Advertisement

Proton Conductions

  • N. Awang
  • Juhana JaafarEmail author
  • A. F. IsmailEmail author
  • T. Matsuura
  • M. H. D. Othman
  • M. A. Rahman
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

The importance of proton conductivity is enormous for biological systems and in devices such as electrochemical sensors, electrochemical reactors, electrochromic devices, and fuel cells. In the book chapter, the phenomenon of proton conductivity in materials was discussed with a special emphasis on five different types of conductive materials, namely, perfluorinated ionomers, partially fluorinated, aromatic polymers, acid-base complexes, non-fluorinated ionomers, and hydrocarbon. In a fuel cell, the proton exchange membranes (PEMs) have a profound influence on its performance. Many researchers have investigated the functionalization methods to solve the methanol crossover problem and to obtain low electronic conductivity, low electroosmotic drag coefficient, good mechanical properties, good chemical stability, good thermal stability, and high proton conductivity. The way forward of developing high-performance proton-conductive polymeric membrane via electrospinning for as fuel cells was also addressed.

Notes

Acknowledgment

The author (Nuha Awang) is thankful to the Ministry of Higher Education (MOHE) and Ministry of Science, Technology & Innovation (MOSTI) for the financial support under vote number of R.J130000.4F157, R.J130000.05H25, and R.J130000.4S057), and also to the Research Management Centre (RMC), UTM for research management activities, and Zamalah scholarship provided by School of Graduate Study (SPS), UTM.

References

  1. 1.
    B. Beden, J.M. Léger, C. Lamy, Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, in Modern Aspects of Electrochemistry, (Springer US, Boston, 1992), pp. 97–264Google Scholar
  2. 2.
    M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). Springer USCrossRefGoogle Scholar
  3. 3.
    W. Jaegermann, Surface studies of layered materials in relation to energy converting interfaces, in Photoelectrochemistry and Photovoltaics of Layered Semiconductors, (Springer Netherlands, Dordrecht, 1992), pp. 195–295CrossRefGoogle Scholar
  4. 4.
    L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 39(8), 1157–1162 (2009)CrossRefGoogle Scholar
  5. 5.
    M.M. Nasef, E.S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 29(6), 499–561 (2004)CrossRefGoogle Scholar
  6. 6.
    B. Salehi, M. Salehi, K. Nsirnia, P. Soltani, M. Adalatnaghad, N. Kalantari, S. Moghaddam, The effects of selected relaxing music on anxiety and depression during hemodialysis: A randomized crossover controlled clinical trial study. Arts Psychother. 48, 76–80 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Pannese, M.-A. Rappaz, D. Grandjean, Metaphor and music emotion: Ancient views and future directions. Conscious. Cogn. 44, 61–71 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    P. Jannasch, Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8(1), 96–102 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Murali, A. Eisenberg, Ionic miscibility enhancement in poly (tetrafluoroethylene)/poly (ethyl acrylate) blends. I. Dynamic mechanical studies. J. Polym. Sci. B Polym. Phys. 26(7), 1385–1396 (1988)CrossRefGoogle Scholar
  10. 10.
    H. Park, Y. Kim, W.H. Hong, Y.S. Choi, H. Lee, Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38(6), 2289–2295 (2005)CrossRefGoogle Scholar
  11. 11.
    Y.S. Park, Y. Yamazaki, Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polym. Bull. 53(3), 181–192 (2005)CrossRefGoogle Scholar
  12. 12.
    K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics 97(1), 1–15 (1997)CrossRefGoogle Scholar
  13. 13.
    D.E. Moilanen, D.B. Spry, M.D. Fayer, Water dynamics and proton transfer in Nafion fuel cell membranes. Langmuir 24(8), 3690–3698 (2008)CrossRefGoogle Scholar
  14. 14.
    S.H. Park, J.S. Park, S.D. Yim, S.H. Park, Y.M. Lee, C.S. Kim, Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol–gel process. J. Power Sources 181(2), 259–266 (2008)CrossRefGoogle Scholar
  15. 15.
    D. Yang, J. Li, Z. Jiang, L. Lu, X. Chen, Chitosan/TiO 2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 64(13), 3130–3137 (2009)CrossRefGoogle Scholar
  16. 16.
    K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001)CrossRefGoogle Scholar
  17. 17.
    B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications – A review. J. Membr. Sci. 259(1), 10–26 (2005)CrossRefGoogle Scholar
  18. 18.
    J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145(2), 199–209 (1998)CrossRefGoogle Scholar
  19. 19.
    T. Xu, Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 263(1), 1–29 (2005)CrossRefGoogle Scholar
  20. 20.
    M.Y. Kariduraganavar, A.A. Kittur, S.S. Kulkarni, Ion exchange membranes: Preparation, properties, and applications, in Ion Exchange Technology I (Springer Netherlands, 2012), pp. 233–276Google Scholar
  21. 21.
    M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25(10), 1463–1502 (2000)CrossRefGoogle Scholar
  22. 22.
    K.S. Lee, M.H. Jeong, J.P. Lee, Y.J. Kim, J.S. Lee, Synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes. Chem. Mater. 22(19), 5500–5511 (2010)CrossRefGoogle Scholar
  23. 23.
    D.S. Kim, G.P. Robertson, M.D. Guiver, Y.M. Lee, Synthesis of highly fluorinated poly (arylene ether) s copolymers for proton exchange membrane materials. Journal of membrane science, 281(1-2), 111–120 (2006)CrossRefGoogle Scholar
  24. 24.
    J. Jaafar, A.F. Ismail, T. Matsuura, Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J. Membr. Sci. 345(1), 119–127 (2009)CrossRefGoogle Scholar
  25. 25.
    A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRefGoogle Scholar
  26. 26.
    J. Kerres, W. Zhang, L. Jorissen, V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC. J. New Mater. Electrochem. Syst. 5(2), 97–108 (2002)Google Scholar
  27. 27.
    J. Kerres, M. Hein, W. Zhang, S. Graf, N. Nicoloso, Development of new blend membranes for polymer electrolyte fuel cell applications. J. New Mater. Electrochem. Syst. 6(4), 223–230 (2003)Google Scholar
  28. 28.
    J. Kerres, W. Zhang, W. Cui, New sulfonated engineering polymer via the metalation route. 2. Sulfinated-sulfonated poly(ethersulfone) PSU Udel® and its crosslinking. J. Polym. Sci. A Polym. Chem. 36, 1441–1448 (1998)CrossRefGoogle Scholar
  29. 29.
    J. Kerres, W. Cui, S. Reichle, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly (ethersulfone) PSU Udel® via metalation-sulfination-oxidation. J. Polym. Sci. A Polym. Chem. 34(12), 2421–2438 (1996)CrossRefGoogle Scholar
  30. 30.
    N.Y. Arnett, W.L. Harrison, A.S. Badami, A. Roy, O. Lane, F. Cromer, Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells. J. Power Sources 172(1), 20–29 (2007)CrossRefGoogle Scholar
  31. 31.
    C. Bi, H. Zhang, S. Xiao, Y. Zhang, Z. Mai, X. Li, Grafted porous PTFE/partially fluorinated sulfonated poly (arylene ether ketone) composite membrane for PEMFC applications. J. Membr. Sci. 376(1), 170–178 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.S. Kim, W.L. Harrison, J.E. McGrath, B.S. Pivovar, Effect of interfacial resistance on long term performance of direct methanol fuel cells. Paper 334 (2004)Google Scholar
  33. 33.
    J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes, in Proton Conducting Membrane Fuel Cells I: Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells (1995), pp. 95–123Google Scholar
  34. 34.
    H.L. Lin, T.L. Yu, W.K. Chang, C.P. Cheng, C.R. Hu, G.B. Jung, Preparation of a low proton resistance PBI/PTFE composite membrane. J. Power Sources 164(2), 481–487 (2007)CrossRefGoogle Scholar
  35. 35.
    Z. Jie, T. Haolin, P. Mu, Fabrication and characterization of self-assembled Nafion–SiO 2–ePTFE composite membrane of PEM fuel cell. J. Membr. Sci. 312(1), 41–47 (2008)CrossRefGoogle Scholar
  36. 36.
    X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, B. Yi, An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis. J. Phys. Chem. B 110(29), 14240–14248 (2006)CrossRefGoogle Scholar
  37. 37.
    S. Hietala, M. Paronen, S. Holmberg, J. Näsman, J. Juhanoja, M. Karjalainen, …, G. Sundholm, Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride). J. Polym. Sci. A Polym. Chem. 37(12), 1741–1753 (1999)Google Scholar
  38. 38.
    D.I. Livingston, P.M. Kamath, R.S. Corley, Poly-α, β, β-trifluorostyrene. J. Polym. Sci. 20(96), 485–490 (1956)CrossRefGoogle Scholar
  39. 39.
    B. Tazi, O. Savadago, New cation exchange membranes based on Nafion, Silicotungstic acid and thiophene. J. New Mater. Electrochem. Syst., in press (cf. JMS 185, 3–27) (2001)Google Scholar
  40. 40.
    D.C. Corrêa, F.A. Rodrigues, A survey on symbolic data-based music genre classification. Expert Syst. Appl. 60, 190–210 (2016)CrossRefGoogle Scholar
  41. 41.
    R.B. Hodgdon, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules. J. Polym. Sci. Part A-1: Polym. Chem. 6(1), 171–191 (1968)CrossRefGoogle Scholar
  42. 42.
    N.H. Jalani, Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells. Doctoral dissertation, Worcester Polytechnic Institute, 2006Google Scholar
  43. 43.
    J. Wei, C. Stone, A.E. Steck, U.S. Patent no. 5,422,411. (U.S. Patent and Trademark Office, Washington, DC, 1995)Google Scholar
  44. 44.
    J.J. Fontanella, M.C. Wintersgill, J.S. Wainright, R.F. Savinell, M. Litt, High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 43(10), 1289–1294 (1998)CrossRefGoogle Scholar
  45. 45.
    Y.T. Hong, C.H. Lee, H.S. Park, K.A. Min, H.J. Kim, S.Y. Nam, Y.M. Lee, Improvement of electrochemical performances of sulfonated poly (arylene ether sulfone) via incorporation of sulfonated poly (arylene ether benzimidazole). J. Power Sources 175(2), 724–731 (2008)CrossRefGoogle Scholar
  46. 46.
    W. Sheng, G. Chunli, T. Wen-Chin, S. Yao-Chi, T. Fang –Chang, Sulfonated poly(ether sulfone) (sPES)/boron phosphate (BPO4) composite membranes for high temperature proton-exchange membrane fuel cells. Int. J. Hydrog. Energy 34, 8982–8991 (2009)Google Scholar
  47. 47.
    P. Rani, G. Sen, S. Mishra, U. Jha, Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym. 89(1), 275–281 (2012)CrossRefGoogle Scholar
  48. 48.
    A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003)CrossRefGoogle Scholar
  49. 49.
    A. Noshay, L.M. Robeson, Sulfonated polysulfone. J. Appl. Polym. Sci. 20(7), 1885–1903 (1976)CrossRefGoogle Scholar
  50. 50.
    J.L. Kice, A.R. Puls, The reaction of hypochlorite with various oxidized derivatives of disulfides and with sulfinate ions. J. Am. Chem. Soc. 99(10), 3455–3460 (1977)CrossRefGoogle Scholar
  51. 51.
    G. Gebel, P. Aldebert, M. Pineri, Swelling study of perfluorosulphonated ionomer membranes. Polymer 34(2), 333–339 (1993)CrossRefGoogle Scholar
  52. 52.
    F.N. Büchi, B. Gupta, O. Haas, G.G. Scherer, Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim. Acta 40(3), 345–353 (1995)CrossRefGoogle Scholar
  53. 53.
    T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoyl-1, 4-phenylene). Solid State Ionics 106(3), 219–225 (1998)CrossRefGoogle Scholar
  54. 54.
    Q. Guo, P.N. Pintauro, H. Tang, S. O’Connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membr. Sci. 154(2), 175–181 (1999)CrossRefGoogle Scholar
  55. 55.
    E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, M. Pineri, Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/M z+ by electrodialysis comparison with a perfluorosulfonic membrane. J. Membr. Sci. 160(1), 127–137 (1999)CrossRefGoogle Scholar
  56. 56.
    H.R. Allcock, M.A. Hofmann, C.M. Ambler, S.N. Lvov, X.Y. Zhou, E. Chalkova, J. Weston, Phenyl phosphonic acid functionalized poly [aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J. Membr. Sci. 201(1), 47–54 (2002)CrossRefGoogle Scholar
  57. 57.
    H. Bashir, A. Linares, J.L. Acosta, Heterogeneous sulfonation of blend systems based on hydrogenated poly (butadiene–styrene) block copolymer. Electrical and structural characterization. Solid State Ionics 139(3), 189–196 (2001)CrossRefGoogle Scholar
  58. 58.
    M.A. Hofmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, H.R. Allock, Synthesis of polyphosphazenes with sulfonimide side groups. Macromolecules 35, 6490–6493 (2002)CrossRefGoogle Scholar
  59. 59.
    D. Poppe, H. Frey, K.D. Kreuer, A. Heinzel, R. Mülhaupt, Carboxylated and sulfonated poly (arylene-co-arylene sulfone) s: thermostable polyelectrolytes for fuel cell applications. Macromolecules 35(21), 7936–7941 (2002)CrossRefGoogle Scholar
  60. 60.
    S. Haufe, U. Stimming, Proton conducting membranes based on electrolyte filled microporous matrices. J. Membr. Sci. 185(1), 95–103 (2001)CrossRefGoogle Scholar
  61. 61.
    W. Becker, G. Schmidt-Naake, Proton Exchange Membranes by Irradiation Induced Grafting of Styrene Onto FEP and ETFE: Influences of the Crosslinker N, N-Methylene-bis-acrylamide. Chemical engineering & technology, 25(4), 373–377 (2002)Google Scholar
  62. 62.
    T. Xu, D. Wu, L. Wu, Poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) – a versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci. 33(9), 894–915 (2008)CrossRefGoogle Scholar
  63. 63.
    V. Mehta, Analysis of design and manufacturing of proton exchange membrane fuel cells (2002)Google Scholar
  64. 64.
    V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114(1), 32–53 (2003)CrossRefGoogle Scholar
  65. 65.
    H. Miyake, The design and development of Flemion membranes, in Modern chlor-alkali technology. (Springer Netherlands, 1992), pp. 59–67Google Scholar
  66. 66.
    B.S. Pivovar, Y. Wang, E.L. Cussler, Pervaporation membranes in direct methanol fuel cells. J. Membr. Sci. 154(2), 155–162 (1999)CrossRefGoogle Scholar
  67. 67.
    T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23), 5341–5357 (2009)CrossRefGoogle Scholar
  68. 68.
    H.L. Wu, C.C.M. Ma, F.Y. Liu, C.Y. Chen, S.J. Lee, C.L. Chiang, Preparation and characterization of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend membranes. Eur. Polym. J. 42(7), 1688–1695 (2006)CrossRefGoogle Scholar
  69. 69.
    B. Smitha, G. Dhanuja, S. Sridhar, Dehydration of 1, 4-dioxane by pervaporation using modified blend membranes of chitosan and nylon 66. Carbohydr. Polym. 66(4), 463–472 (2006)CrossRefGoogle Scholar
  70. 70.
    J.K. Lee, W. Li, A. Manthiram, Poly (arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J. Membr. Sci. 330, 73–79 (2009)CrossRefGoogle Scholar
  71. 71.
    S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010)CrossRefGoogle Scholar
  72. 72.
    R.P. Kambour, J.T. Bendler, R.C. Bopp, Phase behavior of polystyrene, poly (2, 6-dimethyl-1, 4-phenylene oxide), and their brominated derivatives. Macromolecules 16(5), 753–757 (1983)CrossRefGoogle Scholar
  73. 73.
    P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229(1), 95–106 (2004)CrossRefGoogle Scholar
  74. 74.
    M. Alexander, E.T. Thachil, A comparative study of cardanol and aromatic oil as plasticizers for carbon-black-filled natural rubber. J. Appl. Polym. Sci. 102(5), 4835–4841 (2006)CrossRefGoogle Scholar
  75. 75.
    S. Sinha, M. Ali, S. Baboota, A. Ahuja, A. Kumar, J. Ali, Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 11(2), 518–527 (2010)PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    S. Natarajan, J.J. Moses, Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium. Indian J. Fibre Text. Res. 37, 287–291 (2012)Google Scholar
  77. 77.
    H. Pu, W.H. Meyer, G. Wegner, Proton conductivity in acid-blended poly (4-vinylimidazole). Macromol. Chem. Phys. 202(9), 1478–1482 (2001)CrossRefGoogle Scholar
  78. 78.
    A. Bozkurt, W.H. Meyer, Proton-conducting poly (vinylpyrrolidon)–polyphosphoric acid blends. J. Polym. Sci. B Polym. Phys. 39(17), 1987–1994 (2001)CrossRefGoogle Scholar
  79. 79.
    C. Hasiotis, V. Deimede, C. Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim. Acta 46(15), 2401–2406 (2001)CrossRefGoogle Scholar
  80. 80.
    C. Hasiotis, L. Qingfeng, V. Deimede, J.K. Kallitsis, C.G. Kontoyannis, N.J. Bjerrum, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J. Electrochem. Soc. 148(5), A513–A519 (2001)CrossRefGoogle Scholar
  81. 81.
    J. Kerres, A. Ullrich, F. Meier, T. Haring, Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999)CrossRefGoogle Scholar
  82. 82.
    T. Xue, J.S. Trent, K. Osseo-Asare, Characterization of nafion® membranes by transmission electron microscopy. J. Membr. Sci. 45(3), 261–271 (1989)CrossRefGoogle Scholar
  83. 83.
    W. Priedel, M. Baldauf, U. Gebhardt, J. Kerres, A. Ullrich, New ionomer membranes and their FC applications. 2. H2 fuel cell and DMFC application, in Extended Abstracts of Third International Symposium New Materials for Electrochemical Systems, Montreal, 1999, pp. 233–234Google Scholar
  84. 84.
    J. Kerres, A. Ullrich, T. Haring, M. Baldauf, U. Gebhardt, W. Preidel, Preparation, characterization, and fuel cell application of new acid-base blend membranes. J. New Mater. Electrochem. Syst. 3(3), 229–240 (2000)Google Scholar
  85. 85.
    D. Wu, T. Xu, L. Wu, Y. Wu, Hybrid acid–base polymer membranes prepared for application in fuel cells. J. Power Sources 186(2), 286–292 (2009)CrossRefGoogle Scholar
  86. 86.
    Y.F. Liang, H.Y. Pan, X.L. Zhu, Y.X. Zhang, X.G. Jian, Studies on synthesis and property of novel acid–base proton exchange membranes. Chin. Chem. Lett. 18(5), 609–612 (2007)CrossRefGoogle Scholar
  87. 87.
    L. Qingfeng, H.A. Hjuler, N.J. Bjerrum, Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 31(7), 773–779 (2001)CrossRefGoogle Scholar
  88. 88.
    S.R. Samms, S. Wasmus, R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J. Electrochem. Soc. 143(4), 1225–1232 (1996)CrossRefGoogle Scholar
  89. 89.
    R. Bouchet, S. Miller, M. Deulot, J.L. Sonquet, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 1(45), 69–78 (2001)CrossRefGoogle Scholar
  90. 90.
    P. Steiner, R. Sandor, Polybenzimidazole prepreg: improved elevated temperature properties with autoclave processability. High Perform. Polym. (UK) 3(3), 139–150 (1991)CrossRefGoogle Scholar
  91. 91.
    Y. Liu, J.H. He, J.Y. Yu, H.M. Zeng, Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 57(4), 632–636 (2008)CrossRefGoogle Scholar
  92. 92.
    J. Won, J.S. Seo, J.H. Kim, H.S. Kim, Y.S. Kang, S.J. Kim, …, J. Jegal, Coordination compound molecular sieve membranes. Adv. Mater. 17(1), 80–84 (2005)CrossRefGoogle Scholar
  93. 93.
    N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 128(5), 1762–1769 (2006)CrossRefGoogle Scholar
  94. 94.
    C. Feng, K.C. Khulbe, T. Matsuura, Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 115(2), 756–776 (2010)CrossRefGoogle Scholar
  95. 95.
    P. Lu, B. Ding, Applications of electrospun fibers. Recent Pat. Nanotechnol. 2(3), 169–182 (2008)CrossRefGoogle Scholar
  96. 96.
    Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRefGoogle Scholar
  97. 97.
    I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process – A review. J. Mater. Process. Technol. 167(2), 283–293 (2005)CrossRefGoogle Scholar
  98. 98.
    T.N. Cason, L. Gangadharan, Price discovery and intermediation in linked emissions trading markets: A laboratory study. Ecol. Econ. 70(7), 1424–1433 (2011)CrossRefGoogle Scholar
  99. 99.
    A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70(5), 703–718 (2010)CrossRefGoogle Scholar
  100. 100.
    G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams, Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290(2), 390–395 (1984)CrossRefGoogle Scholar
  101. 101.
    Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRefGoogle Scholar
  102. 102.
    A. Zucchelli, D. Fabiani, C. Gualandi, M.L. Focarete, An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. J. Mater. Sci. 44(18), 4969–4975 (2009)CrossRefGoogle Scholar
  103. 103.
    B. Dong, L. Gwee, D. Salas-de La Cruz, K.I. Winey, Y.A. Elabd, Super proton conductive high-purity Nafion nanofibers. Nano Lett. 10(9), 3785–3790 (2010)CrossRefGoogle Scholar
  104. 104.
    K.A. Mauritz, R.B. Moore, State of understanding of Nafion. Chem. Rev. 104(10), 4535–4586 (2004)CrossRefGoogle Scholar
  105. 105.
    T. Tamura, H. Kawakami, Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 10(4), 1324–1328 (2010)CrossRefGoogle Scholar
  106. 106.
    N. Hamid, J. Stanger, N. Tucker, N. Buunk, A. Wood, M. Staiger, Control of spatial deposition of electrospun fiber using electric field manipulation. J. Eng. Fibers Fabr. 9(1), 155–164 (2014)Google Scholar
  107. 107.
    C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, …, J. Zhu, Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 20(9), 1644–1648 (2008)CrossRefGoogle Scholar
  108. 108.
    L. Li, J. Zhang, Y. Wang, Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 226(1), 159–167 (2003)CrossRefGoogle Scholar
  109. 109.
    J.M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, R. Jérôme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application. J. Membr. Sci. 270(1), 50–56 (2006)CrossRefGoogle Scholar
  110. 110.
    S.J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim. Acta 50(24), 4771–4777 (2005)CrossRefGoogle Scholar
  111. 111.
    H. Doğan, T.Y. Inan, M. Koral, M. Kaya, Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl. Clay Sci. 52(3), 285–294 (2011)CrossRefGoogle Scholar
  112. 112.
    C. Lee, S.M. Jo, J. Choi, K.Y. Baek, Y.B. Truong, I.L. Kyratzis, Y.G. Shul, SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J. Mater. Sci. 48(10), 3665–3671 (2013)CrossRefGoogle Scholar
  113. 113.
    J. Jaafar, A.F. Ismail, T. Matsuura, K. Nagai, Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC. J. Membr. Sci. 382(1), 202–211 (2011)CrossRefGoogle Scholar
  114. 114.
    S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly (ether ether ketone)(SPEEK). J. Membr. Sci. 233(1), 93–99 (2004)CrossRefGoogle Scholar
  115. 115.
    C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, H. Na, Synthesis of the block sulfonated poly (ether ether ketone)s (S-PEEKs) materials for proton exchange membrane. J. Membr. Sci. 280(1), 643–650 (2006)CrossRefGoogle Scholar
  116. 116.
    S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine, Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids. J. Polym. Sci. B Polym. Phys. 38(10), 1386–1395 (2000)CrossRefGoogle Scholar
  117. 117.
    C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J. Membr. Sci. 206(1), 443–453 (2002)CrossRefGoogle Scholar
  118. 118.
    H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, H. Na, Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance. J. Membr. Sci. 308(1), 66–74 (2008)CrossRefGoogle Scholar
  119. 119.
    C.S. Karthikeyan, S.P. Nunes, L.A.S.A. Prado, M.L. Ponce, H. Silva, B. Ruffmann, K. Schulte, Polymer nanocomposite membranes for DMFC application. J. Membr. Sci. 254(1), 139–146 (2005)CrossRefGoogle Scholar
  120. 120.
    H. Ohya, R. Paterson, T. Nomura, S. McFadzean, T. Suzuki, M. Kogure, Properties of new inorganic membranes prepared by metal alkoxide methods Part I: A new permselective cation exchange membrane based on Si/Ta oxides. J. Membr. Sci. 105(1–2), 103–112 (1995)CrossRefGoogle Scholar
  121. 121.
    P.L. Antonucci, A.S. Arico, P. Cretı, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125(1), 431–437 (1999)CrossRefGoogle Scholar
  122. 122.
    B. Baradie, J.P. Dodelet, D. Guay, Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J. Electroanal. Chem. 489(1), 101–105 (2000)CrossRefGoogle Scholar
  123. 123.
    S. Wasmus, A. Valeriu, G.D. Mateescu, D.A. Tryk, R.F. Savinell, Characterization of H3PO4-equilibrated Nafion® 117 membranes using 1H and 31P NMR spectroscopy. Solid State Ionics 80(1–2), 87–92 (1995)CrossRefGoogle Scholar
  124. 124.
    L. Mex, J. Müller, Plasma-polymerised electrolyte membrane for miniaturised direct methanol fuel cells. Membr. Technol. 1999(115), 5–9 (1999)CrossRefGoogle Scholar
  125. 125.
    F. Finsterwalder, G. Hambitzer, Proton conductive thin films prepared by plasma polymerization. J. Membr. Sci. 185(1), 105–124 (2001)CrossRefGoogle Scholar
  126. 126.
    B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, U.S. Patent no. 5,547,551. (U.S. Patent and Trademark Office, Washington, DC, 1996)Google Scholar
  127. 127.
    C. Seyb, J. Kerres, Novel partially fluorinated sulfonated poly (arylenethioether)s and poly (aryleneether)s prepared from octafluorotoluene and pentafluoropyridine, and their blends with PBI-Celazol. Eur. Polym. J. 49(2), 518–531 (2013)CrossRefGoogle Scholar
  128. 128.
    G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21(18), 8487–8494 (2005)CrossRefGoogle Scholar
  129. 129.
    F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci. 197(1–2), 231–242 (2002)CrossRefGoogle Scholar
  130. 130.
    B. Lafitte, L.E. Karlsson, P. Jannasch, Sulfophenylation of polysulfones for proton-conducting fuel cell membranes. Macromol. Rapid Commun. 23(15), 896–900 (2002)CrossRefGoogle Scholar
  131. 131.
    Y.Z. Meng, S.C. Tjong, A.S. Hay, S.J. Wang, Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether) s. J. Polym. Sci. A Polym. Chem. 39(19), 3218–3226 (2001)CrossRefGoogle Scholar
  132. 132.
    L. Jörissen, V. Gogel, J. Kerres, J. Garche, New membranes for direct methanol fuel cells. J. Power Sources 105(2), 267–273 (2002)CrossRefGoogle Scholar
  133. 133.
    Y.A. Elabd, E. Napadensky, J.M. Sloan, D.M. Crawford, C.W. Walker, Triblock copolymer ionomer membranes: Part I. Methanol and proton transport. J. Membr. Sci. 217(1), 227–242 (2003)CrossRefGoogle Scholar
  134. 134.
    A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, … & K.V. Peinemann, Ion exchange membranes derived from sulfonated polyaramides. React. Funct. Polym. 57(2), 77–92 (2003)Google Scholar
  135. 135.
    M.S. Kang, Y.J. Choi, I.J. Choi, T.H. Yoon, S.H. Moon, Electrochemical characterization of sulfonated poly (arylene ether sulfone)(S-PES) cation-exchange membranes. J. Membr. Sci. 216(1), 39–53 (2003)CrossRefGoogle Scholar
  136. 136.
    A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt, J. Meier-Haack, Sulfonated multiblock copoly (ether sulfone) s as membrane materials for fuel cell applications, in Macromolecular Symposia, vol. 210, no. 1. (WILEY-VCH Verlag, 2004), pp. 175–184Google Scholar
  137. 137.
    G. Xiao, G. Sun, D. Yan, Synthesis and characterization of novel sulfonated poly (arylene ether ketone)s derived from 4, 4′-sulfonyldiphenol. Polym. Bull. 48(4), 309–315 (2002)CrossRefGoogle Scholar
  138. 138.
    C. Vogel, J. Meier-Haack, A. Taeger, D. Lehmann, On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel Cells 4(4), 320–327 (2004)CrossRefGoogle Scholar
  139. 139.
    J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K.I. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4′-diaminodiphenyl ether-2, 2′-disulfonic acid. Macromolecules 35(24), 9022–9028 (2002)CrossRefGoogle Scholar
  140. 140.
    C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42(2), 359–373 (2001)CrossRefGoogle Scholar
  141. 141.
    C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42(12), 5097–5105 (2001)CrossRefGoogle Scholar
  142. 142.
    S. Besse, P. Capron, O. Diat, G. Gebel, F. Jousse, D. Marsacq, …, R. Mercier, Sulfonated polyimidesfor fuel cell electrode membrane assemblies (EMA). J. New Mater. Electrochem. Syst. 5, 109–112 (2002)Google Scholar
  143. 143.
    J.A. Asensio, S. Borrós, P. Gómez-Romero, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J. Polym. Sci. A Polym. Chem. 40(21), 3703–3710 (2002)CrossRefGoogle Scholar
  144. 144.
    J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147(1), 189–194 (2002)CrossRefGoogle Scholar
  145. 145.
    R. Carter, R. Wycisk, H. Yoo, P.N. Pintauro, Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 5(9), A195–A197 (2002)CrossRefGoogle Scholar
  146. 146.
    M. Schuster, W.H. Meyer, G. Wegner, H.G. Herz, M. Ise, K.D. Kreuer, J. Maier, Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ionics 145(1), 85–92 (2001)CrossRefGoogle Scholar
  147. 147.
    Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34(5), 449–477 (2009)CrossRefGoogle Scholar
  148. 148.
    V. Mama, R.A. Vargas, B.E. Mellander, New proton conducting membranes based on PVAL/H3 PO2/H2O. Electrochim. Acta 44, 4227–4232 (1999)Google Scholar
  149. 149.
    A. Bozkurt, W.H. Meyer, Proton conducting blends of poly (4-vinylimidazole) with phosphoric acid. Solid State Ionics 138(3), 259–265 (2001)CrossRefGoogle Scholar
  150. 150.
    J.C. Lassegues, J. Grondin, M. Hernandez, B. Maree, Proton conducting polymer blends and hybrid organic inorganic materials. Solid State Ionics 145(1), 37–45 (2001)CrossRefGoogle Scholar
  151. 151.
    R.Q. Fu, D. Julius, L. Hong, J.Y. Lee, PPO-based acid–base polymer blend membranes for direct methanol fuel cells. J. Membr. Sci. 322(2), 331–338 (2008)CrossRefGoogle Scholar
  152. 152.
    T.Z. Fu, Z.M. Cui, S.L. Zhong, Y.H. Shi, C.J. Zhao, G. Zhang, …, W Xing, Sulfonated poly (ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. J. Power Sources (2008)Google Scholar
  153. 153.
    Y.Z. Fu, A. Manthiram, Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. J. Power Sources 157(1), 222–225 (2006)CrossRefGoogle Scholar
  154. 154.
    J. Peron, E. Ruiz, D.J. Jones, J. Rozière, Solution sulfonation of a novel polybenzimidazole: A proton electrolyte for fuel cell application. J. Membr. Sci. 314(1), 247–256 (2008)CrossRefGoogle Scholar
  155. 155.
    J. Jaafar, A.F. Ismail, A. Mustafa, Physicochemical study of poly (ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater. Sci. Eng. A 460, 475–484 (2007)CrossRefGoogle Scholar
  156. 156.
    Y. Xiong, J. Fang, Q.H. Zeng, Q.L. Liu, Preparation and characterization of cross-linked quaternized poly (vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1), 319–325 (2008)CrossRefGoogle Scholar
  157. 157.
    R. Neppalli, S. Wanjale, M. Birajdar, V. Causin, The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly (vinylidene fluoride). Eur. Polym. J. 49(1), 90–99 (2013)CrossRefGoogle Scholar
  158. 158.
    W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)CrossRefGoogle Scholar
  159. 159.
    A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRefGoogle Scholar
  160. 160.
    S.-H. Yun, J.-J. Woo, S.-J. Seo, L. Wu, D. Wu, T. Xu, S.-H. Moon, Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J. Membr. Sci. 367(1), 296–305 (2011)CrossRefGoogle Scholar
  161. 161.
    S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)CrossRefGoogle Scholar
  162. 162.
    Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly (vinylidene fluoride). ACS Appl. Mater. Interfaces 2(6), 1759–1768 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    H. Junoh, J. Jaafar, M.H.D. Othman, M.A. Rahman, Polymer based membrane electrospun fiber in fuel cell application: A short review (2014)Google Scholar
  164. 164.
    Z. Gaowen, Z. Zhentao, Organic/inorganic composite membranes for application in DMFC. J. Membr. Sci. 261(1–2), 107–113 (2005)CrossRefGoogle Scholar
  165. 165.
    X. Zhu, H. Zhang, Y. Liang, Y. Zhang, Q. Luo, C. Bi, B. Yi, Challenging reinforced composite polymer electrolyte membranes based on disulfonated poly (arylene ether sulfone)-impregnated expanded PTFE for fuel cell applications. J. Mater. Chem. 17(4), 386–397 (2007)CrossRefGoogle Scholar
  166. 166.
    H. Tang, M. Pan, S.P. Jiang, X. Wang, Y. Ruan, Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochim. Acta 52(16), 5304–5311 (2007)CrossRefGoogle Scholar
  167. 167.
    N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. React. Funct. Polym. 86, 248–258 (2015)CrossRefGoogle Scholar
  168. 168.
    H.S. Thiam, W.R.W. Daud, S.K. Kamarudin, A.B.. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Nafion/Pd–SiO 2 nanofiber composite membranes for direct methanol fuel cell applications. Int. J. Hydrog. Energy 38(22), 9474–9483 (2013)CrossRefGoogle Scholar
  169. 169.
    W. Yuan, G. Fang, Z. Li, Y. Chen, Y. Tang, Using electrospinning-based carbon nanofiber webs for methanol crossover control in passive direct methanol fuel cells. Materials 11(1), 71 (2018)PubMedCentralCrossRefPubMedGoogle Scholar
  170. 170.
    M. Salahuddin, M.N. Uddin, G. Hwang, R. Asmatulu, Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management. Int. J. Hydrog. Energy 43(25), 11530–11538 (2018)CrossRefGoogle Scholar
  171. 171.
    N. Abdullah, S.K. Kamarudin, L.K. Shyuan, Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances. Nanoscale Res. Lett. 13(1), 90 (2018)Google Scholar
  172. 172.
    B. Munavalli, A. Torvi, M. Kariduraganavar, A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer 142, 293–309 (2018)CrossRefGoogle Scholar
  173. 173.
    A.S. Aricó, V. Baglio, V. Antonucci, Electrocatalysis of Direct Methanol Fuel Cells (Verlag GmbH & Co., Weinheim, 2009)Google Scholar
  174. 174.
    S. Jang, Y.G. Yoon, Y.S. Lee, Y.W. Choi, One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells. J. Membr. Sci. 563, 896–902 (2018)CrossRefGoogle Scholar
  175. 175.
    S. Chan, J. Jankovic, D. Susac, M.S. Saha, M. Tam, H. Yang, F. Ko, Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J. Power Sources 392, 239–250 (2018)CrossRefGoogle Scholar
  176. 176.
    N. Awang, J. Jaafar, A.F. Ismail, Thermal stability and water content study of void-free electrospun SPEEK/Cloisite membrane for direct methanol fuel cell application. Polymers 10(2), 194 (2018)PubMedCentralCrossRefPubMedGoogle Scholar
  177. 177.
    F. Helmer-Metzman, F. Osan, A. Schneller, H. Ritter, K. Ledjeff, R. Nolte, R. Thorwirth, Polymer electrolyte membrane, and process for the production thereof, US Patent 5,438,082 (1995)Google Scholar
  178. 178.
    H. Junoh, J. Jaafar, N.A.M. Nor, N. Awang, M.N.A.M. Norddin, A.F. Ismail, … & W. N. W. Salleh, J. Membr. Sci. Res. (2018)Google Scholar
  179. 179.
    N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N. Yusof, et al., Development of dense void-free electrospun SPEEK-Cloisite15A membrane for direct methanol fuel cell application: Optimization using response surface methodology. Int. J. Hydrog. Energy 42(42), 26496–26510 (2017)CrossRefGoogle Scholar
  180. 180.
    J. Jaafar, Development and characterization of sulfonated poly (ether ether ketone) membrane for direct methanol fuel cell. Universiti Teknologi Malaysia. M.Sc. Thesis, 2006Google Scholar
  181. 181.
    N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Effects of SPEEK/Cloisite concentration as electrospinning parameter on proton exchange membrane for direct methanol fuel cell application. Mater. Sci. Forum 890, 278 (2017). Trans Tech Publications LtdGoogle Scholar
  182. 182.
    N. Awang, J. Jaafar, A.F. Ismail, T. Matsuura, M.H.D. Othman, M.A. Rahman, Electrospun nanocomposite materials for polymer electrolyte membrane methanol fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes, (Springer, Cham, 2017), pp. 165–191CrossRefGoogle Scholar
  183. 183.
    M.A. Mohamed, M.A. Mutalib, Z.A.M. Hir, M.F.M. Zain, A.B. Mohamad, L.J. Minggu, et al., An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232–1256 (2017)CrossRefGoogle Scholar
  184. 184.
    M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M.A. Mutalib, A.B. Mohamad, et al., Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr. Polym. 157, 1892–1902 (2017)CrossRefGoogle Scholar
  185. 185.
    J.P. Luongo, Infrared study of oxygenated groups formed in polyethylene during oxidation. J. Polym. Sci. 42(139), 139–150 (1960)CrossRefGoogle Scholar
  186. 186.
    M.A. Abdelkareem, Y. Al Haj, M. Alajami, H. Alawadhi, N.A. Barakat, Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell. J. Environ. Chem. Eng. 6(1), 332–337 (2018)CrossRefGoogle Scholar
  187. 187.
    A.R. Ashraf, J.J. Ryan, M.M. Satkowski, S.D. Smith, R.J. Spontak, Effect of systematic hydrogenation on the phase behavior and nanostructural dimensions of block copolymers. ACS Appl. Mater. Interfaces 10(4), 3186–3190 (2018)CrossRefGoogle Scholar
  188. 188.
    Li, J. Zhang, Y. Wang, sulfonated poly (ether ether ketone) mem-branes for direct methanol fuel cell, J. Membr. Sci. 226, 159 (2003)CrossRefGoogle Scholar
  189. 189.
    T. Sancho, J. Lemus, M. Urbiztondo, J. Soler, M.P. Pina, Zeolites and zeotype materials as efficient barriers for methanol cross-over in DMFCs. Microporous and Mesoporous Materials, 115(1-2), 206–213 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Advanced Membrane Technology Research Centre (AMTEC)Universiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Department of Chemical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations