Advertisement

Porous Coordination Polymers

  • Abdul Malik P. PeedikakkalEmail author
  • N. N. Adarsh
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

This chapter discusses about porous coordination polymers (PCPs) and/or metal-organic frameworks and mainly emphasizes the historical background, their synthesis, structural properties, and potential applications (mainly gas storage). We organize the gas storage application of PCPs into three sections – H2, CH4, and CO2 storage – in order to highlight the important concerns we must know before designing new functional MOFs. In the case of H2 storage application of MOFs, we have discussed four important parameters which effect their successful design for H2 storage application with examples from the literature, such as (1) H2 adsorption condition (pressure and temperature), (2) inclusion of reducing agents in the MOF, (3) effect of structural defect in MOF, and (4) effect of adsorption sites in the MOF structure (examples: MOF-177, Pt/AC/IRMOF-8, UiO-66(Zr), Yb-BTC). Further, we highlight the investigation results of methane storage application of MOFs, with appropriate examples such as PCN-14, M2(dhtp) [M: open metal = Mg, Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate], and UTSA-20. And then we discuss more details of various factors which we must take care before the successful design and synthesis of new MOFs for more CO2 storage such as: (1) the effect of open metal sites in the MOF, (2) the effect of the pore size and surface area of the framework, (3) effect of doping metals, (4) effect of amine functionalization in MOFs, (5) effect of nitrogen-rich MOFs, (6) effect of water molecules, with some important examples such as M-MOF-74 (M = Mg, Co, Fe, Zn, Ni), HKUST-1, etc.

Notes

Acknowledgments

A. M. P. Peedikakkal would like to acknowledge the support provided by KACST for funding through NSTIP. Project No. 14-ENE2278-04 for his research.

References

  1. 1.
    (a) S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers. Angew. Chemie Int. Ed. 43(18), 2334–2375 (2004). (b) N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc. 127, 1504–1518 (2005) (c) O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 705–714 (2003) (d) M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001) (d) S.R. Batten, R. Robson, Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998) (e) W.L. Leong, J.J. Vittal, One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chem. Rev. 111(2), 688–764 (2010) (f) S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design, Analysis and Application (Royal Society of Chemistry, Cambridge, 2009) (g) M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012)Google Scholar
  2. 2.
    (a) C. Janiak, J.K. Vieth, MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010) (b) K. Biradha, A. Ramanan, J.J. Vittal, Coordination polymers versus metal−organic frameworks. Cryst. Growth Des. 9(7), 2969–2970 (2009)Google Scholar
  3. 3.
    A.F. Wells, Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977)Google Scholar
  4. 4.
    (a) B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111(15), 5962–5964 (1989) (b) B.F. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 112(4), 1546–1554 (1990)Google Scholar
  5. 5.
    R. Robson, A net-based approach to coordination polymers. J. Chem. Soc. Dalton Trans., 3735–3744 (2000)Google Scholar
  6. 6.
    J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, Weinheim, 1995)CrossRefGoogle Scholar
  7. 7.
    (a) G.R. Desiraju, The Crystal as a Supramolecular Entity Perspectives in Supramolecular Chemistry (Wiley, New Jersey, 1996) (b) D. Dunitz, A. Gavezzotti, Supramolecular synthons: Validation and ranking of intermolecular interaction energies. Cryst. Growth Des. 12, 5873–5877 (2012)Google Scholar
  8. 8.
    G.M.J. Schmidt, Photodimerization in the solid-state. Pure Appl. Chem. 27, 647–678 (1971)CrossRefGoogle Scholar
  9. 9.
    G.R. Desiraju, Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Maddox, Crystals from first principles. Nature 335, 201 (1988)CrossRefGoogle Scholar
  11. 11.
    K. Biradha, M. Sarkar, L. Rajput, Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem. Commun., 4169–4179 (2006)Google Scholar
  12. 12.
    B. Moulton, M.J. Zaworotko, From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101(6), 1629–1658 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    N.N. Adarsh, P. Dastidar, Coordination polymers: What has been achieved in going from innocent 4, 4′-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem. Soc. Rev. 41(8), 3039–3060 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    M. Nagarathinam, A.M.P. Peedikakkal, J.J. Vittal, Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chem. Commun. (42), 5277–5288 (2008)Google Scholar
  15. 15.
    O.M. Yaghi, Reticular chemistry – Construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138(48), 15507–15509 (2016)PubMedCrossRefGoogle Scholar
  16. 16.
    M. Witman, S. Ling, A. Gladysiak, K.C. Stylianou, B. Smit, B. Slater, M. Haranczyk, Rational design of a low-cost, high-performance metal–organic framework for hydrogen storage and carbon capture. J. Phys. Chem. C 121(2), 1171–1181 (2017)CrossRefGoogle Scholar
  17. 17.
    B.-Q. Ma, K.L. Mulfort, J.T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem. 44(14), 4912–4914 (2005)PubMedCrossRefGoogle Scholar
  18. 18.
    A.M.P. Peedikakkal, Y. M, R.-G. Song, S. Xiong, J.J.V. Gao, Influence of the anions on the formation of coordination polymeric structures of Co(II) with trans-1,2-bis(4-pyridyl)ethylene. Eur. J. Inorg. Chem. 2010, 3856–3865 (2010)CrossRefGoogle Scholar
  19. 19.
    A.M.P. Peedikakkal, J.J. Vittal, Solid-state photochemical behavior of triple-stranded ladder coordination polymer. Inorg. Chem. 49, 10–12 (2010)PubMedCrossRefGoogle Scholar
  20. 20.
    A.M.P. Peedikakkal, L.L. Koh, J.J. Vittal, Photodimerization of a 1D hydrogen-bonded zwitter-ionic Lead(II) complex and its isomerization in solution. Chem. Commun. (4), 441–443 (2008)Google Scholar
  21. 21.
    X.–.M. Chen, M.–.L. Tonga, Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 40, 162–170 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    S.S.-Y. Chui, S.M.-F. Los, J.P.H. Charmant, A.G. Open, I.D. Williams, A chemically functionalizable nanoporous material. Science 238, 1148–1150 (1999)CrossRefGoogle Scholar
  23. 23.
    D.M.P. Mingos, D.R. Baghurst, Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20, 1–47 (1991)CrossRefGoogle Scholar
  24. 24.
    N. Stock, T. Bein, High-throughput synthesis of phosphonate based inorganicorganic hybrid compounds under hydrothermal conditions. Angew. Chem. Int. Ed. 43, 749–752 (2004)CrossRefGoogle Scholar
  25. 25.
    (a) S.R. Batten, Topology of interpenetration. Cryst. Eng. Comm. 3, 67–73 (2001) (b) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O.M. Yaghi, Frameworks for extended solids: Geometrical design principles. J. Solid State Chem. 152, 3–20 (2000) (c) M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource. (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008) (d) I.A. Baburin, V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, Interpenetrated three-dimensional networks of hydrogen-bonded organic species: A systematic analysis of the Cambridge structural database. Cryst. Growth Des. 8, 519–539 (2008)Google Scholar
  26. 26.
    S.R. Batten, B.F. Hoskins, R. Robson, Interdigitation, interpenetration and intercalation in layered cuprous tricyanomethanide derivatives. Chem. Eur. J. 6, 156–161 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    M.J. Manos, M.S. Markoulides, C.D. Malliakas, G.S. Papaefstathiou, N. Chronakis, M.G. Kanatzidis, P.N. Trikalitis, A.J. Tasiopoulos, A highly porous interpenetrated metal–organic framework from the use of a novel nanosized organic linker. Inorg. Chem. 50, 11297–11299 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    S. Ma, D. Sun, M.W. Ambrogio, J.A. Fillinger, S. Parkin, H.-C. Zhou, Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 129, 1858–1859 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    M.J. Zawortko, Superstructural diversity in two dimensions: Crystal engineering of laminated solids. Chem. Commun., 1–9 (2001)Google Scholar
  31. 31.
    H. Gudbjartson, K. Biradha, K.M. Poirier, M.J. Zaworotko, Novel nanoporous coordination polymer sustained by self-assembly of T-shaped moieties. J. Am. Chem. Soc. 121(11), 2599–2600 (1999)CrossRefGoogle Scholar
  32. 32.
    B. Fernández, J.M. Seco, J. Cepeda, A.J. Calahorro, A. Rodríguez-Diéguez, Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. Cryst Eng Comm 17, 7636–7645 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994)CrossRefGoogle Scholar
  35. 35.
    O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995)CrossRefGoogle Scholar
  36. 36.
    M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn)S. Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)CrossRefGoogle Scholar
  37. 37.
    H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRefGoogle Scholar
  38. 38.
    K. Uemura, R. Matsuda, S. Kitagawa, Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005)CrossRefGoogle Scholar
  39. 39.
    H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal−organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998)CrossRefGoogle Scholar
  40. 40.
    H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)PubMedCrossRefGoogle Scholar
  41. 41.
    H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultra-high porosity in metal-organic frameworks. Science 329, 424–428 (2010)PubMedCrossRefGoogle Scholar
  42. 42.
    S.-Y. Zhang, Z. Zhang, M.J. Zaworotko, Topology, chirality and interpenetration in coordination polymers. Chem. Commun. 49, 9700–9703 (2013)CrossRefGoogle Scholar
  43. 43.
    R.R. Yun, Z.Y. Lu, Y. Pan, X.Z. You, J.F. Bai, Formation of a metal–organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Angew. Chem. Int. Ed. 52, 11282 (2013)CrossRefGoogle Scholar
  44. 44.
    A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131(2), 458–460 (2008)CrossRefGoogle Scholar
  45. 45.
    H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydın, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)PubMedCrossRefGoogle Scholar
  46. 46.
    O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010)PubMedCrossRefGoogle Scholar
  47. 47.
    D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, An Isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010)CrossRefGoogle Scholar
  48. 48.
    (a) Z. Yang, Y. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129, 1673–1679 (2007) (b) S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage, Langmuir, 22, 1688–1700 (2006) (c) Y. Ren, G.H. Chia, Z. Gao, Metal–organic frameworks in fuel cell technologies. Nanotoday 8, 577–597 (2013)Google Scholar
  49. 49.
    T.L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schröder, Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chem. Soc. Rev. 46, 239–274 (2017)PubMedCrossRefGoogle Scholar
  50. 50.
    M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    (a) B. Sakintuna, F. Lamari-Darkrimb, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121–1140 (2007) (b) Y.-H. P. Zhang, Renewable carbohydrates are a potential high-density hydrogen carrier. Int. J. Hydrogen Energy 35, 10334–10342 (2010) (c) V.V. Struzhkin, B. Militzer, W.L. Mao, H.-K. Mao, R.J. Hemley, Hydrogen storage in molecular clathrates. Chem. Rev. 107, 4133–4151 (2007) (d) H.-M. Cheng, Q.-H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon 39, 1447–1454 (2001)Google Scholar
  52. 52.
    (a) H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 128 368–392 (2014) (b) L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009) (c) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)Google Scholar
  53. 53.
    (a) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science, 300, 1127–1129 (2003) (b) G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guégan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003)Google Scholar
  54. 54.
    J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks – Updated. Energy Environ. Sci. 4, 2721–2735 (2011)CrossRefGoogle Scholar
  55. 55.
    B. Panella, M. Hirscher, H. Putter, U. Muller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16, 520–524 (2006)CrossRefGoogle Scholar
  56. 56.
    (a) D. Saha, Z. Wei and S. Deng: Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177, Int. J. Hydrog. Energy, 33, 7479–7488 (2008). (b) J. L. Rowsell and O. M. Yaghi: Startegies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed., 2005, 44, 4670–4679.Google Scholar
  57. 57.
    (a) Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006) (b) Y. Li, R.T. Yang, Hydrogen storage in metal−organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006)Google Scholar
  58. 58.
    W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995)CrossRefGoogle Scholar
  59. 59.
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974), pp. 593–724Google Scholar
  60. 60.
    J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, W. Pang, Coord. Chem. Rev. (2017) ASAPGoogle Scholar
  61. 61.
    A. Xin, J. Bai, Y. Pan, M.J. Zaworotko, Synthesis and enhanced H2 adsorption properties of a mesoporous nanocrystal of MOF-5: Controlling nano−/mesostructures of MOFs to improve their H2 heat of adsorption. Chem. Eur. J. 16, 13049–13052 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Y.F. Feng, H. Jiang, M. Chen, Y.R. Wang, Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure. Powder Technol. 249, 38–42 (2013)CrossRefGoogle Scholar
  63. 63.
    J.W. Ren, H. Langmi, N. Musyoka, M. Mathe, X.D. Kang, Tuning defects to facilitate hydrogen storage in core-shell MIL-101(Cr)@UiO-66(Zr) nanocrystals. Mater. Today: Proc. 2, 3964–3972 (2015)Google Scholar
  64. 64.
    M. Erkartal, U. Sen, Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study. ACS Appl. Mater. Interfaces 10(1), 787–795 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks. Energy Environ. Sci. 1, 222–235 (2008)CrossRefGoogle Scholar
  66. 66.
    K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, Post-synthesis alkoxide formation within metal−organic framework materials: A strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131(11), 3866–3868 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    J. Luo, H. Xu, Y. Liu, Y. Zhao, L.L. Daemen, C. Brown, T.V. Timofeeva, S. Ma, H. Zhou, J. Am. Chem. Soc. 130(30), 9626–9627 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    T. Burchell, M. Rogers. SAE Tech. Pap. Ser. 2000, 2000-01-2205Google Scholar
  69. 69.
    Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    S. Noro, S. Kitagawa, M. Kondo, K. Seki, A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Ed. 39, 2081–2084 (2000)CrossRefGoogle Scholar
  71. 71.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)PubMedCrossRefGoogle Scholar
  72. 72.
    K. Seki, Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun., 1496–1497 (2001)Google Scholar
  73. 73.
    V.C. Menon, S. Komarneni, Porous adsorbents for vehicular natural gas storage: A review. J. Porous. Mater. 5, 43–58 (1998)CrossRefGoogle Scholar
  74. 74.
    S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.-C. Zhou, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130(3), 1012–1016 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal-organic frameworks M2(dhtp): The important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B. Chen, A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011)CrossRefGoogle Scholar
  77. 77.
    C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012)CrossRefGoogle Scholar
  78. 78.
    C. Liang, Z. Shi, C. He, J. Tan, H. Zhou, H. Zhou, Y. Lee, Y. Zhang, Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal−organic frameworks. J. Am. Chem. Soc. 139, 13300–13303 (2017)PubMedCrossRefGoogle Scholar
  79. 79.
    C. Figueres, H.J. Schellnhuber, G. Whiteman, J. Rockström, A. Hobley, S. Rahmstorf, Three years to safeguard our climate. Nature 546, 593–595 (2017)PubMedCrossRefGoogle Scholar
  80. 80.
  81. 81.
    J. Johnson, Chem. Eng. News 82, 36 (2004)Google Scholar
  82. 82.
    A. Lu, G. Hao, Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 109, 484–503 (2013)CrossRefGoogle Scholar
  83. 83.
    K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)PubMedCrossRefGoogle Scholar
  84. 84.
    A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)PubMedCrossRefGoogle Scholar
  85. 85.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)PubMedCrossRefGoogle Scholar
  86. 86.
    S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008)PubMedCrossRefGoogle Scholar
  87. 87.
    Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, P. Feng, Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J. Am. Chem. Soc. 138(8), 2524–2527 (2016)PubMedCrossRefGoogle Scholar
  88. 88.
    X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 183, 69–73 (2014)CrossRefGoogle Scholar
  89. 89.
    E. Garcia-Perez, J. Gascon, V. Morales-Florez, J.M. Castillo, F. Kapteijn, S. Calero, Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation. Langmuir 25, 1725–1731 (2009)PubMedCrossRefGoogle Scholar
  90. 90.
    D. Alezi, A.M.P. Peedikakkal, L.J. Weselinski, V. Guillerm, Y. Belmabkhout, A.J. Cairns, Z. Chen, L. Wojtas, M. Eddaoudi, Quest for highly connected metal-organic framework platforms: Rare earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    D.Q. Yuan, D. Zhao, D.F. Sun, H.C. Zhou, An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Edit. 49, 5357–5361 (2010)CrossRefGoogle Scholar
  92. 92.
    C.E. Wilmer, O.K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A.A. Sarjeant, R.Q. Snurr, J.T. Hupp, Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013)CrossRefGoogle Scholar
  93. 93.
    B.S. Zheng, J.F. Bai, J.G. Duan, L. Wojtas, M.J. Zaworotko, Enhanced CO2 binding affinity of a high-uptake rht-type metal−organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133(4), 748–751 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    P.L. Llewellyn, S. Bourrely, C. Serre, A. Vimont, M. Daturi, L. Hamon, G.D. Weireld, J.-S. Chang, D.-Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    J.A. Botas, G. Calleja, M. Sanchez-Sanchez, M. Gisela Orcajo, Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300–5303 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    M. Kim, J.F. Cahill, H. Fei, K.A. Prather, S.M. Cohen, Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 134, 18082–18088 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    C.H. Lau, R. Babarao, M.R. Hill, A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem. Commun. 49, 3634–3636 (2013)CrossRefGoogle Scholar
  98. 98.
    S.S. Kaye, J.R. Long, Hydrogen storage in the dehydrated Prussian blue analogues M3[co(CN)6]2 (M = Mn, Fe, co, Ni, cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Y. Lin, C. Konga, L. Chen, Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv. 6, 32598–32614 (2016)CrossRefGoogle Scholar
  100. 100.
    Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Edit. 47, 4144–4148 (2008)CrossRefGoogle Scholar
  101. 101.
    T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine appended Metal−organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    K. Lee, J.D. Howe, L.-C. Lin, B. Smit, J.B. Neaton, Small-molecule adsorption in open-site metal−organic frameworks: A systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015)CrossRefGoogle Scholar
  103. 103.
    J.-S. Qin, D.-Y. Du, W.-L. Li, J.-P. Zhang, S.-L. Li, Z.-M. Su, X.-L. Wang, Q. Xu, K.-Z. Shao, Y.-Q. Lan, N-rich zeolite-like metal–organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114–2118 (2012)CrossRefGoogle Scholar
  104. 104.
    A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keefee, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    A.O. Yazaydin, A.I. Benin, S.A. Faheem, P. Jakubczak, J.J. Low, R.R. Willis, R.Q. Snurr, Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)CrossRefGoogle Scholar
  107. 107.
    V.A. Blatov, D.M. Proserpio, TOPOS 4.0, A program package for multipurpose crystallochemical analysisGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Solid State and Materials Chemistry, School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations