Int. J. Biol. Macromol. 108, 477–488 (2018)CrossRefGoogle Scholar
  34. 34.
    M.U. Ashraf, M.A. Hussain, S. Bashir, M.T. Haseeb, Z. Hussain, Quince seed hydrogel (glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. J. Drug Deliv. Sci. Technol. 45, 455–465 (2018)CrossRefGoogle Scholar
  35. 35.
    N.C. Patel, V.N. Shah, A.N. Mahajan, D.A. Shah, Isolation of mucilage from Cydonia vulgaris Pers. seeds and its evaluation as superdisintegrant. J. Appl. Pharm. Sci. 1, 110–114 (2011)Google Scholar
  36. 36.
    P. Tamri, A. Hemmati, M.G. Boroujerdnia, Wound healing properties of quince seed mucilage: In vivo evaluation in rabbit full-thickness wound model. Int. J. Surgery 12, 843–847 (2014)CrossRefGoogle Scholar
  37. 37.
    A.A. Hemmati, F. Mohammadian, An investigation into the effects of mucilage of quince seeds on wound healing in rabbit. J. Herbs Spices Med. Plants 7, 41–46 (2000)CrossRefGoogle Scholar
  38. 38.
    M. Jouki, F.T. Yazdi, S.A. Mortazavi, A. Koocheki, N. Khazaei, Effect of quince seed mucilage edible films incorporated with oregano or thyme essential oil on shelf life extension of refrigerated rainbow trout fillets. Int. J. Food Microbiol. 17, 88–97 (2014)CrossRefGoogle Scholar
  39. 39.
    E.A. Siehrs, Chocolate-flavor milk and process of producing same. U.S. Patent 2,267,624 (1941)Google Scholar
  40. 40.
    A.A. Hemmati, H. Kalantari, A. Jalali, S. Rezai, H.H. Zadeh, Healing effect of quince seed mucilage on T-2 toxin-induced dermal toxicity in rabbit. Exp. Toxicol. Pathol. 64, 181–186 (2012)CrossRefGoogle Scholar
  41. 41.
    S.A. Eming, P. Martin, M. Tomic-Canic, Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6 (2014).  https://doi.org/10.1126/scitranslmed.3009337CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    M. Ghafourian, P. Tamri, A. Hemmati, Enhancement of human skin fibroblasts proliferation as a result of treating with quince seed mucilage. Jundishapur J. Nat. Pharm. Prod. 10, e18820 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Jouki, S.A. Mortazavi, F.T. Yazdi, A. Koocheki, Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydr. Polym. 99, 537–546 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Grieve, C.F. Leyel, A Modern Herbal with all their Modern Scientific Uses with a New Service Index (Hafner Publishing Company, New York, 1967), pp. 664–667Google Scholar
  45. 45.
    W.A. Poucher, Modern Perfumes, Cosmetics and Soap. (Revised by G.M. Howard. Chapman and Hall Ltd. 1984) pp. 218–280Google Scholar
  46. 46.
    S. Farris, L. Introzzi, J.M.F. Alventosa, N. Santo, R. Rocca, L. Piergiovanni, Self-assembled pullulan–silica oxygen barrier hybrid coatings for food packaging applications. J. Agric. Food Chem. 60, 782–790 (2012)CrossRefGoogle Scholar
  47. 47.
    V. Siracusa, Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012, 1 (2012).  https://doi.org/10.1155/2012/302029. (11 pages)CrossRefGoogle Scholar
  48. 48.
    M. Jouki, F.T. Yazdi, S.A. Mortazavi, A. Koocheki, Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll. 36, 9–19 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Jouki, F.T. Yazdi, S.A. Mortazavi, A. Koocheki, Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. Int. J. Biol. Macromol. 62, 500–507 (2013)CrossRefGoogle Scholar
  50. 50.
    R. Farahmandfar, M. Mohseni, M. Asnaashari, Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food Sci. Nutr. 5, 1057–1064 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Noshad, B. Nasehi, A. Anvar, Effect of active edible coating made by quince seed mucilage and green tea extract on quality of fried shrimps: Physicochemical and sensory properties. Nutr. Food Sci. Res. 4, 31–36 (2017)CrossRefGoogle Scholar
  52. 52.
    S.W. Cui, M.A. Eskin, Y. Wu, S. Ding, Synergisms between yellow mustard mucilage and galactomannans and applications in food products-A mini review. Adv. Colloid Interf. Sci. 128–130, 249–256 (2006)CrossRefGoogle Scholar
  53. 53.
    P.D. Choudhary, H.A. Pawar, Recently investigated natural gums and mucilages as pharmaceutical excipients: An overview. J. Pharm. 2014, 1 (2014).  https://doi.org/10.1155/2014/204849. (9 pages)CrossRefGoogle Scholar
  54. 54.
    B.M. Silva, P.B. Andrade, P. Valentao, F. Ferreres, R.M. Seabra, M.A. Ferreira, Quince (Cydonia oblanga Miller) fruit (pulp, peel, and seed) and Jam: Antioxidant activity. J. Agric. Food Chem. 52, 4705–4712 (2004)CrossRefGoogle Scholar
  55. 55.
    E. Nikoofar, M. Hojjatoleslami, M.A. Shariaty, Surveying the effect of quince seed mucilage as a fat replacer on texture and physicochemical properties of semi fat set yoghurt. Int. J. Farm. Alli. Sci. 2, 861–865 (2013)Google Scholar
  56. 56.
    N. Yoosefi, F. Zeynali, K.A.M. Alizadeh, Investigation of physicochemical and textural characteristics of hamburger containing (Cydonia oblonga) quince seed gum. Iran. J. Food Sci. Technol. 14, 147–158 (2017)Google Scholar
  57. 57.
    N. Yousefi, F. Zeynali, M. Alizadeh, Optimization of low-fat meat hamburger formulation containing quince seed gum using response surface methodology. J. Food Sci. Technol. 55, 598–604 (2018)CrossRefGoogle Scholar
  58. 58.
    M.A. Hussain, A. Abbas, M. Sher, M.N. Hassan, Chemically modified hydroxyethylcellulose: A high capacity sorbent for removal of As(III) and As(V) from aqueous solution. Desal. Wat. Treat. 104, 149–158 (2018)CrossRefGoogle Scholar
  59. 59.
    A. Abbas, M.A. Hussain, M. Sher, M.I. Irfan, M.N. Tahir, W. Tremel, S.Z. Hussain, I. Hussain, Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. Int. J. Biol. Macromol. 102, 170–180 (2017)CrossRefGoogle Scholar
  60. 60.
    H. Hosseinzadeh, S. Mohammadi, Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydr. Polym. 134, 213–221 (2015)CrossRefGoogle Scholar
  61. 61.
    M.K. Chourasia, S.K. Jain, Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci. 6, 33–66 (2003)PubMedGoogle Scholar
  62. 62.
    M.K. Chourasia, S.K. Jain, Polysaccharides for colon targeted drug delivery. Drug Deliv. 11, 129–148 (2004)CrossRefGoogle Scholar
  63. 63.
    S. Saghir, M.S. Iqbal, A. Koschella, T. Heinze, Ethylation of arabinoxylan from Ispaghula (Plantago ovata) seed husk. Carbohydr. Polym. 77, 125–130 (2009)CrossRefGoogle Scholar
  64. 64.
    A.B.. Cvitanovic, D. Komes, S. Karlovic, S. Djakovic, I. Spoljaric, G. Mrsic, D. Jezek, Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 167, 378–386 (2015)CrossRefGoogle Scholar
  65. 65.
    W. Kaialy, P. Emami, K. Asare-Addo, S. Shojaee, A. Nokhodchi, Psyllium: A promising polymer for sustained release formulations in combination with HPMC polymers. Pharm. Dev. Technol. 19, 269–277 (2014)CrossRefGoogle Scholar
  66. 66.
    R. Garg, G.D. Gupta, Preparation and evaluation of gastroretentive floating tablets of Silymarin. Chem. Pharm. Bull. 57, 545–549 (2009)CrossRefGoogle Scholar
  67. 67.
    A. Desai, S. Shidhaye, V.J. Kadam, Possible use of psyllium husk as a release retardant. Indian J. Pharm. Sci. 69, 206–210 (2007)CrossRefGoogle Scholar
  68. 68.
    M. Yasir, M. Asif, A. Bhattacharya, M. Bajpai, Development and evaluation of gastroretentive drug delivery system for theophylline using Psyllium husk. Int. J. Chem. Tech. Res. 2, 792–799 (2010)Google Scholar
  69. 69.
    F. Shabir, A. Erum, U.R. Tulain, M.A. Hussain, M. Ahmad, F. Akhter, Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. Des. Monomers Polym. 20, 485–495 (2017)CrossRefGoogle Scholar
  70. 70.
    M.A. Malana, Z.I. Zafar, R. Zuhra, Effect of cross linker concentration on swelling kinetics of a synthesized ternary co-polymer system. J. Chem. Soc. Pak. 34, 793–801 (2012)Google Scholar
  71. 71.
    N.A. Peppas, A.G. Mikes, Hydrogel in Medicine and Pharmacy, vol 1 (CRC Press, Boca Raton, 1986)Google Scholar
  72. 72.
    G. Pass, G.O. Philips, D.J. Wedlock, Interaction of univalent and divalent cations with carrageenans in aqueous solution. Macromolecules 10, 197–201 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Ajaz Hussain
    • 1
    Email author
  • Gulzar Muhammad
    • 2
  • Muhammad Tahir Haseeb
    • 3
  • Muhammad Nawaz Tahir
    • 4
  1. 1.Ibn-e-Sina Block, Department of ChemistryUniversity of SargodhaSargodhaPakistan
  2. 2.Department of ChemistryGC UniversityLahorePakistan
  3. 3.College of PharmacyUniversity of SargodhaSargodhaPakistan
  4. 4.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations