Shape-Memory Polymers

  • Magdalena Mazurek-Budzyńska
  • Muhammad Yasar Razzaq
  • Marc Behl
  • Andreas LendleinEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple- and multi-shape effects (TSE/MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches.



One-way shape-memory effect


Actuator domains




Alternating magnetic field


n-Butyl acrylate




N,N-bis(2-Hydroxyethyl) cinnamamide




Cinnamic acid


Cynnamylidien acetic acid




Crystallization-induced elongation


Copolymer network from PCL with grafted PEG segments


Cavitation-based mechanical force


Covalently crosslinked poly[ethylene-co-(vinyl acetate)]


Carboxyl-terminated polybutadiene


Diels-Alder reaction




Dimethylolpropionic acid




Magnetic field strength


Deformation magnetic field strength


Hexamethylene diisocyanate




Hydroxyethyl methacrylate


High magnetic field strength


Low magnetic field strength


Hybrid nanocomposite


Switching magnetic field strength


Magnetic field strength at maximum stress generated


Interpenetrating polymer network




Low frequency ultrasound


Copolymer of PCL and poly(cyclohexyl methacrylate)


4,4′-Diphenylmethane diisocyanate


Melting-induced contraction


Magnetic-memory effect


Magnetic nanoparticles


Multi-shape effect


Poly(butylene adipate)


Poly(cyclohexyl methacrylate)




Multiblock copolymer from PPDO and PCL


Poly(ethylene glycol)


Poly(ethylene glycol) diacrylate


Poly(ethylene terephthalate)




Poly[ethylene-co-(vinyl acetate)]


Poly[N5-(2-hydroxyethyl) L-glutamine] with alkyl side chains -CnH2n+1








Multiblock copolymer from PPDL and PCL




Poly(propylene glycol) dimethacrylate






Poly(tetramethylene glycol)




Poly(vinyl alcohol)


Deformation fixation efficiency


Reversible bidirectional shape-memory effect




Shape fixity ratio


Rhodium-phosphine coordination bonds


Magnetically controlled rSME


Shape recovery ratio


Reversible shape-memory effect


Surface-to-volume ratio


Small-angle X-ray scattering


Shape shifting geometry domains


Shape-memory effect


Shape-memory hydrogel


Shape-memory polymer


Silica-coated iron oxide nanoparticles


Actuation temperature


Deformation temperature


Environmental temperature


Polyetherurethane prepared from MDI, BD, and PTMG


Glass transition temperature




Highest temperature in the course of shape-memory programming


Lowest temperature in the course of shape-memory programming


Melting transition temperature


Temperature-memory effect


Temperature-memory polymer actuator


Highest thermal transition temperature of a thermoplastic material at which the domains acting as physical crosslinks melt


Triple-shape effect


Triple-shape polymer


Triple-shape polymeric composites


Switching temperature


Thermal transition temperature


Unloading temperature


Temperature determined at the maximum of recovery stress






Zinc salt of carboxyl-terminated polybutadiene


Zinc oleate




Reversible elongation


Maximum deformation


Strain of the sample after recovery to the permanent shape


Free state deformation after cooling


Wave length


Recovery stress



This work was financially supported by the Helmholtz-Association through programme-oriented funding.


  1. 1.
    A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)CrossRefGoogle Scholar
  2. 2.
    K.K. Julich-Gruner, C. Löwenberg, A.T. Neffe, M. Behl, A. Lendlein, Recent trends in the chemistry of shape-memory polymers. Macromol. Chem. Phys. 214, 527–536 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Wischke, A.T. Neffe, A. Lendlein, Controlled drug release from biodegradable shape-memory polymers. Adv. Polym. Sci. 226, 177–205 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers – The role of morphology, processing effects, and matrix degradation. Expert Opin. Drug. Deliv. 10, 1193–1205 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 7, 357–379 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Behl, J. Zotzmann, A. Lendlein, Shape-memory polymers and shape-changing polymers. Adv. Polym. Sci. 226, 1–40 (2010)Google Scholar
  7. 7.
    M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRefGoogle Scholar
  8. 8.
    Q. Zhao, M. Behl, A. Lendlein, Shape-memory polymers with multiple transitions: Complex actively moving polymers. Soft Matter 9, 1744–1755 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Behl, A. Lendlein, Actively moving polymers. Soft Matter 3, 58–67 (2007)CrossRefGoogle Scholar
  10. 10.
    M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 49-50, 3–33 (2015)CrossRefGoogle Scholar
  11. 11.
    P.J. Flory, J. Rehner, Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 11, 521–526 (1943)CrossRefGoogle Scholar
  12. 12.
    W. Wagermaier, K. Kratz, M. Heuchel, A. Lendlein, Characterization methods for shape-memory polymers. Adv. Polym. Sci. 226, 97–145 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Sauter, M. Heuchel, K. Kratz, A. Lendlein, Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym. Rev. 53, 6–40 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Heuchel, T. Sauter, K. Kratz, A. Lendlein, Thermally induced shape-memory effects in polymers: Quantification and related modeling approaches. J. Polym. Sci. B Polym. Phys. 51, 621–637 (2013)CrossRefGoogle Scholar
  15. 15.
    I.S. Kolesov, K. Kratz, A. Lendlein, H.-J. Radusch, Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes. Polymer 50, 5490–5498 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Maksimkin, S. Kaloshkin, M. Zadorozhnyy, V. Tcherdyntsev, Comparison of shape memory effect in UHMWPE for bulk and fiber state. J. Alloys Compd. 586, S214–S217 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Zhao, M. Chen, X. Wang, X. Zhao, Z. Wang, Z.-M. Dang, L. Ma, G.-H. Hu, F. Chen, Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 5, 5550–5556 (2013)CrossRefGoogle Scholar
  18. 18.
    A.L. Sisson, D. Ekinci, A. Lendlein, The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer 54, 4333–4350 (2013)CrossRefGoogle Scholar
  19. 19.
    H.Y. Lee, H.M. Jeong, J.S. Lee, B.K. Kim, Study on the shape memory polyamides. Synthesis and thermomechanical properties of polycaprolactone-polyamide block copolymer. Polym. J. 32, 23–28 (2000)CrossRefGoogle Scholar
  20. 20.
    G. Rabani, H. Luftmann, A. Kraft, Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments. Polymer 47, 4251–4260 (2006)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50, 1596–1601 (2009)CrossRefGoogle Scholar
  22. 22.
    S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 5, 1519–1530 (2009)CrossRefGoogle Scholar
  23. 23.
    Q. Meng, J. Hu, A review of shape memory polymer composites and blends. Compos. Part A 40, 1661–1672 (2009)CrossRefGoogle Scholar
  24. 24.
    X. Jing, H.-Y. Mi, H.-X. Huang, L.-S. Turng, Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 64, 94–103 (2016)CrossRefGoogle Scholar
  25. 25.
    I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J.M. Kenny, L. Peponi, Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 132, 97–108 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)CrossRefGoogle Scholar
  28. 28.
    J.W. Cho, Y.C. Jung, Y.-C. Chung, B.C. Chun, Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J. Appl. Polym. Sci. 93, 2410–2415 (2004)CrossRefGoogle Scholar
  29. 29.
    A. Alteheld, Y. Feng, S. Kelch, A. Lendlein, Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew. Chem. Int. Ed. 44, 1188–1192 (2005)CrossRefGoogle Scholar
  30. 30.
    T. Xie, Recent advances in polymer shape memory. Polymer 52, 4985–5000 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Lendlein, J. Zotzmann, Y. Feng, A. Alteheld, S. Kelch, Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10, 975–982 (2009)CrossRefGoogle Scholar
  32. 32.
    C.P. Buckley, C. Prisacariu, A. Caraculacu, Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer 48, 1388–1396 (2007)CrossRefGoogle Scholar
  33. 33.
    Q. Cao, P. Liu, Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polym. Bull. 57, 889–899 (2006)CrossRefGoogle Scholar
  34. 34.
    L. Xue, S. Dai, Z. Li, Synthesis and characterization of three-arm poly(ε-caprolactone)-based poly(ester−urethanes) with shape-memory effect at body temperature. Macromolecules 42, 964–972 (2009)CrossRefGoogle Scholar
  35. 35.
    N.-Y. Choi, A. Lendlein, Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter 3, 901–909 (2007)CrossRefGoogle Scholar
  36. 36.
    C.M. Yakacki, R. Shandas, D. Safranski, A.M. Ortega, K. Sassaman, K. Gall, Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    S. Kelch, S. Steuer, A.M. Schmidt, A. Lendlein, Shape-memory polymer networks from oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8, 1018–1027 (2007)CrossRefGoogle Scholar
  38. 38.
    K.M. Lee, P.T. Knight, T. Chung, P.T. Mather, Polycaprolactone−POSS chemical/physical double networks. Macromolecules 41, 4730–4738 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Kelch, N.Y. Choi, Z. Wang, A. Lendlein, Amorphous, elastic AB copolymer networks from acrylates and poly[(l-lactide)-ran-glycolide]dimethacrylates. Adv. Eng. Mater. 10, 494–502 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Chen, J. Hu, C.-W. Yuen, L. Chan, Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polym. Int. 59, 529–538 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Chen, J. Hu, H. Zhuo, S. Chen, Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. J. Mater. Sci. 46, 5294–5304 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Chen, J. Hu, H. Zhuo, C. Yuen, L. Chan, Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 51, 240–248 (2010)CrossRefGoogle Scholar
  43. 43.
    S. Chen, J. Hu, C.-w. Yuen, L. Chan, Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50, 4424–4428 (2009)CrossRefGoogle Scholar
  44. 44.
    S. Chen, H. Yuan, S. Chen, H. Yang, Z. Ge, H. Zhuo, J. Liu, Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J. Mater. Chem. A 2, 10169–10181 (2014)CrossRefGoogle Scholar
  45. 45.
    R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J. Folmer, J.H. Hirschberg, R.F. Lange, J.K. Lowe, E.W. Meijer, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997)CrossRefGoogle Scholar
  46. 46.
    K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 42, 9072–9081 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Gooch, N.S. Murphy, N.H. Thomson, A.J. Wilson, Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays. Macromolecules 46, 9634–9641 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19, 2851–2855 (2007)CrossRefGoogle Scholar
  49. 49.
    J. Li, C.L. Lewis, D.L. Chen, M. Anthamatten, Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44, 5336–5343 (2011)CrossRefGoogle Scholar
  50. 50.
    H. Chen, Y. Li, G. Tao, L. Wang, S. Zhou, Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 7, 6637–6644 (2016)CrossRefGoogle Scholar
  51. 51.
    Y. Wu, L. Wang, X. Zhao, S. Hou, B. Guo, P.X. Ma, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104, 18–31 (2016)CrossRefGoogle Scholar
  52. 52.
    Y. Pan, T. Liu, J. Li, Z. Zheng, X. Ding, Y. Peng, High modulus ratio shape-memory polymers achieved by combining hydrogen bonding with controlled crosslinking. J. Polym. Sci. B Polym. Phys. 49, 1241–1245 (2011)CrossRefGoogle Scholar
  53. 53.
    Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012)CrossRefGoogle Scholar
  54. 54.
    L. Xiao, M. Wei, M. Zhan, J. Zhang, H. Xie, X. Deng, K. Yang, Y. Wang, Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 5, 2231–2241 (2014)CrossRefGoogle Scholar
  55. 55.
    G. Liu, C. Guan, H. Xia, F. Guo, X. Ding, Y. Peng, Novel shape-memory polymer based on hydrogen bonding. Macromol. Rapid Commun. 27, 1100–1104 (2006)CrossRefGoogle Scholar
  56. 56.
    G. Liu, W. He, Y. Peng, H. Xia, Shape-memory behavior of poly(methyl methacrylate-co-N-vinyl-2-pyrrolidone)/poly(ethylene glycol) semi-interpenetrating polymer networks based on hydrogen bonding. J. Polym. Res. 18, 2109–2117 (2011)CrossRefGoogle Scholar
  57. 57.
    H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, S. Zhou, Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 5, 5168–5174 (2014)CrossRefGoogle Scholar
  58. 58.
    G. Liu, X. Ding, Y. Cao, Z. Zheng, Y. Peng, Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37, 2228–2232 (2004)CrossRefGoogle Scholar
  59. 59.
    J.D. Merline, C.P.R. Nair, C. Gouri, T. Shrisudha, K.N. Ninan, Shape memory characterization of polytetra methylene oxide/poly (acrylic acid-co-acrylonitrile) complexed gel. J. Mater. Sci. 42, 5897–5902 (2007)CrossRefGoogle Scholar
  60. 60.
    J. Dong, R.A. Weiss, Effect of crosslinking on shape-memory behavior of zinc stearate/ionomer compounds. Macromol. Chem. Phys. 214, 1238–1246 (2013)CrossRefGoogle Scholar
  61. 61.
    R.A. Weiss, E. Izzo, S. Mandelbaum, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41, 2978–2980 (2008)CrossRefGoogle Scholar
  62. 62.
    J. Dong, R.A. Weiss, Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44, 8871–8879 (2011)CrossRefGoogle Scholar
  63. 63.
    S.-I. Han, B.H. Gu, K.H. Nam, S.J. Im, S.C. Kim, S.S. Im, Novel copolyester-based ionomer for a shape-memory biodegradable material. Polymer 48, 1830–1834 (2007)CrossRefGoogle Scholar
  64. 64.
    Z. Wang, W. Fan, R. Tong, X. Lu, H. Xia, Thermal-healable and shape memory metallosupramolecular poly(n-butyl acrylate-co-methyl methacrylate) materials. RSC Adv. 4, 25486–25493 (2014)CrossRefGoogle Scholar
  65. 65.
    J.R. Kumpfer, S.J. Rowan, Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 133, 12866 (2011)CrossRefGoogle Scholar
  66. 66.
    F. Xie, C. Huang, F. Wang, L. Huang, R.A. Weiss, J. Leng, Y. Liu, Carboxyl-terminated polybutadiene–poly(styrene-co-4-vinylpyridine) supramolecular thermoplastic elastomers and their shape memory behavior. Macromolecules 49, 7322–7330 (2016)CrossRefGoogle Scholar
  67. 67.
    P. Zhang, M. Behl, X. Peng, M.Y. Razzaq, A. Lendlein, Ultrasonic cavitation induced shape-memory effect in porous polymer networks. Macromol. Rapid Commun. 37, 1897–1903 (2016)CrossRefGoogle Scholar
  68. 68.
    Q. Zhao, H.J. Qi, T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 79–120 (2015)CrossRefGoogle Scholar
  69. 69.
    G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, T. Xie, Exploring dynamic equilibrium of Diels–Alder reaction for solid state plasticity in remoldable shape memory polymer network. ACS Macro Lett. 5, 805–808 (2016)CrossRefGoogle Scholar
  70. 70.
    M. Yamashiro, K. Inoue, M. Iji, Recyclable shape-memory and mechanical strength of poly(lactic acid) compounds cross-linked by thermo-reversible Diels-Alder reaction. Polym. J. 40, 657–662 (2008)CrossRefGoogle Scholar
  71. 71.
    K. Inoue, M. Yamashiro, M. Iji, Recyclable shape-memory polymer: Poly(lactic acid) crosslinked by a thermoreversible Diels–Alder reaction. J. Appl. Polym. Sci. 112, 876–885 (2009)CrossRefGoogle Scholar
  72. 72.
    J.-M. Raquez, S. Vanderstappen, F. Meyer, P. Verge, M. Alexandre, J.-M. Thomassin, C. Jérôme, P. Dubois, Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions. Chem. Eur. J. 17, 10135–10143 (2011)CrossRefGoogle Scholar
  73. 73.
    T. Defize, R. Riva, C. Jérôme, M. Alexandre, Multifunctional poly(ϵ-caprolactone)-forming networks by Diels–Alder cycloaddition: Effect of the adduct on the shape-memory properties. Macromol. Chem. Phys. 213, 187–197 (2012)CrossRefGoogle Scholar
  74. 74.
    T. Defize, R. Riva, J.M. Raquez, P. Dubois, C. Jerome, M. Alexandre, Thermoreversibly crosslinked poly(epsilon-caprolactone) as recyclable shape-memory polymer network. Macromol. Rapid Commun. 32, 1264–1269 (2011)CrossRefGoogle Scholar
  75. 75.
    J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang, Y. Wang, Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym. Chem. 3, 1390–1393 (2012)CrossRefGoogle Scholar
  76. 76.
    T. Defize, R. Riva, J.-M. Thomassin, C. Jérôme, M. Alexandre, Thermo-reversible reactions for the preparation of smart materials: Recyclable covalently-crosslinked shape memory polymers. Macromol. Symp. 309–310, 154–161 (2011)CrossRefGoogle Scholar
  77. 77.
    G. Rivero, L.-T.T. Nguyen, X.K.D. Hillewaere, F.E. Du Prez, One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47, 2010–2018 (2014)CrossRefGoogle Scholar
  78. 78.
    C. Toncelli, D.C. De Reus, F. Picchioni, A.A. Broekhuis, Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys. 213, 157–165 (2012)CrossRefGoogle Scholar
  79. 79.
    C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Bio-based furan polymers with self-healing ability. Macromolecules 46, 1794–1802 (2013)CrossRefGoogle Scholar
  80. 80.
    C. Zeng, H. Seino, J. Ren, N. Yoshie, Polymers with multishape memory controlled by local glass transition temperature. ACS Appl. Mater. Interfaces 6, 2753–2758 (2014)CrossRefGoogle Scholar
  81. 81.
    D. Aoki, Y. Teramoto, Y. Nishio, SH-containing cellulose acetate derivatives: Preparation and characterization as a shape memory-recovery material. Biomacromolecules 8, 3749–3757 (2007)CrossRefGoogle Scholar
  82. 82.
    B.T. Michal, C.A. Jaye, E.J. Spencer, S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2, 694–699 (2013)CrossRefGoogle Scholar
  83. 83.
    A. Lendlein, H.Y. Jiang, O. Junger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRefGoogle Scholar
  84. 84.
    M. Nagata, Y. Sato, Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(ε-caprolactone) and poly(L-lactide) segments. J. Polym. Sci. Part A: Polym. Chem. 43, 2426–2439 (2005)CrossRefGoogle Scholar
  85. 85.
    L. Wu, C. Jin, X. Sun, Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12, 235–241 (2011)CrossRefGoogle Scholar
  86. 86.
    J.M. Rochette, V.S. Ashby, Photoresponsive polyesters for tailorable shape memory biomaterials. Macromolecules 46, 2134–2140 (2013)CrossRefGoogle Scholar
  87. 87.
    M. Nagata, Y. Yamamoto, Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties. J. Polym. Sci. Part A: Polm. Chem. 47, 2422–2433 (2009)CrossRefGoogle Scholar
  88. 88.
    M. Nagata, Y. Yamamoto, Photocurable shape-memory copolymers of ε-caprolactone and L-lactide. Macromol. Chem. Phys. 211, 1826–1835 (2010)CrossRefGoogle Scholar
  89. 89.
    J. He, Y. Zhao, Y. Zhao, Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 5, 308–310 (2009)CrossRefGoogle Scholar
  90. 90.
    H. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)CrossRefGoogle Scholar
  91. 91.
    Y. Li, O. Rios, J.K. Keum, J. Chen, M.R. Kessler, Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl. Mater. Interfaces 8, 15750–15757 (2016)CrossRefGoogle Scholar
  92. 92.
    K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, T.J. White, Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318–4324 (2011)CrossRefGoogle Scholar
  93. 93.
    T. Yoshino, M. Kondo, J.-i. Mamiya, M. Kinoshita, Y. Yu, T. Ikeda, Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 22, 1361–1363 (2010)CrossRefGoogle Scholar
  94. 94.
    M. Yamada, M. Kondo, J.-i. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008)CrossRefGoogle Scholar
  95. 95.
    Y. Naka, J.-i. Mamiya, A. Shishido, M. Washio, T. Ikeda, Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J. Mater. Chem. 21, 1681–1683 (2011)CrossRefGoogle Scholar
  96. 96.
    O.M. Tanchak, C.J. Barrett, Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect. Macromolecules 38, 10566–10570 (2005)CrossRefGoogle Scholar
  97. 97.
    M. Irie, D. Kunwatchakun, Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19, 2476–2480 (1986)CrossRefGoogle Scholar
  98. 98.
    A. Mamada, T. Tanaka, D. Kungwatchakun, M. Irie, Photoinduced phase transition of gels. Macromolecules 23, 1517–1519 (1990)CrossRefGoogle Scholar
  99. 99.
    X. Zhang, Q. Zhou, H. Liu, H. Liu, UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10, 3748–3754 (2014)CrossRefGoogle Scholar
  100. 100.
    M.-Q. Zhu, L. Zhu, J.J. Han, W. Wu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 128, 4303–4309 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    I. Bellin, S. Kelch, A. Lendlein, Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 17, 2885–2891 (2007)CrossRefGoogle Scholar
  102. 102.
    M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, One-step process for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 19, 102–108 (2009)CrossRefGoogle Scholar
  103. 103.
    S. Chen, J. Hu, C.-W. Yuen, L. Chan, H. Zhuo, Triple shape memory effect in multiple crystalline polyurethanes. Polym. Adv. Technol. 21, 377–380 (2010)Google Scholar
  104. 104.
    A. Lendlein, T. Sauter, Shape-memory effect in polymers. Macromol. Chem. Phys. 214, 1175–1177 (2013)CrossRefGoogle Scholar
  105. 105.
    I. Bellin, S. Kelch, R. Langer, A. Lendlein, Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 103, 18043–18047 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  106. 106.
    S.-K. Ahn, R.M. Kasi, Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 21, 4543 (2011)CrossRefGoogle Scholar
  107. 107.
    T. Ware, K. Hearon, A. Lonnecker, K.L. Wooley, D.J. Maitland, W. Voit, Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 45, 1062–1069 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    M. Behl, A. Lendlein, Triple-shape polymers. J. Mater. Chem. 20, 3335–3345 (2010)CrossRefGoogle Scholar
  109. 109.
    M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, Dual and triple shape capability of AB polymer networks based on poly(ε-caprolactone)dimethacrylates. Mater. Res. Soc. Symp. Proc. 1140, 3–8 (2009)Google Scholar
  110. 110.
    K. Suchao-in, S. Chirachanchai, “Grafting to” as a novel and simple approach for triple-shape memory polymers. ACS Appl. Mater. Interfaces 5, 6850–6853 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    H. Qin, P.T. Mather, Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42, 273–280 (2009)CrossRefGoogle Scholar
  112. 112.
    S.-K. Ahn, P. Deshmukh, R.M. Kasi, Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures. Macromolecules 43, 7330–7340 (2010)CrossRefGoogle Scholar
  113. 113.
    T. Xie, X. Xiao, Y.-T. Cheng, Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823–1827 (2009)CrossRefGoogle Scholar
  114. 114.
    C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, B.K. Kim, Organic-inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21, 11288–11295 (2011)CrossRefGoogle Scholar
  115. 115.
    X. Luo, P.T. Mather, Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 20, 2649–2656 (2010)CrossRefGoogle Scholar
  116. 116.
    H. Chen, Y. Liu, T. Gong, L. Wang, K. Zhao, S. Zhou, Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 3, 7048–7056 (2013)CrossRefGoogle Scholar
  117. 117.
    S. Chen, H. Yuan, Z. Ge, S. Chen, H. Zhuo, J. Liu, Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. J. Mater. Chem. C 2, 1041–1049 (2014)CrossRefGoogle Scholar
  118. 118.
    T. Xie, Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010)CrossRefGoogle Scholar
  119. 119.
    R. Dolog, R.A. Weiss, Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 46, 7845–7852 (2013)CrossRefGoogle Scholar
  120. 120.
    Q. Zhang, S. Song, J. Feng, P. Wu, A new strategy to prepare polymer composites with versatile shape memory properties. J. Mater. Chem. 22, 24776–24782 (2012)CrossRefGoogle Scholar
  121. 121.
    J. Li, T. Xie, Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 44, 175–180 (2011)CrossRefGoogle Scholar
  122. 122.
    X. Qi, Y. Guo, Y. Wei, P. Dong, Q. Fu, Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem. B 120, 11064–11073 (2016)CrossRefGoogle Scholar
  123. 123.
    Q. Song, H. Chen, S. Zhou, K. Zhao, B. Wang, P. Hu, Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 7, 1739–1746 (2016)CrossRefGoogle Scholar
  124. 124.
    S.-Q. Wang, D. Kaneko, M. Okajima, K. Yasaki, S. Tateyama, T. Kaneko, Hyperbranched polycoumarates with photofunctional multiple shape memory. Angew. Chem. Int. Ed. 52, 11143–11148 (2013)CrossRefGoogle Scholar
  125. 125.
    K. Kratz, S.A. Madbouly, W. Wagermaier, A. Lendlein, Temperature-memory polymer networks with crystallizable controlling units. Adv. Mater. 23, 4058–4062 (2011)CrossRefGoogle Scholar
  126. 126.
    K. Yu, H.J. Qi, Temperature memory effect in amorphous shape memory polymers. Soft Matter 10, 9423–9432 (2014)CrossRefGoogle Scholar
  127. 127.
    M. Behl, K. Kratz, U. Noechel, T. Sauter, A. Lendlein, Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. U. S. A. 110, 12555–12559 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  128. 128.
    L. Wang, S. Di, W. Wang, H. Chen, X. Yang, T. Gong, S. Zhou, Tunable temperature memory effect of photo-cross-linked star PCL–PEG networks. Macromolecules 47, 1828–1836 (2014)CrossRefGoogle Scholar
  129. 129.
    K. Kratz, U. Voigt, A. Lendlein, Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv. Funct. Mater. 22, 3057–3065 (2012)CrossRefGoogle Scholar
  130. 130.
    L. Viry, C. Mercader, P. Miaudet, C. Zakri, A. Derre, A. Kuhn, M. Maugey, P. Poulin, Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487–3495 (2010)CrossRefGoogle Scholar
  131. 131.
    P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318, 1294–1296 (2007)CrossRefGoogle Scholar
  132. 132.
    N. Fritzsche, T. Pretsch, Programming of temperature-memory onsets in a semicrystalline polyurethane elastomer. Macromolecules 47, 5952–5959 (2014)CrossRefGoogle Scholar
  133. 133.
    N. Mirtschin, T. Pretsch, Designing temperature-memory effects in semicrystalline polyurethane. RSC Adv. 5, 46307–46315 (2015)CrossRefGoogle Scholar
  134. 134.
    S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, T. Riccò, One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54, 4253–4265 (2013)CrossRefGoogle Scholar
  135. 135.
    T. Chung, A. Romo-Uribe, P.T. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008)CrossRefGoogle Scholar
  136. 136.
    M. Behl, K. Kratz, J. Zotzmann, U. Nöchel, A. Lendlein, Reversible bidirectional shape-memory polymers. Adv. Mater. 25, 4466–4469 (2013)CrossRefGoogle Scholar
  137. 137.
    H. Seok Jin, Y. Woong-Ryeol, Y. Ji Ho, Two-way shape memory behavior of shape memory polyurethanes with a bias load. Smart Mater. Struct. 19, 035022 (2010)CrossRefGoogle Scholar
  138. 138.
    J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments. Adv. Mater. 22, 3424–3429 (2010)CrossRefGoogle Scholar
  139. 139.
    J. Li, W.R. Rodgers, T. Xie, Semi-crystalline two-way shape memory elastomer. Polymer 52, 5320–5325 (2011)CrossRefGoogle Scholar
  140. 140.
    S. Pandini, S. Passera, M. Messori, K. Paderni, M. Toselli, A. Gianoncelli, E. Bontempi, T. Riccò, Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53, 1915–1924 (2012)CrossRefGoogle Scholar
  141. 141.
    M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Multifunctional hybrid nanocomposites with magnetically controlled reversible shape-memory effect. Adv. Mater. 25, 5730–5733 (2013)CrossRefGoogle Scholar
  142. 142.
    M. Behl, J. Zotzmann, A. Lendlein, One-way and reversible dual-shape effect of polymer networks based on polypentadecalactone segments. Int. J. Artif. Organs 34, 231–237 (2011)CrossRefGoogle Scholar
  143. 143.
    T. Gong, K. Zhao, W. Wang, H. Chen, L. Wang, S. Zhou, Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2, 6855–6866 (2014)CrossRefGoogle Scholar
  144. 144.
    A. Biswas, V.K. Aswal, P.U. Sastry, D. Rana, P. Maiti, Reversible bidirectional shape memory effect in polyurethanes through molecular flipping. Macromolecules 49, 4889–4897 (2016)CrossRefGoogle Scholar
  145. 145.
    F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015)PubMedCentralCrossRefPubMedGoogle Scholar
  146. 146.
    M.Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A 444, 227–235 (2007)CrossRefGoogle Scholar
  147. 147.
    H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites[mdash]stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)CrossRefGoogle Scholar
  148. 148.
    K.C. Hribar, R.B. Metter, J.L. Ifkovits, T. Troxler, J.A. Burdick, Light-induced temperature transitions in biodegradable polymer and nanorod composites. Small 5, 1830–1834 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  149. 149.
    H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)CrossRefGoogle Scholar
  150. 150.
    Y. Hu, W. Chen, Externally induced thermal actuation of polymer nanocomposites. Macromol. Chem. Phys. 212, 992–998 (2011)CrossRefGoogle Scholar
  151. 151.
    L. Hsu, C. Weder, S.J. Rowan, Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 21, 2812–2822 (2011)CrossRefGoogle Scholar
  152. 152.
    S.A. Madbouly, A. Lendlein, Shape-memory polymer composites. Adv. Polym. Sci. 226, 41–95 (2010)CrossRefGoogle Scholar
  153. 153.
    M.Y. Razzaq, M. Behl, A. Lendlein, Memory-effects of magnetic nanocomposites. Nanoscale 4, 6181–6195 (2012)CrossRefGoogle Scholar
  154. 154.
    C.S. Hazelton, S.C. Arzberger, M.S. Lake, N.A. Munshi, RF actuation of a thermoset shape memory polymer with embedded magnetoelectroelastic particles. J Adv Mater (Covina, CA, US) 39, 35–39 (2007)Google Scholar
  155. 155.
    P.R. Buckley, G.H. McKinley, T.S. Wilson, W. Small, W.J. Benett, J.P. Bearinger, M.W. McElfresh, D.J. Maitland, Inductively heated shape memory polymer for the magnetic actuation of medical devices. I.E.E.E. Trans. Biomed. Eng. 53, 2075–2083 (2006)Google Scholar
  156. 156.
    U.N. Kumar, K. Kratz, W. Wagermaier, M. Behl, A. Lendlein, Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J. Mater. Chem. 20, 3404–3415 (2010)CrossRefGoogle Scholar
  157. 157.
    M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method. Adv. Mater. 25, 5514–5518 (2013)CrossRefGoogle Scholar
  158. 158.
    M.Y. Razzaq, M. Behl, A. Lendlein, Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184–191 (2012)CrossRefGoogle Scholar
  159. 159.
    M.Y. Razzaq, M. Behl, U. Nöchel, A. Lendlein, Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles. Polymer 55, 5953–5960 (2014)CrossRefGoogle Scholar
  160. 160.
    P.J. Skrzeszewska, L.N. Jong, F.A. de Wolf, M.A. Cohen Stuart, J. van der Gucht, Shape-memory efects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12, 2285–2292 (2011)CrossRefGoogle Scholar
  161. 161.
    J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Nano. Lett. 2, 86–89 (2013)Google Scholar
  162. 162.
    U. Nöchel, C.S. Reddy, N.K. Uttamchand, K. Kratz, M. Behl, A. Lendlein, Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment. Eur. Polym. J. 49, 2457–2466 (2013)CrossRefGoogle Scholar
  163. 163.
    G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 7, 12067–12073 (2015)CrossRefGoogle Scholar
  164. 164.
    M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers, E.W. Meijer, Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969–6977 (2014)CrossRefGoogle Scholar
  165. 165.
    W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015)CrossRefGoogle Scholar
  166. 166.
    V. Kozlovskaya, J. Chen, C. Tedjo, X. Liang, J. Campos-Gomez, J.W. Oh, pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. J. Mater. Chem. B 2, 2494–2507 (2014)CrossRefGoogle Scholar
  167. 167.
    X.-J. Han, Z.-Q. Dong, M.-M. Fan, Y. Liu, J.-H. Li, Y.-F. Wang, Q.-J. Yuan, B.-J. Li, S. Zhang, pH-Induced shape-memory polymers. Macromol. Rapid Commun. 33, 1055–1060 (2012)CrossRefGoogle Scholar
  168. 168.
    H. Meng, J. Zheng, X. Wen, Z. Cai, J. Zhang, T. Chen, pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid–diol ester bonds. Macromol. Rapid Commun. 36, 533–537 (2015)CrossRefGoogle Scholar
  169. 169.
    A. Yasin, H. Li, Z. Lu, S.U. Rehman, M. Siddiq, H. Yang, A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10, 972–977 (2014)CrossRefGoogle Scholar
  170. 170.
    C.-H. Lu, W. Guo, Y. Hu, X.-J. Qi, I. Willner, Multitriggered shape-memory acrylamide–DNA hydrogels. J. Am. Chem. Soc. 137, 15723–15731 (2015)CrossRefGoogle Scholar
  171. 171.
    R.D. Harris, J.T. Auletta, S.A.M. Motlagh, M.J. Lawless, N.M. Perri, S. Saxena, L.M. Weiland, D.H. Waldeck, W.W. Clark, T.Y. Meyer, Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Lett. 2, 1095–1099 (2013)CrossRefGoogle Scholar
  172. 172.
    Y. Han, T. Bai, Y. Liu, X. Zhai, W. Liu, Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol. Rapid Commun. 33, 225–231 (2012)CrossRefGoogle Scholar
  173. 173.
    Y. Kagami, J.P. Gong, Y. Osada, Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol. Rapid Commun. 17, 539–543 (1996)CrossRefGoogle Scholar
  174. 174.
    Y. Osada, A. Matsuda, Shape-memory in hydrogels. Nature 376, 219–219 (1995)CrossRefGoogle Scholar
  175. 175.
    C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)CrossRefGoogle Scholar
  176. 176.
    K. Inomata, T. Terahama, R. Sekoguchi, T. Ito, H. Sugimoto, E. Nakanishi, Shape memory properties of polypeptide hydrogels having hydrophobic alkyl side chains. Polymer 53, 3281–3286 (2012)CrossRefGoogle Scholar
  177. 177.
    M.H. Kabir, T. Hazama, Y. Watanabe, J. Gong, K. Murase, T. Sunada, H. Furukawa, Smart hydrogel with shape memory for biomedical applications. J. Taiwan Inst. Chem. Eng. 45, 3134–3138 (2014)CrossRefGoogle Scholar
  178. 178.
    J.L. Zhang, W.M. Huang, G. Gao, J. Fu, Y. Zhou, A.V. Salvekar, S.S. Venkatraman, Y.S. Wong, K.H. Tay, W.R. Birch, Shape memory/change effect in a double network nanocomposite tough hydrogel. Eur. Polym. J. 58, 41–51 (2014)CrossRefGoogle Scholar
  179. 179.
    M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with switching segments based on oligo(omega-pentadecalactone). Macromol. Mater. Eng. 297, 1184–1192 (2012)CrossRefGoogle Scholar
  180. 180.
    M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with crystallizable oligotetrahydrofuran side chains. Macromol. Symp. 345, 8–13 (2014)CrossRefGoogle Scholar
  181. 181.
    U. Nöchel, M. Behl, M. Balk, A. Lendlein, Thermally-induced triple-shape hydrogels: Soft materials enabling complex movements. ACS Appl. Mater. Interfaces 8, 28068–28076 (2016)CrossRefGoogle Scholar
  182. 182.
    K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984–8987 (2015)CrossRefGoogle Scholar
  183. 183.
    G.F. Li, J. Wu, B. Wang, S.F. Yan, K.X. Zhang, J.X. Ding, J.B. Yin, Self-healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromolecules 16, 3508–3518 (2015)CrossRefGoogle Scholar
  184. 184.
    N.M. Sangeetha, U. Maitra, Supramolecular gels: Functions and uses. Chem. Soc. Rev. 34, 821–836 (2005)CrossRefGoogle Scholar
  185. 185.
    X. Yan, F. Wang, B. Zheng, F. Huang, Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012)CrossRefGoogle Scholar
  186. 186.
    B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh, X.J. Loh, Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8, 10070–10087 (2016)CrossRefGoogle Scholar
  187. 187.
    T. Bai, Y. Han, P. Zhang, W. Wang, W. Liu, Zinc ion-triggered two-way macro−/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter 8, 6846–6852 (2012)CrossRefGoogle Scholar
  188. 188.
    B. Xu, Y. Li, F. Gao, X. Zhai, M. Sun, W. Lu, Z. Cao, W. Liu, High strength multifunctional multiwalled hydrogel tubes: Ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl. Mater. Interfaces 7, 16865–16872 (2015)CrossRefGoogle Scholar
  189. 189.
    W. Nan, W. Wang, H. Gao, W. Liu, Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 9, 132–137 (2013)CrossRefGoogle Scholar
  190. 190.
    X. Le, W. Lu, J. Zheng, D. Tong, N. Zhao, C. Ma, H. Xiao, J. Zhang, Y. Huang, T. Chen, Stretchable supramolecular hydrogels with triple shape memory effect. Chem. Sci. 7, 6715–6720 (2016)PubMedCentralCrossRefPubMedGoogle Scholar
  191. 191.
    O. Peters, H. Ritter, Supramolecular controlled water uptake of macroscopic materials by a cyclodextrin-induced hydrophobic-to-hydrophilic transition. Angew. Chem. Int. Ed. 52, 8961–8963 (2013)CrossRefGoogle Scholar
  192. 192.
    Y.-N. Chen, L. Peng, T. Liu, Y. Wang, S. Shi, H. Wang, Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl. Mater. Interfaces 8, 27199–27206 (2016)CrossRefGoogle Scholar
  193. 193.
    C.L. Lewis, E.M. Dell, A review of shape memory polymers bearing reversible binding groups. J. Polym. Sci. B Polym. Phys. 54, 1340–1364 (2016)CrossRefGoogle Scholar
  194. 194.
    L. Qin, F. Xie, P. Duan, M. Liu, A peptide dendron-based shrinkable metallo-hydrogel for charged species separation and stepwise release of drugs. Chem. Eur. J. 20, 15419–15425 (2014)CrossRefGoogle Scholar
  195. 195.
    M. Hacker, H. Nawaz, Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int. J. Mol. Sci. 16, 26056 (2015)CrossRefGoogle Scholar
  196. 196.
    J.L. Hu, J. Lu, Shape memory polymers in textiles. Adv. Sci. Technol. 80, 30–38 (2013)CrossRefGoogle Scholar
  197. 197.
    A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673 (2002)CrossRefGoogle Scholar
  198. 198.
    F. El Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91–104 (2002)CrossRefGoogle Scholar
  199. 199.
    D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)CrossRefGoogle Scholar
  200. 200.
    W. Small IV, T. Wilson, W. Benett, J. Loge, D. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)CrossRefGoogle Scholar
  201. 201.
    S. Shih-Horng, Mini review of the fully bioabsorbable polymeric stents. Recent Pat. Eng. 1, 244–250 (2007)CrossRefGoogle Scholar
  202. 202.
    F. Jung, C. Wischke, A. Lendlein, Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 35, 607–613 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biomaterial ScienceHelmholtz-Zentrum GeesthachtTeltowGermany
  2. 2.Institute of ChemistryUniversity of PotsdamPotsdamGermany

Personalised recommendations