Electrochemical Polymerization

  • Gertrude FomoEmail author
  • Tesfaye Waryo
  • Usisipho Feleni
  • Priscilla Baker
  • Emmanuel IwuohaEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Advances in molecular electronic devices such as sensors, organic solar cells, and organic light emitting diodes have increased the interest and research on electrosynthetic conducting polymers. This chapter focuses on electrochemical polymerization (or electropolymerization) as a cost-effective and easy-to-use method for the preparation of electrosynthetic conducting polymer films. Electropolymerized materials, characteristically, possess unique morphological, physical, electronic, and electrochemical proprieties which make them amenable to various applications. Electropolymerization is initiated by the oxidation of a monomer in an electrochemical cell, followed by the growth of the polymer film on the surface of the working electrode, which may be a carbonaceous, a metallic, or a conducting glass material. As the oxidation of the monomer is voltage- or current-induced, electrochemical polymerization is, therefore, a green chemistry methodology. Being devoid of the use of toxic oxidants, the technique ensures real-time controlled production of very high purity conducting polymer films. The films exhibit excellent electrical, electronic, magnetic, optical, and rheological properties. Polyaniline films in their pristine and doped forms and the films of other conducting polymers are discussed in this chapter.


  1. 1.
    M.A. De Paoli, W.A. Gazotti, Electrochemistry, polymers and opto-electronic devices: A combination with a future. J. Braz. Chem. Soc. 13, 410–424 (2002)CrossRefGoogle Scholar
  2. 2.
    A.A. Syed, M.K. Dinesan, Review: Polyaniline-A novel polymeric material. Talanta 38, 815–837 (1991)CrossRefGoogle Scholar
  3. 3.
    P. Monk, R. Mortimer, D. Rosseinsky, Conjugated conducting polymers, in Electrochromism and Electrochromic Devices (Cambridge University Press, New York, 2007), p. 312Google Scholar
  4. 4.
    R. de Surville, M. Jozefowicz, L.T. Yu, J. Perichon, R. Buvet, Electrochemical chains using protolytic organic semiconductors. Electrochim. Acta 13, 1451–1458 (1968)CrossRefGoogle Scholar
  5. 5.
    A.A. Syed, M.K. Dinesan, E.M. Genies, Basic behavior of chemically synthesized polyanilines. Bull. Electrochem. 4, 737–742 (1988)Google Scholar
  6. 6.
    A.F. Diaz, J.A. Logan, Electroactive polyaniline films. J. Electroanal. Chem. 111, 111–114 (1980)CrossRefGoogle Scholar
  7. 7.
    N. Mermilliod, J. Tanguy, M. Hoclet, A.A. Syed, Electrochemical characterization of chemically synthesized polyanilines. Synth. Met. 18, 359–364 (1987)CrossRefGoogle Scholar
  8. 8.
    A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, N.L.D. Somasiri, W. Wu, S.I. Yaniger, Polyaniline: Interconversion of metallic and insulating forms. Mol. Cryst. Liq. Cryst. 121, 173–180 (1985)CrossRefGoogle Scholar
  9. 9.
    G. Mengoli, M.T. Munari, C. Folonari, Anodic formation of polynitroanilide films onto copper. J. Electroanal. Chem. 124, 237–246 (1981)CrossRefGoogle Scholar
  10. 10.
    S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 14, 443–456 (1999)CrossRefGoogle Scholar
  11. 11.
    H.T. Santoso, Electrochemical processing of polythiophene films with enhanced structural order, Thesis, Georgia Institute of Technology, Atlanta, 2011, p. 117Google Scholar
  12. 12.
    S. Yong, W. Kazuya, H. Kazuhito, Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells. J. Biosci. Bioeng. 112, 63–66 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Gupta, M. Singhal, S.K. Nataraj, D.N. Srivastava, A potentiostatic approach of growing polyaniline nanofibers in fractal morphology by interfacial electropolymerization. RSC Adv. 6, 110416–110421 (2016)CrossRefGoogle Scholar
  14. 14.
    M.J. Bleda-Martínez, C. Peng, S. Zhang, G.Z. Chen, E. Morallón, D. Cazorla-Amorós, Electrochemical methods to enhance the capacitance in activated carbon/polyaniline composites. J. Electrochem. Soc. 155, A672–A678 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010)CrossRefGoogle Scholar
  16. 16.
    W. Schuhmann, C. Kranz, H. Wohlschliiger, J. Strohmeier, Pulse technique for the electrochemical deposition of polymer films on electrode surfaces. Biosens. Bioelectron. 12, 1157–1167 (1997)CrossRefGoogle Scholar
  17. 17.
    H. Okamoto, T. Kotaka, Structure and properties of polyaniline films prepared via electrochemical polymerization. I: Effect of pH in electrochemical polymerization media on the primary structure and acid dissociation constant of product polyaniline films. Polymer 39, 4349–4358 (1998)CrossRefGoogle Scholar
  18. 18.
    K. Imanishi, M. Satoh, Y. Yasuda, R. Tsushima, S. Aoki, Solvent effect on electrochemical polymerization of aromatic compounds. J. Electroanal. Chem. 242, 203–208 (1988)CrossRefGoogle Scholar
  19. 19.
    L.J. Duic, Z. Mandic, F. Kovacicek, The effect of supporting electrolyte on the electrochemical synthesis, morphology, and conductivity of polyaniline. J. Polym. Sci. Part A 32, 105–111 (1994)CrossRefGoogle Scholar
  20. 20.
    G. Inzelt, Conducting Polymers-A New Area in Electrochemistry (Springer, Berlin, 2008), pp. 123–135Google Scholar
  21. 21.
    G.G. Wallace, P.R. Teasdale, G.M. Spinks, L.A.P. Kane-Maguire, Conductive Electroactive Polymers, 3rd edn. (Taylor & Francis Group, Boca Raton, 2009)Google Scholar
  22. 22.
    A.M. Kumar, Z.M. Gasem, In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5% NaCl solution. Prog. Org. Coat. 78, 387–394 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Fomo, T.T. Waryo, P.G. Baker, E.I. Iwuoha, Electrochemical deposition and properties of polyaniline films on carbon and precious metal surfaces in perchloric acid/acetonitrile. Int. J. Electrochem. Sci. 11, 10347–10361 (2016)CrossRefGoogle Scholar
  24. 24.
    A.M.P. Hussain, A. Kumar, Electrocemical synthesis and characterization of chloride deped polyaniline. Bull. Mater. Sci. 26, 329–334 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Kraft, A.C. Grimsdale, A.B.. Holmes, Electroluminescent conjugated polymersðseeing polymers in a new light. Angew. Chem. Int. Ed. 37, 402–428 (1998)CrossRefGoogle Scholar
  26. 26.
    G. Fomo, T.T. Waryo, C.E. Sunday, A.A. Baleg, P.G. Baker, E.I. Iwuoha, Aptameric recognition-modulated electroactivity of poly(4-styrenesolfonic acid)-doped polyaniline films for single-shot detection of tetrodotoxin. Sensors 15, 22547–22560 (2015)CrossRefGoogle Scholar
  27. 27.
    J.H.P. Utley, J. Gruber, Electrochemical synthesis of poly(p-xylylenes) (PPXs) and poly(p-phenylenevinylenes) (PPVs) and the study of xylylene (quinodimethane) intermediates; an underrated approach. J. Mater. Chem. 12, 1613–1624 (2002)CrossRefGoogle Scholar
  28. 28.
    B. Sari, M. Talu, F. Yildirim, Electrochemical polymerization of aniline at low supporting-electrolyte concentrations and characterization of obtained films. Russ. J. Electrochem. 38, 707–713 (2002)CrossRefGoogle Scholar
  29. 29.
    W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 182, 2385–2400 (1986)CrossRefGoogle Scholar
  30. 30.
    Y. Diamant, E. Furmanovich, A. Landau, J.P. Lellouche, A. Zaban, Electrochemical polymerization and characterization of a functional dicarbazole conducting polymer. Electrochim. Acta 48, 507–512 (2003)CrossRefGoogle Scholar
  31. 31.
  32. 32.
    B.B. Berkes, G. Inzelt, E. Vass, Electrochemical nanogravimetric study of the adsorption of 4-aminoindole and the surface layer formed by electrooxidation in aqueous acid media. Electrochim. Acta 96, 51–60 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Hosseini, M.M. Momeni, M. Faraji, Electrochemical fabrication of polyaniline films containing gold nanoparticles deposited on titanium electrode for electro-oxidation of ascorbic acid. J. Mater. Sci. 45, 2365–2371 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Li, M. Liu, C. Xiang, Q. Xie, S. Yao, Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films 497, 270–278 (2006)CrossRefGoogle Scholar
  35. 35.
    G. Fomo, Ionophoric and aptameric recognition-modulated electroactive polyaniline films for the determination of tetrodotoxin, Thesis, University of the Western Cape, 2015, p. 344Google Scholar
  36. 36.
    B.N. Grgur, A. Žeradjanin, M.M. Gvozdenović, M.D. Maksimović, T.L. Trišović, B.Z. Jugović, Electrochemical characteristics of rechargeable polyaniline/lead dioxide cell. J. Power Sources 217, 193–198 (2012)CrossRefGoogle Scholar
  37. 37.
    D. Bhattacharjya, I. Mukhopadhyay, Controlled growth of polyaniline fractals on HOPG through potentiodynamic electropolymerization. Langmuir 28, 5893–5899 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    M.M. Gvozdenović, B.Z. Jugović, J.S. Stevanović, T.L.J. Trišović, B.N. Grgur, Electrochemical Polymerization of Aniline, Electropolzmeriyation, ed. by E. Schab-Balcerzak (InTech, Rijeka, 2011)Google Scholar
  39. 39.
    M.M. Gvozdenović, B.Z. Jugović, J.S. Stevanović, B.N. Grgur, B.N. Hemijis, Electrochemical synthesis of electroconducting polymers. Hem. Ind. 68, 673–684 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Adenier, M.M. Chehimi, I. Gallardo, J. Pinson, N. Vila, Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 20, 8243–8253 (2004)CrossRefGoogle Scholar
  41. 41.
    R. Zhang, G.D. Jin, D. Chen, X.Y. Hu, Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors Actuators B Chem. 138, 174–181 (2009)CrossRefGoogle Scholar
  42. 42.
    X. Huang, Y. Li, Y. Chen, L. Wang, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sensors Actuators B Chem. 234, 780–786 (2008)CrossRefGoogle Scholar
  43. 43.
    J.H. Park, J.M. Ko, O.O. Park, D.W. Kim, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 105, 20–25 (2002)CrossRefGoogle Scholar
  44. 44.
    C.C. Hu, C.H. Chu, Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors ­effects of film coverage/thickness and anions. J. Electroanal. Chem. 503, 105–116 (2001)CrossRefGoogle Scholar
  45. 45.
    B. Jugović, M. Gvozdenović, J. Stevanović, T. Trišović, B. Grgur, Characterization of electrochemically synthesized PANI on graphite electrode for potential use in electrochemical power sources. Mater. Chem. Phys. 114, 939–942 (2009)CrossRefGoogle Scholar
  46. 46.
    T. Hatano, A.H. Bae, M. Takeuchi, N. Fujita, K. Kaneko, H. Ihara, M. Takafuji, S. Shinkai, Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template. Angew. Chem. 116, 471–475 (2004)CrossRefGoogle Scholar
  47. 47.
    L.H. Mascaro, A.N. Berton, L. Micaroni, Electrochemical synthesis of polyaniline/poly-o-aminophenol copolymers in chloride medium. Int. J. Electrochem. 2011, 1–8 (2011)CrossRefGoogle Scholar
  48. 48.
    M. Magnuson, J.H. Guo, S.M. Butorin, A. Agui, C. Såthe, J. Nordgren, A.P. Monkman, The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies. J. Chem. Phys. 111, 4756–4761 (1999)CrossRefGoogle Scholar
  49. 49.
  50. 50.
  51. 51.
  52. 52.
    A. Eftekhari, Y. Bahareh, Morphological effects of Ni nanostructures on electropolymerization of aniline. J. Appl. Polym. Sci. 122, 1579–1586 (2011)CrossRefGoogle Scholar
  53. 53.
    G.L. Zhang, J.H. Xinxi, X. Pang, H. Yang, Y. Wang, K. Ding, Preparation and characterization of polyaniline (PANI) doped-Li3V2 (PO4)3. Int. J. Electrochem. Sci. 7, 830–843 (2012)Google Scholar
  54. 54.
    T.H. Le, T. Ngoc, L.H. Nguyen, H.B. Nguyen, V.A. Nguyen, T.D. Nguyen, Electrosynthesis of polyaniline–multiwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025–014 (2013)Google Scholar
  55. 55.
    R. Yue, F. Jiang, Y. Du, J. Xu, P. Yang, Electrosynthesis of a novel polyindole derivative from 5-aminoindole and its use as catalyst support for formic acid electrooxidation. Electrochim. Acta 77, 29–38 (2012)CrossRefGoogle Scholar
  56. 56.
    G. Nie, T. Cai, S. Zhang, Q. Bao, J. Xu, Electrodeposition of poly(indole-5-carboxylic acid) in boron trifluoride diethyl etherate containing additional diethyl ether. Electrochim. Acta 52, 7097–7106 (2007)CrossRefGoogle Scholar
  57. 57.
    N. Bicak, B. Karagoz, Polymerization of aniline by copper-catalyzed air oxidation. J. Polym. Sci. A Polym. Chem. 44, 6025–6031 (2006)CrossRefGoogle Scholar
  58. 58.
    Y. Lee, S. Chen, H. Tu, S. Yau, L.L. Fan, Y. Yang, W.P. Dow, In situ STM revelation of the adsorption and polymerization of aniline on Au (111) electrode in perchloric acid and benzenesulfonic acid. Langmuir 26, 5576–5582 (2010)CrossRefGoogle Scholar
  59. 59.
    S. Perc, Electrochemical synthesis of poly(2-iodoaniline) and poly(aniline-co-2-iodoaniline) in acetonitrile. J. Appl. Polym. Sci. 89, 1652–1658 (2003)CrossRefGoogle Scholar
  60. 60.
    Y. Sahin, A. Aydin, Y.A. Udum, K. Pekmez, A. Yildiz, Electrochemical synthesis of sulfonated polypyrrole in FSO3H/acetonitrile solution. J. Appl. Polym. Sci. 40, 526–533 (2004)CrossRefGoogle Scholar
  61. 61.
    J.M. Pringle, J. Efthimiadis, P.C. Howlett, J. Efthimiadis, D.R. MacFarlane, A.B.. Chaplin, S.B. Hall, D.L. Officer, G.G. Wallace, M. Forsyth, Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 45, 1447–1453 (2004)CrossRefGoogle Scholar
  62. 62.
    S. Mu, Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film: Color changes in the wide wavelength range. Electrochim. Acta 52, 7827–7834 (2007)CrossRefGoogle Scholar
  63. 63.
    W. Lu, A.G. Fadeev, B. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297, 983–987 (2002)CrossRefGoogle Scholar
  64. 64.
    M.L. Schwuger, K. Stickdorn, R. Schomaecker, Microemulsions in technical processes. Chem. Rev. 95, 849–864 (1995)CrossRefGoogle Scholar
  65. 65.
    V. Tsakova, S. Winkels, J.W. Schultze, Anodic polymerization of 3, 4-ethylenedioxythiophene from aqueous microemulsions. Electrochim. Acta 46, 759–768 (2000)CrossRefGoogle Scholar
  66. 66.
    C. Lagrost, M. Jouini, J. Tanguy, S. Aeiyach, J.C. Lacroix, K.I. Chane-Ching, P.C. Lacaze, Bithiophene electropolymerization in aqueous media: A specific effect of SDS and β-cyclodextrin. Electrochim. Acta 46, 3985–3992 (2001)CrossRefGoogle Scholar
  67. 67.
    M. Fall, M.M. Dieng, J.J. Aaron, S. Aeiyach, P.C. Lacaze, Role of surfactants in the electrosynthesis and the electrochemical and spectroscopic characteristics of poly(3-methoxythiophene) films in aqueous micellar media. Synth. Met. 118, 149–155 (2001)CrossRefGoogle Scholar
  68. 68.
    G.E. Barr, C.N. Sayre, D.M. Connor, D.M. Collard, Polymerization of hydrophobic 3-alkylpyrroles from aqueous solutions of sodium dodecyl sulfate. Langmuir 12, 1395–1398 (1996)CrossRefGoogle Scholar
  69. 69.
    A. Mani, K.L.N. Phani, Spherulitic morphology of electrochemically-deposited polyparaphenylene (PPP) films. J. Electroanal. Chem. 513, 126–132 (2001)CrossRefGoogle Scholar
  70. 70.
    M. Kanungo, A. Kumar, A.Q. Contractor, Studies on electropolymerization of aniline in the presence of sodium dodecyl sulfate and its application in sensing urea. J. Electroanal. Chem. 528, 46–56 (2002)CrossRefGoogle Scholar
  71. 71.
    K. Matyjaszewski, T. Davys, Handbook of Radical Polymerization (Wiley, Hoboken, 2002), pp. 1–177CrossRefGoogle Scholar
  72. 72.
    K. Karon, M. Lapkowski, Carbazole electrochemistry: A short review. J. Solid State Electrochem. 19, 2601–2610 (2015)CrossRefGoogle Scholar
  73. 73.
    M. Ates, A. Dolapdere, Electrochemical polymerization of thiophene and poly(3-hexyl)thiophene, nanocomposites with TiO2, and corrosion protection behaviors. Polym. Plast. Technol. Eng. 54, 1780–1786 (2015)CrossRefGoogle Scholar
  74. 74.
    P. Novak, K. Muller, K.S.V. Santhana, O. Haas, Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–281 (1997)CrossRefGoogle Scholar
  75. 75.
    J. Bobacka, A. Ivaska, Ion sensors with conducting polymers, as ion-to-electron transducers. Compr. Anal. Chem.. (Elsevier 49, 73–86 (2007)Google Scholar
  76. 76.
    R.J. Waltman, J.B. Argon, Electrically conducting polymers: A review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can. J. Chem. 64, 76–95 (1986)CrossRefGoogle Scholar
  77. 77.
    R. Lazzaroni, J. Riga, J.J. Verbist, L. Christiaens, M. Renson, Electrochemical synthesis and preliminary characterization of poly(thieno[3,2-b]pyrrole). J. Chem. Soc. Chem. Commun., 999–1000 (1985)Google Scholar
  78. 78.
    V. Gupta, N. Miura, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 7, 995–999 (2005)CrossRefGoogle Scholar
  79. 79.
    J.M. Pringle, J. Efthimiadis, P.C. Howlett, J. Efthimiadis, D.R. MacFarlane, A.B.. Chaplinc, S.B. Hallc, D.L. Officer, G.G. Wallace, M. Forsyth, Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 45, 1447–1453 (2004)CrossRefGoogle Scholar
  80. 80.
    B. Broda, G. Inzelt, Preparation and characterization of poly(5-aminoindole) by using electrochemical quartz crystal nanobalance technique. Acta Chim. Slov. 61, 357–365 (2014)Google Scholar
  81. 81.
    K. Darowicki, J. Kawula, Impedance characterization of the process of polyaniline first redox transformation after aniline electropolymerization. Electrochim. Acta 49, 4829–4839 (2004)CrossRefGoogle Scholar
  82. 82.
    X. Li, Y. Li, Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride-ethyl ether as the electrolyte. J. Appl. Polym. Sci. 90, 940–946 (2003)CrossRefGoogle Scholar
  83. 83.
    G. Odian, Y. Atassi, M. Tally, Chapter 3: Radical chain polymerization, in Principles of Polymerization, 4th edn., (Wiley, Hoboken, 2004)CrossRefGoogle Scholar
  84. 84.
    P. Audebert, J.M. Catel, G.L. Coustumer, V. Duchenet, P. Hapiot, Electrochemistry and polymerization mechanism of thiophene-pyrrole-thiophene oligomers and terthiophenes. Experimental and theoretical modeling studies. J. Phys. Chem. B 102, 8661–8669 (1998)CrossRefGoogle Scholar
  85. 85.
    L. Duid, Z. Mandid, Counter-ion and pH effect on the electrochemical synthesis of polyaniline. Electroanal. Chem. 335, 207–221 (1992)CrossRefGoogle Scholar
  86. 86.
    W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1(82), 2385–2400 (1986)CrossRefGoogle Scholar
  87. 87.
    D. Seeger, W. Kowalchyk, C. Korzeniewski, Investigation of polymer-dopant interactions in polyaniline-modified electrodes: In situ analysis by FTIR spectroscopy. Langmuir 6, 1527–1534 (1990)CrossRefGoogle Scholar
  88. 88.
    H. Okamoto, T. Kotaka, Effect of counter ions in electrochemical polymerization media on the structure and responses of the product polyaniline films III. Structure and properties of polyaniline films prepared via electrochemical polymerization. Polymer 40, 407–417 (1998)CrossRefGoogle Scholar
  89. 89.
    M.S. Lee, S.B. Lee, J.Y. Lee, H.S. Kang, H.S. Kang, S. Hyun, J. Joo, A.J. Epstein, All-polymer FET based on simple photolithographic micro-patterning of electrically conducting polymer. Mol. Cryst. Liq. Cryst. 405, 171–178 (2003)CrossRefGoogle Scholar
  90. 90.
    M. Immaculate, Synthesis, electrodynamics and biosensor applications of novel sulphonated polyaniline nanocomposites, PhD Thesis, University of the Western Cape, 2007, p. 223Google Scholar
  91. 91.
    W. Yanyan, L. Kalle, Influence of dopant on electroactivity of polyaniline. Macromol. Symp. 317, 240–247 (2012)Google Scholar
  92. 92.
    T. Lindfors, A. Ivaska, Potentiometric and UV–vis characterisation of N-substituted polyanilines. J. Electroanal. Chem. 535, 65–74 (2002)CrossRefGoogle Scholar
  93. 93.
    M.H. Pournaghi-Azar, B. Habibi, Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminium electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochim. Acta 52, 4222–4230 (2007)CrossRefGoogle Scholar
  94. 94.
    A. Balamurugan, S.M. Chen, Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal. Chim. Acta 596, 92–98 (2007)CrossRefGoogle Scholar
  95. 95.
    M.R. Nateghi, M. Zahedi, M.H. Mosslemin, S. Hachemian, S. Behzad, A. Minnai, Autoacceleration/degradation of electrochemical polymerization of substituted polyanilines. Polymer 46, 11476–11483 (2005)CrossRefGoogle Scholar
  96. 96.
    L. Komsiyska, T. Tsacheva, V. Tsakova, Electrochemical formation and copper modification of poly-o-methoxyaniline. Thin Solid Films 493, 88–95 (2005)CrossRefGoogle Scholar
  97. 97.
    S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000)CrossRefGoogle Scholar
  98. 98.
    M. Saraji, A. Bagheri, Electropolymerization of indole and study of electrochemical behavior of the polymer in aqueous solutions. Synth. Met. 98, 57–63 (1998)CrossRefGoogle Scholar
  99. 99.
    P. Jennings, A.C. Jones, A.R. Mount, A.D. Thomson, Electrooxidation of 5-substituted indoles. J. Chem. Soc. Far. Trans. 93, 3791–3797 (1997)CrossRefGoogle Scholar
  100. 100.
    M.K.L. Coelho, J.D.F. Giarola, A.T.M. Da Silva, C.R.T. Tarley, K.B. Borges, A.C. Pereira, Development and application of electrochemical sensor based on molecularly imprinted polymer and carbon nanotubes for the determination of carvedilol. Chemosensors 4, 1–15 (2016)CrossRefGoogle Scholar
  101. 101.
    S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensor for biomedical application. Biosens. Bioelectron. 26, 1825–1832 (2011)CrossRefGoogle Scholar
  102. 102.
    P.N. Bartlett, J.M. Cooper, A review of the immobilization of enzyme in electropolymerized films. J. Electroanal. Chem. 362, 1–12 (1993)CrossRefGoogle Scholar
  103. 103.
    S. Cosnier, Biosensors based on electropolymerized films: New trends. Anal. Bioanal. Chem. 377, 507–520 (2003)CrossRefGoogle Scholar
  104. 104.
    S. Cosnier, Recent advances in biological sensors based on electrogenerated polymers: A review. Anal. Lett. 40, 1260–1279 (2007)CrossRefGoogle Scholar
  105. 105.
    M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002)PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    M.A. Rahman, P. Kumar, D.-S. Park, Y.B. Shim, Electrochemical sensor based on organic conjugated polymers. Sensors 8, 118–141 (2008)CrossRefGoogle Scholar
  107. 107.
    K.S.V. Santhanan, Conducting polymers for biosensors: Rational based models. Pure Appl. Chem. 70, 1259–1262 (1998)CrossRefGoogle Scholar
  108. 108.
    T.D. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)CrossRefGoogle Scholar
  109. 109.
    U. Lange, N.V. Raznyatovskaya, V.M. Mirsky, Conducting polymers in chemicals sensors and array. Anal. Chim. Acta 614, 1–26 (2008)CrossRefGoogle Scholar
  110. 110.
    H. Peng, L. Zhang, C. Soeller, J. Travas-Sejdic, Conducting polymers for electrochemical DNA sensing. Biomaterials 30, 2132–2148 (2009)CrossRefGoogle Scholar
  111. 111.
    A. Rudge, I. Raistnck, S. Go-Ite~Fizld, J.P. Ferr, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta 39, 273–287 (1994)CrossRefGoogle Scholar
  112. 112.
    D. McQuade, A.E.P. Tyler, T.M. Swager, Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)CrossRefGoogle Scholar
  113. 113.
    P. Audebert, G. Bidan, Polyhalopyrroles: Electrochemical synthesis and some characteristics. J. Electroanal. Chem. 190, 129–139 (1985)CrossRefGoogle Scholar
  114. 114.
    R. Saraswathi, M. Gerard, B.D. Malhotra, Characteristics of aqueous polycarbazole batteries. J. Appl. Polym. Sci. 74, 145–150 (1999)CrossRefGoogle Scholar
  115. 115.
    T. Kawai, T. Kuwabara, S. Wang, K. Yoshino, Secondary battery characteristics of poly(3-alkylthiophene). Jap. J. Appl. Phys. 29, 602–605 (1990)CrossRefGoogle Scholar
  116. 116.
    K.S.V. Santhanam, N. Gupta, Conducting-polymer electrodes in batteries. TRIP 1, 284–289 (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SensorLabUniversity of Western CapeCape TownSouth Africa
  2. 2.Nanotechnology and Water Sustainability Research UnitUniversity of South AfricaJohannesburgSouth Africa
  3. 3.SensorLab, Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations