Polymer Functionalization

  • Lindsey A. Bultema
  • Xia Huang
  • Daniel D. Brauer
  • Patrick TheatoEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


This chapter provides an overview of the many facets of polymer functionalization. To build upon the basic foundation of polymer functionalization, some general considerations are outlined first. This includes various methods to synthesize functional polymers and an overview of reactions frequently employed in postpolymerization modification. Additionally a brief history of polymer functionalization dating back to the vulcanization of rubber in 1840 is discussed. Following the general considerations, the chapter is divided into specific functional groups and modern reactions. The functional groups discussed here include activated esters, anhydrides, isocyanates, and ketenes, oxazolones and epoxides, aldehydes and ketones, azides and alkynes, dienes, and dienophiles, tetrazines, halides, and thiols. To showcase the versatility of the functional groups, side chain modification and end group modification are included within each section. Finally, future prospects in polymer functionalization are briefly mentioned.



X. Huang kindly acknowledges the financial support of The China Scholarship Council (CSC, Grant 201506240019). D. D. Brauer kindly acknowledges the support of the German American Fulbright Commission through a Fulbright grant.


  1. 1.
    M. Hurtgen, A. Debuigne, C.A. Fustin, C. J’erˆome, C. Detrembleur, Organometallic-mediated radical polymerization: Unusual route toward (quasi-) diblock graft copolymers starting from a mixture of monomers of opposed reactivity. Macromolecules 44(12), 4623–4631 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Bonilla-Cruz, L. Caballero, M. Albores-Velasco, E. Saldlvar-Guerra, J. Percino, V. Chapela, Mechanism and kinetics of the induction period in nitroxide mediated thermal autopolymerizations. Application to the spontaneous copolymerization of styrene and maleic anhydride. Radic. Polymer. Kinet. Mech. 132–140 (2007)CrossRefGoogle Scholar
  3. 3.
    D.E. Bergbreiter, N. Priyadarshani, Syntheses of terminally functionalized polyisobutylene derivatives using diazonium salts. J. Polym. Sci. A Polym. Chem. 49(8), 1772–1783 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Godoy Lopez, C. Boisson, F. D’Agosto, R. Spitz, F. Boisson, P. Tordo, Direct syntheses of macroalkoxyamines based on polyethylene. Macromolecules 37, 3540–3542 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Bonilla-Cruz, C. Guerrero-Sa’nchez, U.S. Schubert, E. Sald’ıvar-Guerra, Controlled grafting-from of poly [styrene-co-maleic anhydride] onto polydienes using nitroxide chemistry. Eur. Polym. J. 46(2), 298–312 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Qin, D. Qin, W.T. Ford, D.E. Resasco, J.E. Herrera, Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37(3), 752–757 (2004)CrossRefGoogle Scholar
  7. 7.
    J. Bonilla-Cruz, M. Dehonor, E. Saldivar-Guerra, A. Gonzalez-Montiel, in Handbook of Polymer Synthesis, Characterization, and Processing. Polymer modification (Wiley, Hoboken, 2013), pp. 205–223CrossRefGoogle Scholar
  8. 8.
    Z. Li, K. Zhang, J. Ma, C. Cheng, K.L. Wooley, Facile syntheses of cylindrical molecular brushes by a sequential RAFT and ROMP grafting-through methodology. J. Polym. Sci. A Polym. Chem. 47(20), 5557–5563 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    D.A. Hucul, S.F. Hahn, Catalytic hydrogenation of polystyrene. Adv. Mater. 12(23), 1855–1858 (2000)CrossRefGoogle Scholar
  10. 10.
    P.J. Roth, K.T. Wiss, P. Theato, Post-Polymerization Modification, vol 5 (Elsevier B.V., 2012), Amsterdam, pp. 247–267Google Scholar
  11. 11.
    D. Zuchowska, Polybutadiene modified by epoxidation. 1. Effect of polybutadiene microstructure on the reactivity of double bonds. Polymer 21(5), 514–520 (1980)CrossRefGoogle Scholar
  12. 12.
    E.M. Cross, T. J. McCarthy, Radical chlorination of polyethylene film: control of surface selectivity. Macromolecules. 25, 2603–2607 (1992)CrossRefGoogle Scholar
  13. 13.
    E. Klesper, D. Strasilla, M.C. Berg, 1H-NMR of the Esterification of Syndiotacticpoly(methacrylic acid) with CArbodiimides– I Esterification with methanol. Eur. Polym. J. 15, 587–591 (1979)CrossRefGoogle Scholar
  14. 14.
    T. Heinze, T. Liebert, Unconventional methods in cellulose functionalization. Prog. Polym. Sci. (Oxford) 26(9), 1689–1762 (2001)CrossRefGoogle Scholar
  15. 15.
    V.V. Korshak, The synthesis of polymers by modification methods the synthesis of polymers by modification methods. Russ. Chem. Rev. 49(12), 1135–1980 (1980)CrossRefGoogle Scholar
  16. 16.
    A. Ueno, C. Schuerch, Racemization of isotactic poly(isopropyl acrylate). J. Polym Sci. Polym. Lett. 3, 53–56 (1965)CrossRefGoogle Scholar
  17. 17.
    P.E. Dawson, T.W. Muir, I. Clarklewis, S.B.H. Kent, Synthesis of proteins by native chemical ligation. Science 266(5186), 776–779 (1994)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    W.A. Cunningham, Sulfur. III. J. Chem. Educ. 12(3), 120–124 (1935)CrossRefGoogle Scholar
  19. 19.
    R.E. Oesper, Christian Friedrich Schönbein Part II. Experimental labors. J. Chem. Educ. 6(4), 677–685 (1929)CrossRefGoogle Scholar
  20. 20.
    P. Rustemeyer, History of CA and evolution of the markets. Macromol. Symp. 208, 1–6 (2004)CrossRefGoogle Scholar
  21. 21.
    H. Staudinger, J. Fritschi, Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution. Helv. Chim. Acta 5(5), 785–806 (1922)CrossRefGoogle Scholar
  22. 22.
    G.E. Serniuk, F.W. Banes, M.W. Swaney, Study of the reaction of Buna rubbers with aliphatic mercaptans. J. Am. Chem. Soc. 70(5), 1804–1808 (1948)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    K. W. Pepper, H. M. Paisley, M. A, Young Properties of ion-exchange resins in relation to their structure. Part VI. Anion-exchange resins derived from styrene-divinyl-benzene copolymers (resumed). J. Am. Chem. Soc. 833, 4097–4105 (1953)Google Scholar
  24. 24.
    R.B. Merrifield, Solid phase peptide synthesis. I. The synthesis of. J. Am. Chem. Soc. 85(14), 2149 (1963)CrossRefGoogle Scholar
  25. 25.
    W. Kern, R.C. Schulz, D. Braun, Macro-molecules with groups of high reactivity. J. Polym. Sci. 48, 91–99 (1960)CrossRefGoogle Scholar
  26. 26.
    P.E. Blatz, O. Xocony, New polyelectrolytes: Synthesis and preliminary characterization. J. Polym. Sci. 58, 755–768 (1962)CrossRefGoogle Scholar
  27. 27.
    C.J. Hawker, A.W. Bosman, E. Harth, New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101(12), 3661–3688 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    J.S. Wang, K. Matyjaszewski, Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117(6), 5614–5615 (1995)CrossRefGoogle Scholar
  29. 29.
    J. Chiefari, Y.K. Bill Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, S.H. Thang, Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(98), 5559–5562 (1998)CrossRefGoogle Scholar
  30. 30.
    M.A. Tasdelen, B. Kiskan, Y. Yagci, Externally stimulated click reactions for macromolecular syntheses dedicated to Prof. Krzysztof Matyjaszewski on the occasion of his 65th birthday. Prog. Polym. Sci. 52, 19–78 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Ferruti, A. Bettelli, A. Fer’e, High polymers of acrylic and methacrylic esters of N-hydroxysuccinimide as polyacrylamide and polymethacrylamide precursors. Polymer 13(10), 462–464 (1972)CrossRefGoogle Scholar
  32. 32.
    H.-G. Batz, G. Franzmann, H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angew. Chem. Int. Ed. Engl. 11(12), 1103–1104 (1972)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    G.W. Cline, S.B. Hanna, Kinetics and mechanisms of the aminolysis of N-hydroxysuccinimide esters in aqueous buffers. J. Org. Chem. 53(15), 3583–3586 (1988)CrossRefGoogle Scholar
  34. 34.
    D.E. Bergbreiter, R. Hughes, J. Besinaiz, C. Li, P.L. Osburn, Phase-selective solubility of poly ( N-alkylacrylamide ) s. J. Am. Chem. Soc. 125(c), 8244–8249 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    S.R.A. Devenish, J.B. Hill, J.W. Blunt, J.C. Morris, M.H.G. Munro, Dual side-reactions limit the utility of a key polymer therapeutic precursor. Tetrahedron Lett. 47(17), 2875–2878 (2006)CrossRefGoogle Scholar
  36. 36.
    S.Y. Wong, D. Putnam, Overcoming limiting side rxns associated w NHS-activated precursor polymethacrylamide-based polymer. Bioconjug. Chem. 18(3), 970–982 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    P. Theato, J.-u. Kim, J.-c. Lee, Controlled radical polymerization of active ester monomers: precursor polymers for highly functionalized materials. Macromolecules 37(15), 5475–5478 (2004)CrossRefGoogle Scholar
  38. 38.
    S.Y. Wong, N. Sood, D. Putnam, Combinatorial evaluation of cations, pH-sensitive and hydrophobic moieties for polymeric vector design. Mol. Ther. 17(3), 480–490 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    C.M. Leon, B.H. Lee, M. Preul, R. McLemore, B.L. Vernon, Synthesis and characterization of radio-opaque thermosensitive poly N-isopropylacrylamide-2,2′- (ethylenedioxy)bis (ethylamine)-2,3,5-triiodobenzamide. Polym. Int. 58(8), 847–850 (2009)CrossRefGoogle Scholar
  40. 40.
    V. Sˇubr, K. Ulbrich, Synthesis and properties of new N-(2-hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 66(12), 1525–1538 (2006)CrossRefGoogle Scholar
  41. 41.
    M. Eberhardt, R. Mruk, R. Zentel, P. Th’eato, Synthesis of pentafluorophenyl(meth)acrylate polymers: new precursor polymers for the synthesis of multifunctional materials. Eur. Polym. J. 41(7), 1569–1575 (2005)CrossRefGoogle Scholar
  42. 42.
    K. Nilles, P. Theato, Synthesis and polymerization of active ester monomers based on 4-vinylbenzoic acid. Eur. Polym. J. 43(7), 2901–2912 (2007)CrossRefGoogle Scholar
  43. 43.
    K. Nilles, P. Theato, RAFT polymerization of activated 4-vinylbenzoates. J. Polym. Sci. A: Polim. Chem. 47, 1696–1705 (2009)CrossRefGoogle Scholar
  44. 44.
    A. Das, P. Theato, Multifaceted synthetic route to functional polyacrylates by transesterification of poly(pentafluorophenyl acrylates). Macromolecules 48(24), 8695–8707 (2015)CrossRefGoogle Scholar
  45. 45.
    J. Parvole, L. Ahrens, H. Blas, J. Vinas, C. Boissiere, C. Sanchez, M. Save, B. Charleux, Grafting polymer chains bearing an N -succinimidyl activated ester endgroup onto primary amine-coated silica particles and application of a simple, one-step approach via nitroxide-mediated controlled/living free-radical polymerization. J. Polym. Sci. A Polym. Chem. 48(1), 173–185 (2010)CrossRefGoogle Scholar
  46. 46.
    V. Ladmiral, L. Monaghan, G. Mantovani, D.M. Haddleton, α-Functional glycopolymers: new materials for (poly)peptide conjugation. Polymer 46(19), 8536–8545 (2005)CrossRefGoogle Scholar
  47. 47.
    J. Vinas, N. Chagneux, D. Gigmes, T. Trimaille, A. Favier, D. Bertin, SG1-based alkoxyamine bearing a N-succinimidyl ester: a versatile tool for advanced polymer synthesis. Polymer 49(17), 3639–3647 (2008)CrossRefGoogle Scholar
  48. 48.
    D. Samantha, S. McRae, B. Cooper, Y. Hu, T. Emrick, J. Pratt, S.A. Charles, End-functionalized phosphorylcholine methacrylates and their use in protein conjugation. Biomacromolecules 9(10), 2891–2897 (2008)CrossRefGoogle Scholar
  49. 49.
    A. Lewis, Y. Tang, S. Brocchini, J.W. Choi, A. Godwin, Poly(2-methacryloyloxyethyl phosphoryl-choline) for protein conjugation. Bioconjug. Chem. 19(11), 2144–2155 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Z. Zarafshani, T. Obata, J.F. Lutz, Smart PEGylation of trypsin. Biomacromolecules 11(8), 2130–2135 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    F. Lecolley, L. Tao, G. Mantovani, I. Durkin, S. Lautru, D.M. Haddleton, A new approach to bioconjugates for proteins and peptides (pegylation) utilising living radical polymerisation. Chem. Commun. 23(18), 2026–2027 (2004)CrossRefGoogle Scholar
  52. 52.
    I. Tan, Z. Zarafshani, J.-F. Lutz, M.-M. Titirici, PEGylated chromatography: efficient bioseparation on silica monoliths grafted with smart biocompatible polymers. ACS Appl. Mater. Interfaces 1(9), 1869–1872 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    J. Nicolas, E. Khoshdel, D.M. Haddleton, Bioconjugation onto biological surfaces with fluorescently labeled polymers. Chem. Commun. (Camb.) 17, 1722–1724 (2007)CrossRefGoogle Scholar
  54. 54.
    T.J.V. Prazeres, M. Beija, M.-T. Charreyre, J.P.S. Farinha, J.M.G. Martinho, RAFT polymerization and self-assembly of thermoresponsive poly(N-decylacrylamide-b-N,N-diethylacrylamide) block copolymers bearing a phenanthrene fluorescent α-end group. Polymer 51(2), 355–367 (2010)CrossRefGoogle Scholar
  55. 55.
    M. Bathfield, F. D’Agosto, R. Spitz, M.-T. Charreyre, T. Delair, Versatile precursors of functional RAFT agents. Application to the synthesis of bio-related end-functionalized polymers. J. Am. Chem. Soc. 128(8), 2546–2547 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    K. Godula, D. Rabuka, K.T. Nam, C.R. Bertozzi, Synthesis and microcontact printing of dual endfunctionalized mucin-like glycopolymers for microarray applications. Angew. Chem. Int. Ed. 48(27), 4973–4976 (2009)CrossRefGoogle Scholar
  57. 57.
    K.T. Wiss, P. Theato, Facilitating polymer conjugation via combination of RAFT polymerization and activated ester chemistry. J. Polym. Sci. A Polym. Chem. 48(21), 4758–4767 (2010)CrossRefGoogle Scholar
  58. 58.
    K.T. Wiss, O.D. Krishna, P.J. Roth, K.L. Kiick, P. Theato, A versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent. Macromolecules 42(12), 3860–3863 (2009)CrossRefGoogle Scholar
  59. 59.
    O.D. Krishna, K.T. Wiss, T. Luo, D.J. Pochan, P. Theato, K.L. Kiick, Morphological transformations in a dually thermoresponsive coilrod-coil bioconjugate. Soft Matter 8(14), 3832–3840 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    P.J. Roth, K.T. Wiss, R. Zentel, P. Theato, Synthesis of reactive telechelic polymers based on pentafluorophenyl esters. Macromolecules 41(22), 8513–8519 (2008)CrossRefGoogle Scholar
  61. 61.
    M.A. Gauthier, M.I. Gibson, H.A. Klok, Synthesis of functional polymers by post- polymerization modification. Angew. Chem. Int. Ed. 48(1), 48–58 (2009)CrossRefGoogle Scholar
  62. 62.
    M.C. Davies, J.V. Dawkins, D.J. Hourston, Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer 46(6), 1739–1753 (2005)CrossRefGoogle Scholar
  63. 63.
    I. Donati, A. Gamini, A. Vetere, C. Campa, S. Paoletti, Synthesis, characterization, and preliminary biological study of glycoconjugates of poly (styrene-co-maleic acid). Biomacromolecules 3(4), 805–812 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    S.M. Henry, M.E.H. El-Sayed, C.M. Pirie, A.S. Hoffman, P.S. Stayton, pH-responsive poly (styrene-alt-maleic anhydride) alkylamide copolymers for intracellular drug delivery. Biomacromolecules 7(8), 2407–2414 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    H. Willcock, R.K. O’Reilly, End group removal and modification of RAFT polymers. Polym. Chem. 1(2), 149–157 (2010)CrossRefGoogle Scholar
  66. 66.
    H.J. Knlker, T. Braxmeier, G. Schlechtingen, A novel method for the synthesis of isocyanates under mild conditions. Angew. Chem. Int. Ed. Engl. 34(22), 2497–2500 (1995)CrossRefGoogle Scholar
  67. 67.
    M. Drr, R. Zentel, R. Dietrich, K. Meerholz, C. Bruchle, J. Wichern, S. Zippel, P. Boldt, Reactions on vinyl isocyanate/maleimide copolymers: NLO-functionalized polymers with high glass transitions for nonlinear optical applications. Macromolecules 31(5), 1454–1465 (1998)CrossRefGoogle Scholar
  68. 68.
    D. Beyer, W. Paulus, M. Seitz, G. Maxein, H. Ringsdorf, M. Eich, Second harmonic generation in self-assembled alternating multilayers of hemicyanine containing polymers and polyvinylamine. Thin Solid Films 271(1), 73–83 (1995)CrossRefGoogle Scholar
  69. 69.
    J.D. Flores, J. Shin, C.E. Hoyle, C.L. McCormick, Direct RAFT polymerization of an unprotected isocyanate-containing monomer and subsequent structopendant functionalization using click-type reactions. Polym. Chem. 1(2), 213–220 (2010)CrossRefGoogle Scholar
  70. 70.
    P. Theato, H.A. Klok, Functional Polymers by Post-Polymerization Modification: Concepts, Guidelines and Applications (Wiley, Weinheim, 2013)Google Scholar
  71. 71.
    P. Zarras, O. Vogl, Ketenes and bisketenes as polymer intermediates. Prog. Polym. Sci. 16(2), 173–201 (1991)CrossRefGoogle Scholar
  72. 72.
    T.T. Tidwell, Ketenes (Wiley, Hoboken, 2006)Google Scholar
  73. 73.
    J.A. Hyatt, P.W. Raynolds, Ketene cycloadditions. Org. React. 45, 159 (1994)Google Scholar
  74. 74.
    F.A. Leibfarth, C.J. Hawker, The emerging utility of ketenes in polymer chemistry. J. Polym. Sci. A Polym. Chem. 51(18), 3769–3782 (2013)CrossRefGoogle Scholar
  75. 75.
    F.A. Leibfarth, M. Kang, M. Ham, J. Kim, L.M. Campos, N. Gupta, B. Moon, C.J. Hawker, A facile route to ketene-functionalized polymers for general materials applications. Nat. Chem. 2(3), 207–212 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    L.D. Taylor, C.K. Chiklis, T.E. Platt, Synthesis and polymerization of 2-vinyl-4,4-dimethyl-5-oxazolone. J. Polym. Sci. Polym. Lett. 9(3), 187–190 (1971)CrossRefGoogle Scholar
  77. 77.
    D.C. Tully, M.J. Roberts, B.H. Geierstanger, R.B. Grubbs, Synthesis of reactive poly(vinyl oxazolones) via nitroxide-mediated “living” free radical polymerization. Macromolecules 36(12), 4302–4308 (2003)CrossRefGoogle Scholar
  78. 78.
    V. Lapinte, J.C. Brosse, L. Fontaine, Synthesis and ringopening metathesis polymerization (ROMP) reactivity of endo-and exonorbornenylazlactone using ruthenium catalysts. Macromol. Chem. Phys. 205(6), 824–833 (2004)CrossRefGoogle Scholar
  79. 79.
    L. Fontaine, T. Lemele, J.C. Brosse, G. Sennyey, J.P. Senet, D. Wattiez, Grafting of 2-vinyl-4,4-dimethylazlactone onto electron-beam activated poly(propylene) films and fabrics. Application to the immobilization of sericin. Macromol. Chem. Phys. 203(10-11), 1377–1384 (2002)CrossRefGoogle Scholar
  80. 80.
    P.L. Coleman, M.M. Walker, D.S. Milbrath, D.M. Stauffer, J.K. Rasmussen, L.R. Krepski, S.M. Heilmann, Immobilization of Protein A at high density on azlactone-functional polymeric beads and their use in affinity chromatography. J. Chromatogr. A 512, 345–363 (1990)CrossRefGoogle Scholar
  81. 81.
    S.M. Heilmann, J.K. Rasmussen, L.R. Krepski, Chemistry and technology of 2-alkenyl azalactones. J. Polym. Sci. A Polym. Chem. 39, 3655 (2001)CrossRefGoogle Scholar
  82. 82.
    M. W. Jones, S. J. Richards, D. M. Haddleton, M. I. Gibson, Poly (azlactone) s: Versatile scaffolds for tandem post-polymerisation modification and glycopolymer synthesis. Polym. Chem. 4(3), 717–723 (2013)CrossRefGoogle Scholar
  83. 83.
    F.W. Speetjens, M.C.D. Carter, M. Kim, P. Gopalan, M.K. Mahanthappa, D.M. Lynn, Post-fabrication placement of arbitrary chemical functionality on microphase-separated thin films of amine-reactive block copolymers. ACS Macro Lett. 3(11), 1178–1182 (2014)CrossRefGoogle Scholar
  84. 84.
    B.S. Lokitz, J. Wei, J.P. Hinestrosa, I. Ivanov, J.F. Browning, J.F. Ankner, S.M. Kilbey, J.M. Messman, Manipulating interfaces through surface confinement of poly(glycidyl methacrylate)-block -poly(vinyldimethylazlactone), a dually reactive block copolymer. Macromolecules 45(16), 6438–6449 (2012)CrossRefGoogle Scholar
  85. 85.
    D.C. Tully, M.J. Roberts, B.H. Geierstanger, R.B. Grubbs, Synthesis of reactive poly(vinyl oxazolones) via nitroxidemediated “living” free radical polymerization. Macromolecules 36(12), 4302–4308 (2003)CrossRefGoogle Scholar
  86. 86.
    H.T. Ho, M.E. Levere, D. Fournier, V. Montembault, S. Pascual, L. Fontaine, Introducing the azlactone functionality into polymers through controlled radical polymerization: strategies and recent developments. Aust. J. Chem. 65(8), 970–977 (2012)CrossRefGoogle Scholar
  87. 87.
    C. Gardner, H. Sto’Iver, Reactive polyanions based on poly (4, 4-dimethyl-2-vinyl-2-oxazoline-5-one-co-methacrylic acid). Macromolecules 44, 7115–7123 (2011)CrossRefGoogle Scholar
  88. 88.
    M.E. Buck, D.M. Lynn, Azlactone-functionalized polymers as reactive platforms for the design of advanced materials: Progress in the last ten years. Polym. Chem. 3(1), 66 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    D. Navarro-Rodriguez, F.J. Rodriguez-Gonzalez, J. Romero-Garcia, E.J. Jimenez-Regalado, D. Guillon, Chemical modification of glycidyl methacrylate polymers with 4-hydroxy-4-methoxybiphenyl groups. Eur. Polym. J. 34(7), 1039–1045 (1998)CrossRefGoogle Scholar
  90. 90.
    Y. Iwakura, K. Toshikazu, Y. Imai, Reaction between amines and epoxy groups of acrylonitrile-glycidyl acrylate copolymers. Makromol. Chem. 86, 73–79 (1965)CrossRefGoogle Scholar
  91. 91.
    Y. Iwakura, T. Kurosaki, N. Nakabayashi, Reactive fiber. Part I. Copolymerization and copolymer of acrylonitrile with glycidyl methacrylate and with glycidyl acrylate. Makromol. Chem. 44(1956), 570–590 (1961)CrossRefGoogle Scholar
  92. 92.
    Y. Iwakura, T. Kurosaki, N. Ariga, T. Ito, Copolymerization of methyl methacrylat with glycidyl methacrylat and the reaction of the copolymer with amines. Makromol. Chem. 97(2098), 128–138 (1966)CrossRefGoogle Scholar
  93. 93.
    J. Kalal, F. Sˇvec, V. Marouˇsek, Reactions of epoxide groups of glycidyl methacrylate copolymers. J. Polym. Sci. Polym. Symp. 47(1), 155–166 (1974)CrossRefGoogle Scholar
  94. 94.
    R. Barbey, H.A. Klok, Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Langmuir 26(23), 18219–18230 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    V. Tsyalkovsky, V. Klep, K. Ramaratnam, R. Lupitskyy, S. Minko, I. Luzinov, Fluorescent reactive core-shell composite nanoparticles with a high surface concentration of epoxy functionalities. Chem. Mater. 20(1), 317–325 (2008)CrossRefGoogle Scholar
  96. 96.
    L. Tian, X. Li, P. Zhao, X. Chen, Z. Ali, N. Ali, B. Zhang, H. Zhang, Q. Zhang, Generalized approach for fabricating monodisperse anisotropic microparticles via single-hole swelling PGMA seed particles. Macromolecules 48(20), 7592–7603 (2015)CrossRefGoogle Scholar
  97. 97.
    E. Soto-Cantu, B.S. Lokitz, J.P. Hinestrosa, C. Deodhar, J.M. Messman, J.F. Ankner, S.M. Kilbey, Versatility of alkyne-modified poly(glycidyl methacrylate) layers for click reactions. Langmuir 27(10), 5986–5996 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    S. Edmondson, W.T.S. Huck, Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers. J. Mater. Chem. 14, 730 (2004)CrossRefGoogle Scholar
  99. 99.
    J. Qin, X. Jiang, L. Gao, Y. Chen, F. Xi, Functional polymeric nanoobjects by cross-linking bulk self-assemblies of poly(tert-butyl acrylate)-block -poly(glycidyl methacrylate). Macromolecules 43(19), 8094–8100 (2010)CrossRefGoogle Scholar
  100. 100.
    A. Marino-gonza, A. Mairata, I.W.C.E. Arends, R.A. Sheldon, Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium / TEMPO as the catalytic system. J. Am. Chem. Soc. 123(23), 6826–6833 (2001)Google Scholar
  101. 101.
    A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, A versatile and highly selective hypervalent iodine (III)/2, 2, 6, 6-tetramethyl-1-piperidinyloxyl-mediated oxidation of alcohols to carbonyl compounds. J. Org. Chem. 62(20), 6974–6977 (1997)CrossRefGoogle Scholar
  102. 102.
    J. Einhorn, C. Einhorn, F. Ratajczak, J.L. Pierre, Efficient and highly selective oxidation of primary alcohols to aldehydes by N-chlorosuccinimide mediated by oxoammonium salts. J. Org. Chem. 61(9), 7452–7454 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    A. Kirschning, H. Monenschein, R. Wittenberg, Functionalized polymersemerging versatile tools for solution-phase chemistry and automated parallel synthesis. Angew. Chem. Int. Ed. 40(4), 650–679 (2001)CrossRefGoogle Scholar
  104. 104.
    C. Einhorn, J. Einhorn, C. Marcadal, J.L. Pierre, Oxidation of organic substrates by molecular oxygen mediated byN-hydroxyphthalimide (NHPI) and acetaldehyde. Chem. Commun. 5, 447–448 (1997)CrossRefGoogle Scholar
  105. 105.
    J. Singh, M. Sharma, G.L. Kad, B.R. Chhabra, Selective oxidation of allylic methyl groups over a solid support under microwave irradiation. J. Chem. Res. 7, 264–265 (1997)CrossRefGoogle Scholar
  106. 106.
    N. Lawrence, Aldehydes and ketones. J. Chem. Soc. Perkin Trans. 1(10), 1739–1750 (1998)CrossRefGoogle Scholar
  107. 107.
    G. Godjoian, B. Singaram, Controlled reduction of tertiary amides to the corresponding aldehydes or amines using dialkylboranes. Tetrahedron Lett. 38(10), 1717–1720 (1997)CrossRefGoogle Scholar
  108. 108.
    X. Jia, S. Zhang, W. Wang, F. Luo, J. Cheng, Palladium-catalyzed acylation of sp2 C-H bond: direct access to ketones from aldehydes. Org. Lett. 11(14), 3120–3123 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    G.T. Hermanson, Bioconjugate Techniques (Academic Press, Amsterdam, 2013)Google Scholar
  110. 110.
    G.A. Lemieux, C.R. Bertozzi, Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol. 16(12), 506–513 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    R.C. Li, R.M. Broyer, H.D. Maynard, Well-defined polymers with acetal side chains as reactive scaffolds synthesized by atom transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 44(17), 5004–5013 (2006)CrossRefGoogle Scholar
  112. 112.
    J. Hwang, R.C. Li, H.D. Maynard, Well-defined polymers with activated ester and protected aldehyde side chains for biofunctionalization. J. Control. Release 122(3), 279–286 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    K.L. Christman, H.D. Maynard, Protein micropatterns using a pH-responsive polymer and light. Langmuir 21(18), 8389–8393 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    R.H. Wiley, P.H. Hobson, Polymerization of m-and p-formylstyrenes. J. Polym. Sci. 5(4), 483–486 (1950)CrossRefGoogle Scholar
  115. 115.
    N. Wagner, P. Zimmermann, P. Heisig, F. Klitsche, W. Maison, P. Theato, Investigation of antifouling properties of surfaces featuring zwitterionic α-aminophosphonic acid moieties. Macromol. Biosci. 15(12), 1673–1678 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    A. Hirao, S. Nakahama, Protection and polymerization of functional monomers. 10. Synthesis of well-defined poly (4-vinylbenzaldehyde) by the anionic living polymerization of N-[(4-ethenylphenyl) methylene] cyclohexamine. Macromolecules 20(12), 2968–2972 (1987)CrossRefGoogle Scholar
  117. 117.
    T. Ishizone, T. Utaka, Y. Ishino, A. Hirao, S. Nakahama, Anionic polymerization of monomers containing functional groups. 10. Anionic polymerizations of N-Aryl-N-(4-vinylbenzylidene) amines 1. Macromolecules 30(21), 6458–6466 (1997)CrossRefGoogle Scholar
  118. 118.
    G. Sun, C. Cheng, K.L. Wooley, Reversible addition fragmentation chain transfer polymerization of 4-vinylbenzaldehyde. Macromolecules 40(4), 793–795 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process. Aust. J. Chem. 58(6), 379–410 (2005)CrossRefGoogle Scholar
  120. 120.
    Z.P. Xiao, Z.H. Cai, H. Liang, J. Lu, Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles. J. Mater. Chem. 20(38), 8375–8381 (2010)CrossRefGoogle Scholar
  121. 121.
    C.S. Marvel, C.L. Levesque, The structure of vinyl polymers: the polymer from methyl vinyl ketone. J. Am. Chem. Soc. 60(2), 280–284 (1938)CrossRefGoogle Scholar
  122. 122.
    C. Cheng, G. Sun, E. Khoshdel, K.L. Wooley, Well-defined vinyl ketone-based polymers by reversible addition-fragmentation chain transfer polymerization. J. Am. Chem. Soc. 129(33), 10086–10087 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    A. Mittal, S. Sivaram, D. Baskaran, Unfavorable coordination of copper with methyl vinyl ketone in atom transfer radical polymerization. Macromolecules 39(16), 5555–5558 (2006)CrossRefGoogle Scholar
  124. 124.
    S.K. Yang, M. Weck, Covalent and orthogonal multi-functionalization of terpolymers. Soft Matter 5(3), 582–585 (2009)CrossRefGoogle Scholar
  125. 125.
    S.K. Yang, M. Weck, Modular covalent multifunctionalization of copolymers. Macromolecules 41(2), 346–351 (2008)CrossRefGoogle Scholar
  126. 126.
    C. Scholz, M. Iijima, Y. Nagasaki, K. Kataoka, A novel reactive polymeric micelle with aldehyde groups on its surface. Macromolecules 28(21), 7295–7297 (1995)CrossRefGoogle Scholar
  127. 127.
    Y. Nagasaki, T. Okada, C. Scholz, M. Iijima, M. Kato, K. Kataoka, The reactive polymeric micelle based on an aldehyde-ended poly (ethylene glycol)/poly (lactide) block copolymer. Macromolecules 31(5), 1473–1479 (1998)CrossRefGoogle Scholar
  128. 128.
    Y. Nagasaki, R. Ogawa, S. Yamamoto, M. Kato, K. Kataoka, Synthesis of heterotelechelic poly (ethylene glycol) macromonomers. Preparation of poly (ethylene glycol) possessing a methacryloyl group at one end and a formyl group at the other end. Macromolecules 30(21), 6489–6493 (1997)CrossRefGoogle Scholar
  129. 129.
    L. Tao, G. Mantovani, F. Lecolley, D.M. Haddleton, α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation pegylation. J. Am. Chem. Soc. 126(41), 13220–13221 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    J.M. Notestein, L.W. Lee, R.A. Register, Well-defined diblock copolymers via termination of living ROMP with anionically polymerized macromolecular aldehydes. Macromolecules 35(6), 1985–1987 (2002)CrossRefGoogle Scholar
  131. 131.
    A.W. Jackson, D.A. Fulton, Dynamic covalent diblock copolymers prepared from RAFT generated aldehyde and alkoxyamine end-functionalized polymers. Macromolecules 43(2), 1069–1075 (2009)CrossRefGoogle Scholar
  132. 132.
    S. Coca, H. Paik, K. Matyjaszewski, Block copolymers by transformation of living ring-opening metathesis polymerization into controlled/living atom transfer radical polymerization. Macromolecules 30(21), 6513–6516 (1997)CrossRefGoogle Scholar
  133. 133.
    R. Huisgen, 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 2(10), 565–598 (1963)CrossRefGoogle Scholar
  134. 134.
    R. Huisgen, Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. Engl. 2(11), 633–645 (1963)CrossRefGoogle Scholar
  135. 135.
    Y. Li, J. Yang, B.C. Beniceqicz, Well-controlled polymerization of 2-azodoethyl methacrylate at near room temperature and click functionalization. J. Polym. Sci. Part A: Polym Chem. 45, 4300–4306 (2007)CrossRefGoogle Scholar
  136. 136.
    M.H.B. Stowell, T.M. McPhillips, D.C. Rees, S.M. Soltis, E. Abresch, G. Feher, Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812–816 (1997)PubMedCrossRefGoogle Scholar
  137. 137.
    S.C. Ritter, B. Konig, Signal amplification and transduction by photo-activated catalysis. Chem. Commun. 45, 4694–4696 (2006)CrossRefGoogle Scholar
  138. 138.
    V. Hong, A.K. Udit, R.A. Evans, G. Finn, Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition. ChemBioChem 9(9), 1481–1486 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    G. Molteni, C.L. Bianchi, G. Marinoni, N. Santo, A. Ponti, Cu/Cu-oxide nanoparticles as catalyst in the “click” azide-alkyne cycloaddition. New J. Chem. 30, 1137 (2006)CrossRefGoogle Scholar
  140. 140.
    H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Ange-wandte Chem. Int. Ed. 40(11), 2004–2021 (2001)CrossRefGoogle Scholar
  141. 141.
    W.H. Binder, R. Sachsenhofer, ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28(1), 15–54 (2007)CrossRefGoogle Scholar
  142. 142.
    S.S. Brent, V.T. Nicolay, Highly efficient click functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 38, 7540–7545 (2005)CrossRefGoogle Scholar
  143. 143.
    T. Ishizone, J. Tsuchiya, A. Hirao, S. Nakahama, Anionic polymerization of monomers containing functional groups. 4. Anionic living polymerization of N,N-dialkyl-4-vinylbenzenesulfonamides. Macromolecules 25(19), 4840–4847 (1992)CrossRefGoogle Scholar
  144. 144.
    V. Ladmiral, T.M. Legge, Y. Zhao, S. Perrier, “Click” chemistry and radical polymerization: potential loss of orthogonality. Macromolecules 41(18), 6728–6732 (2008)CrossRefGoogle Scholar
  145. 145.
    M.Y. Sen, J.E. Puskas, Green polymer chemistry: telechelic poly(ethylene glycol)s via enzymatic catalysis. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 49(1), 487–488 (2008)Google Scholar
  146. 146.
    T.R. Chan, R. Hilgraf, K.B. Sharpless, V.V. Fokin, Polytriazoles as copper (I) -stabilizing ligands in catalysis. Org. Lett. 6(27), 2853–2855 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    B. Parrish, R.B. Breitenkamp, T. Emrick, PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc. 127(20), 7404–7410 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    R. Riva, S. Schmeits, F. Stoffelbach, C. Jérôme, R. Jérôme, P. Lecomte, Combination of ring-opening polymerization and “click” chemistry towards functionalization of aliphatic polyesters. Chem. Commun. (Camb.) 42, 5334–5336 (2005)CrossRefGoogle Scholar
  149. 149.
    J.A. Link, M.K.S. Vink, D.A. Tirrell, Presentation and detection of azide functionality in bacterial cell surface proteins presentation and detection of azide functionality in bacterial. J. Am. Chem. Soc. 2(126), 10598–10602 (2004)CrossRefGoogle Scholar
  150. 150.
    J. Lutz, H.G. Börner, K. Weichenhan, Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 39(19), 6376–6383 (2006)CrossRefGoogle Scholar
  151. 151.
    J. Lutz, H.G. Börner, K. Weichenhan, Combining atom transfer radical polymerization and click chemistry: a versatile method for the preparation of end-functional polymers. Macromol. Rapid Commun. 26(7), 514–518 (2005)CrossRefGoogle Scholar
  152. 152.
    K. Matyjaszewski, Y. Nakagawa, S.G. Gaynor, Synthesis of well-defined azido and amino end-functionalized polystyrene by atom transfer radical polymerization. Macromol. Rapid Commun. 18(12), 1057–1066 (1997)CrossRefGoogle Scholar
  153. 153.
    S.O. Kyeremateng, E. Amado, A. Blume, J. Kressler, Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with ‘Click’ chemistry. Macromol. Rapid Commun. 29(12-13), 1140–1146 (2008)CrossRefGoogle Scholar
  154. 154.
    W. Van Camp, V. Germonpr’e, L. Mespouille, P. Dubois, E.J. Goethals, F.E. Du Prez, New poly(acrylic acid) containing segmented copolymer structures by combination of “click” chemistry and atom transfer radical polymerization. React. Funct. Polym. 67(11), 1168–1180 (2007)CrossRefGoogle Scholar
  155. 155.
    J.A. Opsteen, J.C.M. van Hest, Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem. Rev. 109(11), 5620–5686 (2009)CrossRefGoogle Scholar
  156. 156.
    G. Mantovani, V. Ladmiral, L. Tao, D.M. Haddleton, One-pot tandem living radical polymerisation-Huisgens cycloaddition process (“click”) catalysed by N-alkyl-2- pyridylmethanimine/Cu(I)Br complexes. Chem. Commun. (Camb.) 16, 2089–2091 (2005)CrossRefGoogle Scholar
  157. 157.
    C. Boyer, J. Liu, V. Bulmus, T.P. Davis, C. Barner-Kowollik, M.H. Stenzel, Direct synthesis of well-defined heterotelechelic polymers for bioconjugations. Macromolecules 41(15), 5641–5650 (2008)CrossRefGoogle Scholar
  158. 158.
    A. Otto Diels, Synthesen in der hydroaromatischeii. Leibigs Ann. Chem 460(1906), 98–122 (1928)CrossRefGoogle Scholar
  159. 159.
    A. Dag, H. Durmaz, G. Hizal, Umit Tunca: preparation of 3-arm star polymers (A3) via Diels-Alder click reaction. J. Polym. Sci. A Polym. Chem. 46(1), 302–313 (2008)CrossRefGoogle Scholar
  160. 160.
    J. Sauer, Diels-Alder reactions. I. New preparative aspects. Angew. Chem. Int. Ed. 5(2), 211–230 (1966)CrossRefGoogle Scholar
  161. 161.
    S.M. Ryan, X. Wang, G. Mantovani, C.T. Sayers, D.M. Haddleton, D.J. Brayden, Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate. J. Control. Release 135(1), 51–59 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Y. Chujo, K. Sada, T. Saegusa, Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules 23, 2636–2641 (1990)CrossRefGoogle Scholar
  163. 163.
    J.R. Jones, C.L. Liotta, D.M. Collard, D.A. Schiraldi, Cross-linking and modification of poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by Diels-Alder reactions with maleimides. Macromolecules 32(18), 5786–5792 (1999)CrossRefGoogle Scholar
  164. 164.
    I. Kosif, E.J. Park, R. Sanyal, A. Sanyal, Fabrication of maleimide containing thiol reactive hydrogels via diels-alder/retro-diels-alder strategy. Macromolecules 43(9), 4140–4148 (2010)CrossRefGoogle Scholar
  165. 165.
    M. M. Kose, G. Yesibag, A. Sanyal, Segment block dendrimers via Diels – Alder cycloaddition. Org. Lett. 10(12), 2353–2356 (2008)PubMedCrossRefGoogle Scholar
  166. 166.
    B. Gacal, H. Durmaz, M.A. Tasdelen, G. Hizal, U. Tunca, Y. Yagci, A.L. Demirel, Anthracene-maleimide-based Diels-Alder “click chemistry” as a novel route to graft copolymers. Macromolecules 39(16), 5330–5336 (2006)CrossRefGoogle Scholar
  167. 167.
    M.A. Tasdelen, DielsAlder click reactions: recent applications in polymer and material science. Polym. Chem. 2(10), 2133 (2011)CrossRefGoogle Scholar
  168. 168.
    T. Dispinar, R. Sanyal, A. Sanyal, A Diels-Alder/retro Diels-Alder strategy to synthesize polymers bearing maleimide side chains. J. Polym. Sci. A Polym. Chem. 45(20), 4545–4551 (2007)CrossRefGoogle Scholar
  169. 169.
    G. Mantovani, F. Lecolley, L. Tao, D.M. Haddleton, J. Clerx, J.J.L.M. Cornelissen, K. Velonia, Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to pegylation chemistry. J. Am. Chem. Soc. 127(9), 2966–2973 (2005)PubMedCrossRefGoogle Scholar
  170. 170.
    H. Durmaz, A. Dag, C. Onen, O. Gok, A. Sanyal, G. Hizal, U. Tunca, Multiarm star polymers with peripheral dendritic PMMA arms through Diels-Alder click reaction. J. Polym. Sci. A Polym. Chem. 48(21), 4842–4846 (2010)CrossRefGoogle Scholar
  171. 171.
    H. Durmaz, A. Dag, O. Altintas, T. Erdogan, G. Hizal, U. Tunca, One-pot synthesis of ABC type triblock copolymers via in situ Click [3 + 2] and Diels-Alder [4 + 2] reactions. Macromolecules 40(2), 191–198 (2007)CrossRefGoogle Scholar
  172. 172.
    Z. Shi, J. Luo, S. Huang, Y.J. Cheng, T.D. Kim, B.M. Polishak, X.H. Zhou, Y. Tian, S.H. Jang, D.B. Knorr, R.M. Overney, T.R. Younkin, A.K.Y. Jen, Controlled Diels Alder reactions used to incorporate highly efficient polyenic chromophores into maleimide-containing sidechain polymers for electro-optics. Macromolecules 42(7), 2438–2445 (2009)CrossRefGoogle Scholar
  173. 173.
    C. Gouss’e, A. Gandini, P. Hodge, Application of the DielsAlder reaction to polymers bearing furan moieties. 2. DielsAlder and Retro-DielsAlder reactions involving furan rings in some styrene copolymers. Macromolecules 31(97), 314–321 (1998)CrossRefGoogle Scholar
  174. 174.
    H.L. Wei, Z. Yang, L.M. Zheng, Y.M. Shen, Thermosensitive hydrogels synthesized by fast Diels-Alder reaction in water. Polymer 50(13), 2836–2840 (2009)CrossRefGoogle Scholar
  175. 175.
    S. Magana, A. Zerroukhi, C. Jegat, N. Mignard, Thermally reversible crosslinked polyethylene using Diels-Alder reaction in molten state. React. Funct. Polym. 70(7), 442–448 (2010)CrossRefGoogle Scholar
  176. 176.
    A.S. Goldmann, M. Glassner, A.J. Inglis, C. Barner-Kowollik, Post-functionalization of polymers via orthogonal ligation chemistry. Macromol. Rapid Commun. 34(10), 810–849 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    C. F. Hansell, P. Espeel, M. M. Stamenovic, I.A. Barker, P. Andrew, F. E. Du Prez, R. K.O. Reilly, Additive-free clicking for polymer functionalization and coupling by tetrazine–norbornene chemistry. J. Am. Chem. Soc. 133(35), 13828–13831 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    K. De Bruycker, S. Billiet, H.A. Houck, S. Chattopadhyay, J.M. Winne, F.E. Du Prez, Triazolinediones as highly enabling synthetic tools. Chem. Rev. 116(6), 3919–3974 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Y.-C. Lai, G.B. Butler, Synthesis and polymerization of some new bis-triazolinediones: a stability study of 4-substituted triazolinediones. J. Macromol. Sci. A Chem. 22(10), 1443–1461 (1985)CrossRefGoogle Scholar
  180. 180.
    G.B. Butler, Modification of diene polymers and polymer synthesis by reaction of triazolinediones with olefinic bonds. Polym. Sci. U.S.S.R. 23(11), 2587–2622 (1981)CrossRefGoogle Scholar
  181. 181.
    R. Lusignan, United States Patent [19], 54–55 (1986)Google Scholar
  182. 182.
    H. Ban, M. Nagano, J. Gavrilyuk, W. Hakamata, T. Inokuma, C.F. Barbas, Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. Bioconjug. Chem. 24(4), 520–532 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    H.A. Houck, K. De Bruycker, S. Billiet, B. Dhanis, H. Goossens, S. Catak, V. Van Speybroeck, J.M. Winne, F.E. Du Prez, Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions. Chem. Sci. 8(4), 3098–3108 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    P. Wilke, T. Kunde, S. Chattopadhyay, N. Ten Brummelhuis, F.E. Du Prez, H.G. Börner, Easy access to triazolinedione-endcapped peptides for chemical ligation. Chem. Commun. 53(3), 593–596 (2017)CrossRefGoogle Scholar
  185. 185.
    E. Shirakawa, T. Hayashi, Transitionmetal-free coupling reactions of aryl halides. Chem. Lett. 41(2), 130–134 (2012)CrossRefGoogle Scholar
  186. 186.
    T. Hosokawa, S.I. Murahashi, in Handbook of Organopalladium Chemistry for Organic Synthesis, vol. 2, ed. by E.-i. Negishi (Wiley, New York, 2002), pp. 2141–2159Google Scholar
  187. 187.
    G. Cahiez, F. Lepifre, P. Ramiandrasoa, Manganese-catalyzed substitution of activated aryl halides (X= Cl, Br and F) and aryl ethers by organomagnesium reagents. Synthesis 1999(12), 2138–2144 (1999)CrossRefGoogle Scholar
  188. 188.
    A. Suzuki, Organoboron compounds in new synthetic reactions. Pure Appl. Chem. 57(12), 1749–1758 (1985)CrossRefGoogle Scholar
  189. 189.
    O. Vechorkin, V. Proust, X. Hu, Functional group tolerant Kumada- Corriu- Tamao coupling of nonactivated alkyl halides with aryl and heteroaryl nucleophiles: catalysis by a nickel pincer complex permits the coupling of functionalized Grignard reagents. J. Am. Chem. Soc. 131(28), 9756–9766 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    W. Dohle, D.M. Lindsay, P. Knochel, Copper-mediated cross-coupling of functionalized arylmagnesium reagents with functionalized alkyl and benzylic halides. Org. Lett. 3(18), 2871–2873 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    V. Bonnet, F. Mongin, Q. Trcourt, P. Knochel, Syntheses of substituted pyridines, quinolines and diazines via palladium-catalyzed crosscoupling of aryl grignard reagents. Tetrahedron 58(22), 4429–4438 (2002)CrossRefGoogle Scholar
  192. 192.
    G. Manolikakes, P. Knochel, Radical catalysis of kumada cross-coupling reactions using functionalized grignard reagents. Angew. Chem. Int. Ed. 48(1), 205–209 (2009)CrossRefGoogle Scholar
  193. 193.
    V. Coessens, T. Pintauer, K. Matyjaszewski, Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26(3), 337–377 (2001)CrossRefGoogle Scholar
  194. 194.
    J.S. Wang, K. Matyjaszewski, Controlled/“ living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process. Macromolecules 28(23), 7901–7910 (1995)CrossRefGoogle Scholar
  195. 195.
    V. Percec, B. Barboiu, A. Neumann, J.C. Ronda, M. Zhao, Metal-catalyzed living radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis. Macromolecules 29(10), 3665–3668 (1996)CrossRefGoogle Scholar
  196. 196.
    S. Ji, T.R. Hoye, C.W. Macosko, Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization. Macromolecules 37(15), 5485–5489 (2004)CrossRefGoogle Scholar
  197. 197.
    M. Ito, K. Koyakumaru, T. Ohta, H. Takaya, A simple and convenient synthesis of Alkyl Azides under mild conditions. Synthesis 4, 376–378 (1995)CrossRefGoogle Scholar
  198. 198.
    C.E. Hoyle, A.B.. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39(4), 1355–1387 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    F. Fringuelli, F. Pizzo, S. Tortoioli, L. Vaccaro, Thiolysis of 1,2-epoxides by thiophenol catalyzed under solvent-free conditions. Tetrahedron Lett. 44(35), 6785–6787 (2003)CrossRefGoogle Scholar
  200. 200.
    M. Van Dijk, D.T.S. Rijkers, R.M.J. Liskamp, C.F. Van Nostrum, W.E. Hennink, Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjug. Chem. 20(11), 2001–2016 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    M. Jemal, D.J. Hawthorne, Quantitative determination of BMS186716, a thiol compound, in dog plasma by high-performance liquid chromatography-positive ion electrospray mass spectrometry after formation of the methyl acrylate adduct. J. Chromatogr. B Biomed. Appl. 693(1), 109–116 (1997)CrossRefGoogle Scholar
  202. 202.
    M.S. Masri, M. Friedman, Protein reactions with methyl and ethyl vinyl sulfones. J. Protein Chem. 7(1), 49–54 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    M. Morpurgo, F.M. Veronese, D. Kachensky, J.M. Harris, S. Farmaceutiche, Preparation and characterization of poly ( ethylene glycol ) vinyl sulfone. Bioconjug. Chem. 7(96), 363–368 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    R.J. Pounder, M.J. Stanford, P. Brooks, S.P. Richards, A.P. Dove, Metal free thiol-maleimide ‘Click’ reaction as a mild functionalisation strategy for degradable polymers. Chem. Commun. (Camb.) 41, 5158–5160 (2008)CrossRefGoogle Scholar
  205. 205.
    Y. Geng, D.E. Discher, H. Justynska, J. Schlaad, Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): a platform for self-assembling hybrid amphiphiles. Angew. Chem. Int. Ed. 45(45), 7578–7581 (2006)CrossRefGoogle Scholar
  206. 206.
    Z. Hordyjewicz-Baran, L. You, B. Smarsly, R. Sigel, H. Schlaad, Bioinspired polymer vesicles based on hydrophilically modified polybutadienes. Macromolecules 40(11), 3901–3903 (2007)CrossRefGoogle Scholar
  207. 207.
    R.P. Sijbesma, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278(5343), 1601–1604 (1997)CrossRefGoogle Scholar
  208. 208.
    C.E. Hoyle, T.Y. Lee, T. Roper, Thiolenes: chemistry of the past with promise for the future. J. Polym. Sci. A Polym. Chem. 42(21), 5301–5338 (2004)CrossRefGoogle Scholar
  209. 209.
    P. Jonkheijm, D. Weinrich, M. Koehn, H. Engelkamp, P.C.M. Christianen, J. Kuhlmann, J.C. Maan, D. Nuesse, H. Schroeder, R. Wacker, R. Breinbauer, C.M. Niemeyer, H. Waldmann, Photochemical surface patterning by the thiolene reaction. Angew. Chem. Int. Ed. 47(23), 4421–4424 (2008)CrossRefGoogle Scholar
  210. 210.
    P. Vana, L. Albertin, L. Barner, T.P. Davis, C. Barner-Kowollik, Reversible addition-fragmentation chain-transfer polymerization: unambiguous end-group assignment via electrospray ionization mass spectrometry. J. Polym. Sci. A Polym. Chem. 40(22), 4032–4037 (2002)CrossRefGoogle Scholar
  211. 211.
    A. Postma, T.P. Davis, G. Li, G. Moad, M.S. O’Shea, RAFT polymerization with phthalimidomethyl trithiocarbonates or xanthates. On the origin of bimodal molecular weight distributions in living radical polymerization. Macromolecules 39(16), 5307–5318 (2006)CrossRefGoogle Scholar
  212. 212.
    A. Postma, T.P. Davis, G. Moad, M.S. O’Shea, Thermolysis of RAFT-synthesized polymers. A convenient method for trithiocarbonate group elimination. Macromolecules 38(13), 5371–5374 (2005)CrossRefGoogle Scholar
  213. 213.
    C. Boyer, A. Granville, T.P. Davis, V. Bulmus, Modification of RAFT-polymers via thiol-ene reactions: a general route to functional polymers and new architectures. J. Polym. Sci. A Polym. Chem. 47, 3773–3794 (2009)CrossRefGoogle Scholar
  214. 214.
    J.W. Chan, B. Yu, C. Hoyle, A.B.. Lowe, Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene click reaction. Chem. Commun. (Camb.) 40, 4959–4961 (2008)Google Scholar
  215. 215.
    J. Xu, L. Tao, C. Boyer, A.B.. Lowe, T.P. Davis, Combining thio-bromo click chemistry and raft polymerization: a powerful tool for preparing functionalized multiblock and hyperbranched polymers. Macromolecules 43(1), 20–24 (2010)CrossRefGoogle Scholar
  216. 216.
    C. Boyer, V. Bulmus, T.P. Davis, Efficient usage of thiocarbonates for both the production and the biofunctionalization of polymers. Macromol. Rapid Commun. 30(7), 493–497 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    A. Bernkop-Schnürch, A. Greimel, Thiomers: the next generation of mucoadhesive polymers. Am. J. Drug Deliv. 3(3), 141–154 (2005)CrossRefGoogle Scholar
  218. 218.
    N.T. Brummelhuis, C. Diehl, H. Schlaad, Thiol ene modification of 1, 2-polybutadiene using UV light or sunlight. Macromolecules 41, 9946–9947 (2008)CrossRefGoogle Scholar
  219. 219.
    N. Murthy, J. Campbell, N. Fausto, A.S. Hoffman, P.S. Stayton, Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug. Chem. 14(2), 412–419 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    J. Dong, L. Krasnova, M.G. Finn, K. Barry Sharpless, Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53(36), 9430–9448 (2014)CrossRefGoogle Scholar
  221. 221.
    J. Yatvin, K. Brooks, J. Locklin, SuFEx on the surface: a flexible platform for postpolymerization modification of polymer brushes. Angew. Chem. Int. Ed. 54(45), 13370–13373 (2015)CrossRefGoogle Scholar
  222. 222.
    C.G. Wang, Y. Koyama, S. Uchida, T. Takata, Synthesis of highly reactive polymer nitrile N -oxides for effective solvent-free grafting. ACS Macro Lett. 3(3), 286–290 (2014)CrossRefGoogle Scholar
  223. 223.
    H. Feuer, K. Torssell, Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, 2nd edn. (Wiley-Interscience, Hoboken, 2008)Google Scholar
  224. 224.
    I. Singh, Z. Zarafshani, F. Heaney, J.-F. Lutz, Orthogonal modification of polymer chain-ends via sequential nitrile oxidealkyne and azidealkyne Huisgen cycloadditions. Polym. Chem. 2(2), 372 (2011)CrossRefGoogle Scholar
  225. 225.
    T. Kanbara, T. Ishii, K. Hasegawa, T. Yamamoto, Preparation of soluble and fluorescent poly(arylene)s by 1, 3-dipolar polycycloaddition and properties. Polym. Bull. 679, 673–679 (1996)Google Scholar
  226. 226.
    I. Ugi, A. Dömling, W. Hörl, Multicomponent reactions in organic chemistry. Endeavour 18(3), 115–122 (1994)CrossRefGoogle Scholar
  227. 227.
    Q. Zhang, Y. Zhang, Y. Zhao, B. Yang, C. Fu, Y. Wei, L. Tao, Multicomponent polymerization system combining Hantzsch reaction and reversible addition – fragmentation chain transfer to efficiently synthesize well-defined poly(1,4-dihydropyridine)s. ACS Macro Lett. 4(1), 128–132 (2015)CrossRefGoogle Scholar
  228. 228.
    F. Moldenhauer, P. Theato, Sequential reactions for post-polymerization. Modifications 269, 133–162 (2015)Google Scholar
  229. 229.
    A. Domling, W. Wang, K. Wang, Chemistry and biology of multicomponent reactions. Chem. Rev. 112(6), 3083–3135 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    R.C. Li, J. Hwang, H.D. Maynard, Reactive block copolymer scaffolds. Chem. Commun. 35, 3631–3633 (2007)CrossRefGoogle Scholar
  231. 231.
    M. Li, P. De, S.R. Gondi, B.S. Sumerlin, End group transformations of RAFT-generated polymers with bismaleimides: functional telechelics and modular block copolymers. J. Polym. Sci. A Polym. Chem. 46(15), 5093–5100 (2008)CrossRefGoogle Scholar
  232. 232.
    F. Moldenhauer, R. Kakuchi, P. Theato, Synthesis of polymers via kabachnik-fields polycondensation. ACS Macro Lett. 5(1), 10–13 (2016)CrossRefGoogle Scholar
  233. 233.
    K. Nakatani, Y. Ogura, Y. Koda, T. Terashima, M. Sawamoto, Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. J. Am. Chem. Soc. 134(9), 4373–4383 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Y. Ogura, T. Terashima, M. Sawamoto, Synchronized tandem catalysis of living radical polymerization and transesterification: methacrylate gradient copolymers with extremely broad glass transition temperature. ACS Macro Lett. 2(11), 985–989 (2013)CrossRefGoogle Scholar
  235. 235.
    Y. Ogura, T. Terashima, M. Sawamoto, Terminal-selective transesterification of chlorine- capped poly (methyl methacrylate) s : a modular approach to telechelic and pinpoint-functionalized polymers poly (methyl methacrylate) s : a modular approach to telechelic and pinpoint-functionalized. J. Am. Chem. Soc. 138(15), 5012–5015 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    C. Fu, J. Xu, L. Tao, C. Boyer, Combining enzymatic monomer transformation with photoinduced electron transfer – reversible addition-fragmentation chain transfer for the synthesis of complex multiblock copolymers. ACS Macro Lett. 3(7), 633–638 (2014)CrossRefGoogle Scholar
  237. 237.
    M.E.B. Smith, F.F. Schumacher, C.P. Ryan, L.M. Tedaldi, D. Papaioannou, G. Waksman, S. Caddick, J.R. Baker, Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132(6), 1960–1965 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Y. Cui, Y. Yan, Y. Chen, Z. Wang, Dibromomaleimide derivative as an efficient polymer coupling agent for building topological polymers. Macromol. Chem. Phys. 214(4), 470–477 (2013)CrossRefGoogle Scholar
  239. 239.
    P. Espeel, F.E. Du Prez, One-pot multi-step reactions based on thiolactone chemistry: a powerful synthetic tool in polymer science. Eur. Polym. J. 62, 247–272 (2015)CrossRefGoogle Scholar
  240. 240.
    F. Driessen, S. Martens, B. De Meyer, F.E. Du Prez, P. Espeel, Double Modification of Polymer End Groups through thiolactone chemistry. Macromol. Rapid Commun. 37, 947–951 (2016)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lindsey A. Bultema
    • 1
  • Xia Huang
    • 2
  • Daniel D. Brauer
    • 1
  • Patrick Theato
    • 2
    Email author
  1. 1.Institute of Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany
  2. 2.Institut für Technische Chemie und PolymerchemieKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations