Membrane Surface Modification and Functionalization

  • Syed Mohammed Javaid ZaidiEmail author
  • Kenneth A. Mauritz
  • Mohammad K. Hassan
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Surface functionalization of membranes is one of the efficient techniques that can bestow these membranes with novel properties and transform them into valuable finished products. It has been widely applied to polymeric membranes in many fields and has progressed rapidly in recent years. The modified membranes have been widely used in various applications, such as in separation processes for liquid and gaseous mixtures (gas separation, reverse osmosis, pervaporation, nanofiltration, ultrafiltration, microfiltration), biomaterials, catalysis (including fuel cell systems), and “smart” membranes. In this chapter, various approaches to the surface modification and functionalization of polymeric membranes are highlighted and reviewed. Also, the applications of the modified membranes will be discussed from the aspect of environmental stimuli-responsive gating membranes, antifouling membranes, adsorption membranes, pervaporation and reverse osmosis membranes, membranes for energy conversion, gas separation membranes, and biomedical membranes. A detailed overview of the usage of polyzwitterions and oxidative stability of surface modifiers to alter membrane surface charge will be outlined. Finally, recent advances and developments in surface modification techniques such as layer-by-layer assembly and chemical vapor deposition will be discussed.



The authors would like to acknowledge the support of the Center for Advanced Materials (CAM), Qatar University, for this work.


  1. 1.
    N. Misdan, A.F. Ismail, N. Hilal, Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination 380, 105–111 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Sun, J. Liu, H. Chu, B. Dong, Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes (Basel, Switzerland) 3(3), 226–241 (2013)Google Scholar
  3. 3.
    V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187–207 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Mueller, Y. Cen, R.H. Davis, Crossflow microfiltration of oily water. J. Membr. Sci. 129(2), 221–235 (1997)CrossRefGoogle Scholar
  5. 5.
    D. Rana, T. Matsuura, Surface modifications for antifouling membranes. Chem. Rev. 110(4), 2448–2471 (2010)PubMedCrossRefGoogle Scholar
  6. 6.
    M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011)PubMedCrossRefGoogle Scholar
  7. 7.
    H. Ju, B.D. McCloskey, A.C. Sagle, V.A. Kusuma, B.D. Freeman, Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J. Membr. Sci. 330(1–2), 180–188 (2009)CrossRefGoogle Scholar
  8. 8.
    A.C. Sagle, H. Ju, B.D. Freeman, M.M. Sharma, PEG-based hydrogel membrane coatings. Polymer 50(3), 756–766 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Ju, B.D. McCloskey, A.C. Sagle, Y.-H. Wu, V.A. Kusuma, B.D. Freeman, Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. J. Membr. Sci. 307(2), 260–267 (2008)CrossRefGoogle Scholar
  10. 10.
    A.C. Sagle, E.M. Van Wagner, H. Ju, B.D. McCloskey, B.D. Freeman, M.M. Sharma, PEG-coated reverse osmosis membranes: desalination properties and fouling resistance. J. Membr. Sci. 340(1–2), 92–108 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Roosjen, H.J. Kaper, H.C. van der Mei, W. Norde, H.J. Busscher, Inhibition of adhesion of yeast sand bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology 149(11), 3239–3246 (2003)PubMedCrossRefGoogle Scholar
  12. 12.
    M. Ulbricht, H. Matuschewski, A. Oechel, H.-G. Hicke, Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein adsorbing ultrafiltration membranes. J. Membr. Sci. 115(1), 31–47 (1996)CrossRefGoogle Scholar
  13. 13.
    Y.-H. Zhao, K.-H. Wee, R. Bai, Highly hydrophilic and low-protein fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J. Membr. Sci. 362(1–2), 326–333 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Jiang, Z. Cao, Ultra low-fouling, functionalizable, and hydrolysable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22(9), 920–932 (2010)PubMedCrossRefGoogle Scholar
  15. 15.
    B. Zhao, W.J. Brittain, Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710 (2000)CrossRefGoogle Scholar
  16. 16.
    Z-K. Xu, X-J. Huang, L-S. Wan, in Advanced Topics in Science and Technology in China: Surface Engineering of Polymer Membranes, Chapter 4 (Springer, Berlin, 2009), pp. 80CrossRefGoogle Scholar
  17. 17.
    K. Kato, E. Uchida, E.T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains. Prog. Polym. Sci. 28, 209–259 (2003)CrossRefGoogle Scholar
  18. 18.
    X. Fan, Y. Su, X. Zhao, Y. Li, R. Zhang, T. Ma, Y. Liu, Z. Jiang, Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. J. Membr. Sci. 499, 56–64 (2016)CrossRefGoogle Scholar
  19. 19.
    W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, Z. Jiang, Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore forming agent. J. Membr. Sci. 318, 405–412 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, Y. Su, X. Zhao, Y. Li, R. Zhang, Z. Jiang, Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. J. Membr. Sci. 486, 195–206 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    B.D. McCloskey, H.B. Park, H. Ju, B.W. Rowe, D.J. Miller, B.D. Freeman, A bioinspired fouling-resistant surface modification for water purification membranes. J. Membr. Sci. 413-414, 82–90 (2012)CrossRefGoogle Scholar
  23. 23.
    J.T. Arena, B. McCloskey, B.D. Freeman, J.R. McCutcheon, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci. 375(1–2), 55–62 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Lee, Y. Lee, A.R. Statz, J. Rho, T.G. Park, P.B. Messersmith, Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv. Mater. 20(9), 1619–1623 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    G. Han, S. Zhang, X. Li, N. Widjojo, T.-S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chem. Eng. Sci. 80, 219–231 (2012)CrossRefGoogle Scholar
  26. 26.
    J.-H. Jiang, L.-P. Zhu, X.-L. Li, Y.-Y. Xu, B.-K. Zhu, Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. J. Membr. Sci. 364(1–2), 194–202 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27(23), 14180–14187 (2011)PubMedCrossRefGoogle Scholar
  28. 28.
    Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao, Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 1(9), 1430–1433 (2010)CrossRefGoogle Scholar
  29. 29.
    Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu, Y. Wang, B.-K. Zhu, A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J. Membr. Sci. 327(1–2), 244–253 (2009)CrossRefGoogle Scholar
  30. 30.
    D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri, T. Hayes, D.R. Paul, B.D. Freeman, Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study. J. Membr. Sci. 437, 265–275 (2013)CrossRefGoogle Scholar
  31. 31.
    D.J. Miller, S. Kasemset, L. Wang, D.R. Paul, B.D. Freeman, Constant flux crossflow filtration evaluation of surface-modified fouling-resistant membranes. J. Membr. Sci. 452, 171–183 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Li, J. Meng, J. Ye, B. Yang, Q. Tian, C. Deng, Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: morphology, stability, and anti-fouling. Desalination 344, 422–430 (2014)CrossRefGoogle Scholar
  33. 33.
    F. Li, C. Deng, C. Du, B. Yang, Q. Tian, Fouling mechanism and cleanability of ultrafiltration membranes modified with polydopamine-graft-PEG. Water SA 41(4), 448–456 (2015)CrossRefGoogle Scholar
  34. 34.
    F. Li, J. Ye, L. Yang, C. Deng, Q. Tian, B. Yang, Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings. Appl. Surf. Sci. 345, 301–309 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Vladkova, P. Atanasova, S. Petrov, P. Dineff, Surface modification of polymeric ultrafiltration membranes: III. Effect of plasma-chemical surface modification onto some characteristics of polyacrylonitrile ultrafiltration membranes. High Energy Chem. 47(6), 346–352 (2013)CrossRefGoogle Scholar
  36. 36.
    G. Chen, Z. Wang, L.D. Nghiem, X.-M. Li, M. Xie, B. Zhao, M. Zhang, J. Song, T. He, Treatment of shale gas drilling flow back fluids (SGDFs) by forward osmosis: membrane fouling and mitigation. Desalination 366, 113–120 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Zuo, R. Wang, Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J. Membr. Sci. 447, 26–35 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Ju, T. Wang, Q. Wang, Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions. Colloids Surf. A: Physicochem. Eng. Asp. 481, 151–157 (2015)CrossRefGoogle Scholar
  39. 39.
    R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)CrossRefGoogle Scholar
  40. 40.
    L. Wu, J. Sun, F. Tong, Surface modification of a PVDF membrane by crosslinked collagen. RSC Adv. 4(109), 63989–63996 (2014)CrossRefGoogle Scholar
  41. 41.
    L. Zhi, Z. Wei, W. Xinwei, Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization. Appl. Surf. Sci. 257, 7600–7608 (2011)CrossRefGoogle Scholar
  42. 42.
    K. Pan, H. Gu, B. Cao, Interfacially polymerized thin-film composite membrane on UV-induced surface hydrophilic-modified polypropylene support for nanofiltration. Polymer Bull. (Heidelberg, Germany) 71(2), 415–431 (2014)Google Scholar
  43. 43.
    J. Wang, X. Gao, Q. Wang, H. Sun, X. Wang, C. Gao, Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid. Appl. Surf. Sci. 356, 467–474 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Yu, X. Zhang, Y. Zhang, J. Liu, H. Zhang, Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326, 69–76 (2013)CrossRefGoogle Scholar
  45. 45.
    D. Alves, M. Olívia Pereira, Mini-review: antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling 30, 1–17 (2014)CrossRefGoogle Scholar
  46. 46.
    X. Gao, H. Wang, J. Wang, X. Huang, C. Gao, Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance. J. Membr. Sci. 445, 146–155 (2013)CrossRefGoogle Scholar
  47. 47.
    R.E. Holmlin, X. Chen, R.G. Chapman, S. Takayama, G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17, 2841–2850 (2001)CrossRefGoogle Scholar
  48. 48.
    M. Ginic-Markovic, T. Barclay, K.T. Constantopoulos, T. Al-Ghamdi, A. Blok, E. Markovic, A.V. Ellis, A versatile approach to grafting biofouling resistant coatings from polymeric membrane surfaces using an adhesive macroinitiator. RSC Adv. 5(77), 63017–63024 (2015)CrossRefGoogle Scholar
  49. 49.
    I. Eshet, V. Freger, R. Kasher, M. Herzberg, J. Lei, M. Ulbricht, Chemical and physical factors in design of antibiofouling polymer coatings. Biomacromolecules 12, 2681–2685 (2011)PubMedCrossRefGoogle Scholar
  50. 50.
    M.Y. Zhou, H.W. Liu, J.E. Kilduff, R. Langer, D.G. Anderson, G. Belfort, High-throughput membrane surface modification to control NOM fouling. Environ. Sci. Technol. 43, 3865–3871 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    M.-C. Sin, S.-H. Chen, Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes, IMP example for biomedical applications, discuss factors below. Polymer J. (Tokyo, Japan) 46(8), 436–443 (2014)CrossRefGoogle Scholar
  52. 52.
    R. Bernstein, V. Freger, J.-H. Lee, Y.-G. Kim, J. Lee, M. Herzberg, ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes “methods to investigate biofouling activity”. Biofouling 30(3), 367–376 (2014)PubMedCrossRefGoogle Scholar
  53. 53.
    K. Matyjaszewski, H. Dong, W. Jakubowski, J. Pietrasik, Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23, 4528–4531 (2007)PubMedCrossRefGoogle Scholar
  54. 54.
    T. Gillich, E.M. Benetti, E. Rakhmatullina, R. Konradi, W. Li, A. Zhang, A.D. Schlüter, M. Textor, Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties. J. Am. Chem. Soc. 133, 10940–10950 (2011)PubMedCrossRefGoogle Scholar
  55. 55.
    H.-Y. Yu, Y. Kang, Y. Liu, B. Mi, Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance. J. Membr. Sci. 449, 50–57 (2014)CrossRefGoogle Scholar
  56. 56.
    R. Ranjan, W.J. Brittain, Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40, 6217–6223 (2007)CrossRefGoogle Scholar
  57. 57.
    J.F. Lutz, H.G. Borner, K. Weichenhan, Combining atom transfer radical polymerization and click chemistry: a versatile method for the preparation of end-functional polymers. Macromol. Rapid Commun. 26, 514–518 (2005)CrossRefGoogle Scholar
  58. 58.
    D.X. Wu, X.H. Song, T. Tang, H.Y. Zhao, Macromolecular brushes synthesized by grafting from approach based on click chemistry and RAFT polymerization. J. Polym. Sci. Part A Polym. Chem. 48, 443–453 (2010)CrossRefGoogle Scholar
  59. 59.
    H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li, H.-C. Zhou, Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. J. Am. Chem. Soc. 134, 14690–14693 (2012)PubMedCrossRefGoogle Scholar
  60. 60.
    Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. J. Membr. Sci. 455, 349–356 (2014)CrossRefGoogle Scholar
  61. 61.
    P. Kaner, D.J. Johnson, E. Seker, N. Hilal, S.A. Altinkaya, Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels. J. Membr. Sci. 493, 807–819 (2015)CrossRefGoogle Scholar
  62. 62.
    W. Ma, M.S. Rahaman, H. Therien-Aubin, Controlling biofouling of reverse osmosis membranes through surface modification via grafting patterned polymer brushes. J. Water Reuse Desalination 5(3), 326–334 (2015)CrossRefGoogle Scholar
  63. 63.
    H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl. Mater. Interfaces 7(32), 18004–18016 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    G.L. Liu, C. Han, M. Pelaez, D.W. Zhu, S.J. Liao, V. Likodimos, A.G. Kontos, P. Falaras, D.D. Dionysiou, Enhanced visible light photocatalytic activity of C–N-codoped TiO2 films for the degradation of microcystin-LR. J. Mol. Catal. A Chem. 372, 58–65 (2013)CrossRefGoogle Scholar
  65. 65.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    J. Grzechulska-Damszel, M. Tomaszewska, A.W. Morawski, Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Desalination 241, 118–126 (2009)CrossRefGoogle Scholar
  67. 67.
    D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003)CrossRefGoogle Scholar
  68. 68.
    R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49, 741–772 (2011)CrossRefGoogle Scholar
  69. 69.
    Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 14, 9167–9175 (2012)PubMedCrossRefGoogle Scholar
  70. 70.
    D.L. Zhao, G.D. Sheng, C.L. Chen, X.K. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl. Catal. B-Environ. 111, 303–308 (2012)CrossRefGoogle Scholar
  71. 71.
    Y.L. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen, Y.G. Zhang, Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chem. Eng. J. 193, 203–210 (2012)CrossRefGoogle Scholar
  72. 72.
    G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, H.Q. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)CrossRefGoogle Scholar
  73. 73.
    T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania–graphene nanocomposites. J. Phys. Chem. C 113, 19812–19823 (2009)CrossRefGoogle Scholar
  74. 74.
    M. Gupta, V. Kapur, N.M. Pinkerton, K.K. Gleason, Initiated chemical vapor deposition (iCVDv) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores. Chem. Mater. 20(4), 1646–1651 (2008)CrossRefGoogle Scholar
  75. 75.
    A.M. Coclite, R.M. Howden, D.C. Borrelli, C.D. Petruczok, R. Yang, J.L. Yague, A. Ugur, N. Chen, S. Lee, W.J. Jo, A. Liu, X. Wang, K.K. Gleason, 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. 25(38), 5392–5423 (2013)PubMedCrossRefGoogle Scholar
  76. 76.
    A. Matin, Z. Khan, K.K. Gleason, M. Khaled, S.M.J. Zaidi, A. Khalil, P. Moni, R. Yang, Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control. Sep. Purific. Tech. 124, 117–123 (2014)CrossRefGoogle Scholar
  77. 77.
    F. Guo, A. Servi, A. Liu, K.K. Gleason, G.C. Rutledge, Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition. ACS Appl. Mater. Interfaces 7, 8225–8232 (2015)PubMedCrossRefGoogle Scholar
  78. 78.
    G.O. Ince, A. Matin, Z.U. Khan, S.M.J. Zaidi, K.K. Gleason, Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition. Thin Solid Films 539, 181–187 (2013)CrossRefGoogle Scholar
  79. 79.
    R. Quintana, M. Gosa, D. Jańczewski, E. Kutnyanszky, G.J. Vancso, Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture. Langmuir 29, 10859–10867 (2013)PubMedCrossRefGoogle Scholar
  80. 80.
    S. Rouaix, C. Causserand, P. Aimar, Experimental study of the effects of hypochlorite on polysulfone membrane properties. J. Membr. Sci. 277, 137–147 (2006)CrossRefGoogle Scholar
  81. 81.
    P.-F. Ren, Y. Fang, L.-S. Wan, X.-Y. Ye, Z.-K. Xu, Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): oxidative stability and antifouling capability. J. Membr. Sci. 492, 249–256 (2015)CrossRefGoogle Scholar
  82. 82.
    Q. Li, H.-H. Lin, X.-L. Wang, Preparation of sulfobetaine-grafted PVDF hollow fiber membranes with a stably anti-protein-fouling performance. Membranes (Basel, Switzerland) 4(2), 181–199 (2014)Google Scholar
  83. 83.
    J. Cardoso, L. Rubio, M. Albores-Velasco, Thermal degradation of poly(sulfobetaines). J. Appl. Polym. Sci. 73, 1409–1414 (1999)CrossRefGoogle Scholar
  84. 84.
    R. Zhou, P.-F. Ren, H.-C. Yang, Z.-K. Xu, Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 466, 18–25 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Syed Mohammed Javaid Zaidi
    • 1
    Email author
  • Kenneth A. Mauritz
    • 2
  • Mohammad K. Hassan
    • 1
  1. 1.Center for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.School of Polymers and High Performance MaterialsThe University of Southern MississippiHattiesburgUSA

Personalised recommendations