Advertisement

Polymeric Micelles

  • Iliyas Khan
  • Avinash Gothwal
  • Gaurav Mishra
  • Umesh GuptaEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Polymeric micelles (PM) are means of novel drug carriers for poorly soluble hydrophobic drugs. Outer shell of polymeric micelles is hydrophilic in nature which further led these carriers to stay longer in blood and can accumulate in tumor-specific region due to their smaller size through enhanced permeation and retention (EPR) effect. The polymeric micelles can also be modified through different ligand to achieve active targeting of drugs. Polymeric micelles can be synthesized and prepared through different self-assembly methods. These can be used to improve solubility, residence time of drug in blood, and inhibition of efflux pump, to enhance pharmacokinetic parameters, and to achieve sustained release of drugs at target site without any side effects in an efficient manner. These types of novel drug delivery systems are aimed to enhance the efficacy and reduce the side effects of anticancer drugs in an efficient way. The present chapter highlights the structure, methods of preparation, the micellar architecture, and the role of these carriers in the anticancer drugs.

Keywords

Polymeric micelles Solubility Hydrophobic Hydrophilic Anticancer drug delivery 

Abbreviations

(mPEG-b-p(HPMAm-lactate)

(Poly(ethyleneglycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate]

(PEG-b-PPhe)

poly(ethylene glycol)-block-poly(phenylalanine)

(Vitamin E TPGS2k)

D-α-Tocopheryl polyethylene glycol succinate 2000

ABC

Accelerated blood clearance

ATP

Adenosine triphosphate

BCS

Biopharmaceutics classification system

CMC

Critical micelle concentration

DMF

Dimethylformamide

DOX

Doxorubicin

DSC

Differential scanning calorimetric

EPR

Enhanced permeability and retention

GIT

Gastro-intestinal tract

mPEG-PDLLA

monomethoxy poly(ethylene glycol)-block-poly (D,L-lactide)

MPS

Mononuclear phagocyte system

MRI

Magnetic resonance imaging

NMR

Nuclear magnetic resonance

PCL

Poly ϵ-caprolactone

PEO

poly(ethylene oxide)

pHPMAmDL-b-PEG

poly(N-(2-hydroxypropyl) methacrylamide lactate) poly(ethylene glycol)

PLA

Polylactic acid

PLL-PEG

Poly-l-lysine-poly(ethylene glycol)

PM

Polymeric micelles

ppm

Parts per million

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

THF

Tetrahydrofuran

Notes

Acknowledgments

The authors are grateful and would like to acknowledge the University Grants Commission (UGC) New Delhi, India, and Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India, for providing research funding to the corresponding author.

References

  1. 1.
    L. Wang, R. Zeng, C. Li, R. Qiao, Self-assembled polypeptide-block-poly (vinylpyrrolidone) as prospective drug-delivery systems. Colloids Surf. B. Biointerfaces 74, 284–292 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, J.C. Leroux, Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control. Release 109, 169–188 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    V.P. Torchilin, V.S. Trubetskoy, Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16, 141–155 (1995)CrossRefGoogle Scholar
  4. 4.
    C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    K. L. Mittal, B. Lindman (eds.), Surfactants in solution, vols 1–3 (Plenum Press, New York, 1991)Google Scholar
  6. 6.
    D.D. Lasic, Mixed micelles in drug delivery. Nature 355, 279–280 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    V.P. Torchilin, Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61, 2549–2559 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Z. Gao, A. Eisenberg, A model of micellization for block copolymers in solutions. Macromolecules 26, 7353–7360 (1993)CrossRefGoogle Scholar
  9. 9.
    C.M. Jones, J.C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48, 101–111 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    V.P. Torchilin, Structure and design of polymeric surfactant- based drug delivery systems. J. Control. Release 73, 137–172 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65, 271–284 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    H. Maeda, T. Sawa, T. Konno, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74, 47–61 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    R. Duncan, Drug–polymer conjugates : Potential for improved chemotherapy. Anti-Cancer Drugs 3, 175–210 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    T. Minko, P. Kopeckova, V. Pozharov, J. Kopecek, HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J. Control. Release 54, 223–233 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    A.C. de Verdiere, C. Dubernet, F. Nemati, M.F. Poupon, F. Puisieux, P. Couvreur, Uptake of doxorubicin from loaded nanoparticles in multidrug resistant leukemic murine cells. Cancer Chemother. Pharmacol. 33, 504–508 (1994)CrossRefGoogle Scholar
  16. 16.
    A. Gothwal, I. Khan, U. Gupta, Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm. Res. 33, 18–39 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    R. Nagarajan, M. Barry, Unusual selectivity in solubilization by block copolymer micelles. Abstr. Pap. Am. Chem. Soc. 191, 287–290 (1986)Google Scholar
  18. 18.
    L. Ying, K. Park, Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453, 198–214 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Nishiyama, N. Kanayama, N. Jang, W.D.Y. Yamasaki, K. Kataoka, PEGylated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection. J. Control. Release 115, 208–215 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    V.P. Torchilin, V.S. Trubetskoy, Chapter 8: Biodistribution of surface-modified liposomes and particles, in Microparticulate systems for the delivery of proteins and vaccines, ed. by S. Cohen, H. Bernstein (Eds), (Marcel Dekker, New York, 1996), pp. 243–277Google Scholar
  21. 21.
    R. Gref, A. Domb, P. Quellec, T. Blunk, R.H. Muller, J.M. Verbavatz, R. Langer, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16, 215–234 (1995)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    A.V. Kabanov, V.P. Chekhonin, V.Y. Alakhov, E.V. Batrakova, A.S. Lebedev, N.S. Melik-Nubarov, The neuroleptic activity of haloperidol increases after its solubilisation in surfactant micelles. FEBS Lett. 258, 343–345 (1989)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    S.A. Hagan, A.G.A. Coombes, M.C. Garnett, S.E. Dunn, M.C. Davies, L. Illum, S.S. Davis, S.E. Harding, S. Purkiss, P.R. Gellert, Polylactide-poly(ethelene glycol) copolymers as drug delivery systems, 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153–2161 (1996)CrossRefGoogle Scholar
  24. 24.
    T. Inoue, G. Chen, K. Nakamae, A.S. Hoffman, An AB block copolymers of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J. Control. Release 51, 221–229 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    M. Yokoyama, T. Okano, Y. Sakurai, S. Suwa, K. Kataoka, Introduction of cisplatin into polymeric micelles. J. Control. Release 6, 39–351 (1996)Google Scholar
  26. 26.
    G.S. Kwon, T. Okano, Polymeric micelle as new drugcarriers. Adv. Drug Deliv. Rev. 16, 107–111 (1996)CrossRefGoogle Scholar
  27. 27.
    M. okoyama, Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 7, 145–158 (2010)CrossRefGoogle Scholar
  28. 28.
    S.R. Croy, G.S. Kwon, Polymeric micelles for drug delivery. Curr. Pharm. Des. 12, 4669–4684 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    M. Yokoyama, G.S. Kwon, K. Kataoka, Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem. 3, 295–301 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    C.J.T. Hoes, W. Potman, J. Feijen, Optimization of macromolecular prodrugs of the antitumor antibiotic Adriamycin. J. Control. Release 2, 205–213 (1985)CrossRefGoogle Scholar
  31. 31.
    R. Duncan, P. Kopeckova-Rejmanova, J. Kopecek, Anticancer agents coupled toN-(2-hydroxypropyl) methacrylamidecopolymers I. Evaluation of daunomycinand puromycin conjugates in vitro. Br. J. Cancer 55, 165–174 (1987)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    N. Endo, N. Umemoto, T. Hara, A novelcovalent modification of antibodies at theiramino groups with retention of antigen-binding activity. J. Immunol. Methods 104, 253–258 (1987)PubMedCrossRefGoogle Scholar
  33. 33.
    F. Zunino, G. Pratesi, A. Micheloni, Poly(carboxylic acid) polymers as carriers for anthracyclines. J. Control. Release 10, 65–73 (1989)CrossRefGoogle Scholar
  34. 34.
    H. Cabral, M. Nakanishi, M. Kumagai, W.D. Jang, N. Nishiyama, K. Kataoka, A photoactivated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles. Pharm. Res. 26, 82–92 (2009)PubMedCrossRefGoogle Scholar
  35. 35.
    M. Yokoyama, P. Opanasopit, T. Okano, Polymer design and incorporation method for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J. Drug Target. 12, 373–384 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Patel, A. Levasanifer, P. Choi, Application of molecular dynamics simulation to predict compatibility between water-insoluble drugs and self-associating poly (ethylene oxide)-poly (ɛ-caprolactone) block copolymers. Biomacromolecules 9, 3014–3023 (2008)PubMedCrossRefGoogle Scholar
  37. 37.
    G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12, 195–204 (1995)Google Scholar
  38. 38.
    M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 92, 1343–1355 (2003)PubMedCrossRefGoogle Scholar
  39. 39.
    K. Osada, R.J. Christie, K. Kataoka, Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J. R. Soc. Interface 6, 325–339 (2009)CrossRefGoogle Scholar
  40. 40.
    M.H. Dufresne, E. Fournie, M.C. Jones, M. Ranger, J.C. Leroux, Block copolymer micelles-engineering versatile carriers for drugs and bio-macromolecules, in Challenges in drug delivery for the new millennium, ed. by R. Gurny (Ed), (Bulletin Technique Gattefosse, Saint-Priest, 2003), pp. 87–102Google Scholar
  41. 41.
    V.Y. Alakhov, E.Y. Moskaleva, E.V. Batrakova, A.V. Kabanov, Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 copolymer. Bioconjug. Chem. 7, 209–216 (1996)PubMedCrossRefGoogle Scholar
  42. 42.
    N. Nishiyama, K. Kataoka, Preparation and characterization of size controlled polymeric micelle containing cis-dichlorodiammine platinum (II) in the core. J. Control. Release 74, 83–94 (2001)PubMedCrossRefGoogle Scholar
  43. 43.
    Y. Li, G.S. Kwon, Methotrexate esters of poly (ethylene oxide)-block poly(2-hydroxyethyl-L-aspartamide). I. Effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharm. Res. 17, 601–611 (2000)CrossRefGoogle Scholar
  44. 44.
    C.J. Rijcken, C.J. Snel, R.M. Schiffelers, C.F. Van Nostrum, W.E. Hennink, Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials 28, 5581–5593 (2007)PubMedCrossRefGoogle Scholar
  45. 45.
    X. Zhang, J.K. Jackson, H.M. Burt, Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int. J. Pharm. 132, 195–206 (1996)CrossRefGoogle Scholar
  46. 46.
    J. Taillefer, M.C. Jones, N. Brasseur, J.E. Van Lier, J.C. Leroux, Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J. Pharm. Sci. 89, 52–62 (2000)PubMedCrossRefGoogle Scholar
  47. 47.
    L. Liu, L. Sun, Q. Wu, W. Guo, L. Li, et al., Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int. J. Pharm. 443, 175–182 (2013)PubMedCrossRefGoogle Scholar
  48. 48.
    U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714–719 (2010)PubMedCrossRefGoogle Scholar
  49. 49.
    A. Lavasanifar, J. Samuel, G.S. kwon, Micelles of poly(ethylene oxide)-block-poly(N-alkyl stearate L-aspartamide): synthetic analogues of lipoproteins for drug delivery. J. Biomed. Mater. Res. 52, 831–835 (2000)PubMedCrossRefGoogle Scholar
  50. 50.
    H.M. Aliabadi, A. Lavasanifar, Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 3, 139 (2006)PubMedCrossRefGoogle Scholar
  51. 51.
    S.B. La, T. Okano, K. Kataoka, Preparation and Characterization of the Micelle-Forming Polymeric Drug Indomethacin-incorporated Poly(ethylene oxide)-Poly(β-benzyl L-aspartate) block copolymer micelles. J. Pharm. Sci. 85, 85–90 (1996)PubMedCrossRefGoogle Scholar
  52. 52.
    Y.B. Patil, U.S. Toti, A. Khdair, M. Linan, J. Panyam, Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30, 859–866 (2009)PubMedCrossRefGoogle Scholar
  53. 53.
    J. Zhang, W. Jiang, X. Zhao, Y. Wang, Preparation and characterization of polymeric micelles from poly(D,L-lactide) and methoxypolyethylene glycol block copolymers as potential drug carriers. Tsinghua Sci. Technol. 12, 493–496 (2007)CrossRefGoogle Scholar
  54. 54.
    L. Na, Hongyu, W. Xing, J. Zhen, C. Zhiming, Morphology and in vitro release kinetics of drug-loaded micelles based on well-defined PMPCb-PBMA copolymer. Int. J. Pharm. 371, 190–196 (2009)CrossRefGoogle Scholar
  55. 55.
    Z.L. Tyrrell, Y. Shena, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 35, 1128–1143 (2010)CrossRefGoogle Scholar
  56. 56.
    K. Kataoka, T. Matsumoto, M. Yokoyama, Doxorubicin-loaded poly (ethylene glycol)-poly(beta-benzyl L-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. J. Control. Release 64, 143–153 (2000)PubMedCrossRefGoogle Scholar
  57. 57.
    G. Kwon, M. Naito, M. Yokoyama, Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Release 48, 195–201 (1997)CrossRefGoogle Scholar
  58. 58.
    J. Zhiang, M. Wu, J. Yang, Q. Wu, Z. Jin, Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf. A Physicochem. Eng. Asp. 337, 200–204 (2009)CrossRefGoogle Scholar
  59. 59.
    L.E.D. Garrec, S. Gori, L. Luo, Poly(N-vinylpyrrolidone)-block-poly(D,Llactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J. Control. Release 99, 83–101 (2004)PubMedCrossRefGoogle Scholar
  60. 60.
    E. Fournier, M.H. Dufresne, D.C. Smith, M. Ranger, J.C. leroux, A novel one-step drug-loading procedurefor water-soluble amphiphilic nanocarriers. Pharm. Res. 21, 962–968 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Y. Zeng, W.G. Pitt, A polymeric micelle system with a hydrolysable segment for drug delivery. J. Biomater. Sci. Polym. 17, 591–604 (2006)CrossRefGoogle Scholar
  62. 62.
    H. Lee, P.L. Soo, J. Liu, M. Butler, C. Allen, Chapter 1: Polymeric micelles for formulation of anticancer drugs, in Nanotechnology for cancer therapy, ed. by M. M. Amiji (Ed), (CRC Press, Boca Raton, 2007), pp. 317–355Google Scholar
  63. 63.
    K.V. Butsele, P. Sibreta, C.A. Fustin, J.F. Gohyb, C. Passirani, J.P. Benoitc, Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interface Sci. 329, 235–243 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    B. Ashok, L. Arleth, R.P. Hjelm, I. Rubinstein, Invitrocharacterization of pegylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J. Pharm. Sci. 93, 2476–2487 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    L. Yunhai, C. Xiaohong, L. Mingbiao, L. Zhanggao, X. Wenyuan, Selfassembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J. Colloid Interface Sci. 329, 244–252 (2009)CrossRefGoogle Scholar
  66. 66.
    G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Micelles based on AB block copolymers of poly(ethylene oxide) and poly(beta-benzylL-aspartate). Langmuir 9, 945–949 (1993)CrossRefGoogle Scholar
  67. 67.
    M. Wilhelm, C.L. Zhao, Y.C. Wang, R.L. Xu, M.A. Winnik, J.L. Mura, Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24, 1033–1040 (1991)CrossRefGoogle Scholar
  68. 68.
    X. Astafieva, F.A. Zhong, Eisenberg: Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26, 7339–7352 (1993)CrossRefGoogle Scholar
  69. 69.
    I.L. Shin, S.Y. Kim, Y.M. Lee, C.S. Cho, Y.K. Sung, Methoxy poly(ethylene glycol)/e-caprolactone amphiphilic block copolymeric micelle containing indomethacin, I. Preparation and characterization. J. Control. Release 51, 1–11 (1998)PubMedCrossRefGoogle Scholar
  70. 70.
    J. Liu, S. Yang, C.S. Lee, D.L. De Voe, Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis. Electrophoresis 29, 2241–2250 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    A. Hayama, T. Yamamoto, M. Yokoyama, K. Kawano, Y. Hattori, Y. Maitani, Polymeric micelles modified by folate-PEG-lipid for targeted drug delivery to cancer cells in vitro. J. Nanosci. Nanotechnol. 8, 1–6 (2007)Google Scholar
  72. 72.
    F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, T. Okano, Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J. Control. Release 55, 87–98 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    L. Plapied, N. Duhem, A.D. Rieux, V. Préat, Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci. 16, 228–237 (2011)CrossRefGoogle Scholar
  74. 74.
    R. Duncan, The dawning era of polymer. Nat. Rev. Drug Discov. 2, 347–360 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzym. Regul. 41, 189–207 (2001)CrossRefGoogle Scholar
  76. 76.
    Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy. Mechanism of tumoritropic accumulation of proteins and tha antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)PubMedPubMedCentralGoogle Scholar
  77. 77.
    Y. Matsumura, E. Chiellini, J. Sunamato, Advances in polymeric micelles for drug delivery and tumor targeting. Biomedical Polymers and Polymer Therapeutics (Springer Link Publication (Book), 2001), pp. 37–52Google Scholar
  78. 78.
    F. Yuan, M. Delian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, Optical biopsy of cancer: Nanotechnological aspects. Tumori 94, 200–205 (2008)CrossRefGoogle Scholar
  79. 79.
    A. Mahmud, X.B. Xiong, H.M. Aliabadi, A. Lavasanifar, Polymeric micelles for drug targeting. J. Drug Target. 15, 553–584 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    V.P. Torchilin, Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90, 604–610 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    J. Vega, S. Ke, Z. Fan, S. Wallace, C. Charsangavej, C. Li, Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(L-glutamic acid) through a polyethylene glycol spacer. Pharm. Res. 20, 826–832 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    X. Wen, Q.P. Wu, S. Ke, L. Ellis, C. Charnsangavej, A.S. Delpassand, S. Wallace, C. Li, Conjugation with (111)In-DTPA-poly(ethylene glycol) improves imaging of anti-EGF receptor antibody C225. J. Nucl. Med. 42, 1530–1537 (2001)PubMedPubMedCentralGoogle Scholar
  83. 83.
    C.P. Leamon, J.A. Reddy, Folate-targeted chemotherapy. Adv. Drug Deliv. Rev. 56, 1127–1141 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Y. Lu, P.S. Low, Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J. Control. Release 91, 17–29 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    C.J. Avraamides, B. Garmy-Susini, J.A. Varner, Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8, 601–617 (2008)CrossRefGoogle Scholar
  86. 86.
    K. Greish, Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target. 15, 457–464 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    N. Nasongkla, X. Shuai, H. Ai, B.D. Weinberg, J. Pink, D.A. Boothman, J. Gao, cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. Engl. 43, 6323–6327 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    S.C. Kim, D.W. Kim, Y.H. Shim, J.S. Bang, H.S. Oha, S.W. Kim, M.H. Seo, In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release 72, 191–202 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Y.W. Cho, J. Lee, S.C. Lee, K.M. Huh, K. Park, Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J. Control. Release 97, 249–257 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    C.F. Mu, P. Balakrishnan, F.D. Cui, Y.M. Yin, Y.B. Lee, H.G. Choi, C.S. Yong, S.J. Chung, C.K. Shim, D.D. Kim, The effects of mixed MPEG–PLA/Pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31, 2371–2379 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    K. Raza, N. Kumar, C. Misra, L. Kaushik, S.K. Guru, P. Kumar, R. Malik, S. Bhushan, O.P. Katare, Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicityand better pharmacokinetic profile. Int. J. Biol. Macromol. 88, 206–212 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    H.S. Yoo, E.A. Lee, T.G. Park, Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Control. Release 82, 17–27 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    H.S. Yoo, T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96, 273–283 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Z. Wang, H. Liu, X. Shu, L. Zheng, L. Chen, A reduction-degradable polymer prodrug for cisplatin delivery: Preparation, in vitro and in vivo evaluation. Colloids Surf. B: Biointerfaces 136, 160–167 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    I. Khan, A. Gothwal, A.K. Sharma, P. Kesharwani, L. Gupta, A.K. Iyer, U. Gupta, PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 33(2), 159–193 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    O. Soga, C.F. van Nostrum, M. Fens, C.J.F. Rijcken, R.M. Schiffelers, G. Storm, W.E. Hennink, Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Release 103, 341–353 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    W.Y. Seow, J.X. Xue, Y.Y. Yang, Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials 28, 1730–1740 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Y. Liu, J. Sun, W. Cao, J. Yang, H. Lian, X. Li, Y. Sun, Y. Wang, S. Wang, Z. He, Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharm. 421, 160–169 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    L. Zhang, Y. He, G. Ma, C. Song, H. Sun, L. Zhang, Y. He, G. Ma, C. Song, H. Sun, Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers:in vitro and in vivo evaluation. Nanomed: Nanotechnol. Biol. Med. 8, 925–934 (2012)CrossRefGoogle Scholar
  100. 100.
    Y. Mi, Y. Liu, S.S. Feng, Formulation of Docetaxel by folic acid-conjugated D-a-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials 32, 4058–4066 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    L. Chen, X. Sha, X. Jiang, Y. Chen, Q. Ren, X. Fang, Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int. J. Nanomedicine 8, 73–84 (2013)PubMedPubMedCentralGoogle Scholar
  102. 102.
    H.G. Keizer, H.M. Pinedo, G.J. Schuurhuis, H. Joenje, Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharma. Ther. 47, 219–231 (1990)CrossRefGoogle Scholar
  103. 103.
    H.S. Yoo, T.G. Park, Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J. Control. Release 70, 63–70 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    M. Talelli, M. Iman, A.K. Varkouhi, C.J.F. Rijcken, R.M. Schiffelers, T. Etrych, K. Ulbrich, C.F. van Nostrum, T. Lammers, G. Storm, W.E. Hennink, Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 31, 7797–7804 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    D.P. Gately, S.B. Howell, Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer 67, 1171–1176 (1993)PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    N. Nishiyama, Y. Kato, Y. Sugiyama, K. Kataoka, Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 18, 1035–1041 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    H.S. Oberoi, N.V. Nukolova, F.C. Laquer, L.Y. Poluektova, J. Huang, Y. Alnouti, M. Yokohira, L.L. Arnold, A.V. Kabanov, S.M. Cohen, T.K. Bronich, Cisplatin-loaded core cross-linked micelles: comparative pharmacokinetics, antitumor activity, and toxicity in mice. Int. J. Nanomedicine 7, 2557–2571 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    A.V. Kabanov, V.Y. Alakhov, Micelles of amphiphilic block copolymers as vehicles for drug delivery, in Amphiphilic block copolymers: self-assembly and applications, ed. by P. Alexandridis, B. Lindman (Eds), (Elsevier, Netherlands, 1997), pp. 1–31Google Scholar
  109. 109.
    A.K. Sharma, L. Zhang, S. Li, Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J. Control. Release 131, 220–227 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    C.Y. Wu, L.Z. Benet, Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22, 11–23 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    W. Xu, P. Ling, T. Zhang, Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 34, 315–327 (2013)Google Scholar
  112. 112.
    H. Gelderblom, J. Verweij, K. Nooter, A. Sparreboom, E.L. Cremophor, The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590–1598 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    A.N. Lukyanov, V.P. Torchilin, Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev. 56, 1273–1289 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    K.K. Gill, S. Nazzal, A. Kaddoumi, Paclitaxel loaded PEG5000–DSPE micelles as pulmonary delivery platform: formulation characterization tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur. J. Pharm. Biopharm. 79, 276–228 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    G. Gaucher, P. Satturwar, M.C. Jones, A. Furtos, J.C. Leroux, Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm. 76, 147–158 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    L. Bromberg, Polymeric micelles in oral chemotherapy. J. Control. Release 128, 99–112 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    S. Lehrman, Virus treatment questioned after gene therapy death. Nature 401, 517–518 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    E. Marshall, Clinical trials-gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    C.L. Gebhart, A.V. Kabanov, Evaluation of polyplexes as gene transfer agents. J. Control. Release 73, 401–416 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    T. Merdan, J. Kopecek, T. Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54, 715–758 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    T. Niidome, L. Huang, Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9, 1647–1652 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    D.J. Glover, H.J. Lipps, D.A. Jans, Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6, 299–310 (2002)CrossRefGoogle Scholar
  123. 123.
    E. Wagner, J. Kloeckner, Gene delivery using polymer therapeutics. Polym. Ther. I Polym. Drugs Conjug. Gene Deliv. Syst. 192, 135–173 (2006)Google Scholar
  124. 124.
    T. Kawano, T. Okuda, T. Niidome, Biodistribution of DNA-complex of dendritic poly(L-lysine) after intravenous injection. Mol. Ther. 9, S315 (2004)Google Scholar
  125. 125.
    K. Kogure, H. Akita, Y. Yamada, H. Harashima, Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliv. Rev. 60, 559–571 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    R.Z. Renno, J.W. Miller, Photosensitizer delivery for photodynamic therapy of choroidal neovascularization. Adv. Drug Deliv. Rev. 52, 63–78 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    M. Guo, H. Mao, Y. Li, A. Zhu, H. He, H. Yang, Y. Wang, X. Tian, C. Ge, Q. Peng, Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35, 4656–4666 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    H. Yang, H. Mao, Z. Wan, A. Zhu, M. Guo, Y. Li, X. Li, J. Wan, X. Yang, X. Shuai, Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 34, 9124–9133 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    R.R. Patil, J. Yu, S.R. Banerjee, Y. Ren, D. Leong, X. Jiang, M. Pomper, B. Tsui, D.L. Kraitchman, H.Q. Mao, Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol. Ther. 19, 1626–1635 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    V.P. Torchilin, M.D. Frank-Kamenetsky, G.L. Wolf, CT visualization of blood pool in rat by using long circulating, iodine containing micelles. Acad. Radiol. 6, 61–65 (1999)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iliyas Khan
    • 1
  • Avinash Gothwal
    • 1
  • Gaurav Mishra
    • 1
  • Umesh Gupta
    • 1
    Email author
  1. 1.Department of Pharmacy, School of Chemical Sciences and PharmacyCentral University of RajasthanBandarsindri, AjmerIndia

Personalised recommendations