• Prem Prabhakaran
  • Kwang-Sup LeeEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


The synthesis of functional polymers by photopolymerization thrives on the rich tradition of industrial photochemistry. Photo-induced polymerization can be broadly divided based on the initiation mechanism as radical, cationic, and anionic photopolymerization. A wide variety of initiators, photosensitizers, and polymerizable materials have been studied for various applications. This chapter is intended to be a primer to major concepts of photopolymerization. In the beginning of the chapter, physical aspects of light matter interactions are presented followed by photochemical pathways leading to reactions. In the subsequent sections radical polymerization is discussed by introducing different types of initiating systems and polymerizable materials. Within the section on radical polymerization, visible light polymerization and thio-ene photochemistry are also discussed. The section on thiol-ene looks at the fundamentals of thiol-ene reactions, their initiation, reactivity, and advantages over other radical driven polymerizations. Cationic polymerization is covered based on the material science of ionic and nonionic photoacid generators (PAGs). This section also discusses spectral broadening of reactivity in PAGs to visible wavelengths through electron transfer sensitization and free radical promoted cationic polymerization (FRPCP). Unlike radical and cationic polymerization there are little or no reports of commercial application of anionic polymerization. However, due to typical monomers employed in anionic polymerization and the control over the extent of polymerization afforded by this techniques makes it very attractive for functional applications. The section on anionic polymerization summarizes recent developments in this field. Finally in the section about two-photon initiated polymerization, we discuss the scope of nonlinear optical phenomena in photopolymerization.


  1. 1.
    J.V. Crivello, E. Reichmanis, Photopolymer materials and processes for advanced technologies. Chem. Mater. 26, 533–548 (2013)CrossRefGoogle Scholar
  2. 2.
    J.-P. Fouassier, J. Lalevée, Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency (Wiley, Weinheim, 2012)CrossRefGoogle Scholar
  3. 3.
    G.D. Stucky, S.R. Marder, J.E. Sohn, Linear and Nonlinear Polarizability, S.R. Marder, J.E. Sohn, G.D. Stucky (Eds), Materials for nonlinear optics chemical perspectives, ACS-Symposium-Series, No. 455907, 1–30 (Washington, DC, 1991)Google Scholar
  4. 4.
    R.W. Boyd, Nonlinear Optics (Academic, San Diego, 2003)Google Scholar
  5. 5.
    J. Jortner, R.S. Berry, Radiationless transitions and molecular quantum beats. J. Chem. Phys. 48, 2757–2766 (1968)CrossRefGoogle Scholar
  6. 6.
    B. König, Organic Photochemistry. University of Regensburg webpage (, Germany, 6/12 (2016)
  7. 7.
    A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology, (The “Gold Book”), 2nd edn. (Blackwell Scientific, Oxford, 1997)Google Scholar
  8. 8.
    N.J. Turro, Modern Molecular Photochemistry (University Science Books, Sausalito, 1991)Google Scholar
  9. 9.
    J.P. Fouassier, D. Burr, Triplet state reactivity of α-sulfonyloxy ketones used as polymerization photoinitiators. Macromolecules 23, 3615–3619 (1990)CrossRefGoogle Scholar
  10. 10.
    J. Fouassier, D. Lougnot, J. Scaiano, A laser spectroscopy investigation of excited-state processes in α-sulphonyl ketones. Chem. Phys. Lett. 160, 335–341 (1989)CrossRefGoogle Scholar
  11. 11.
    K. Dietliker, R. Hüsler, J.-L. Birbaum, S. Ilg, S. Villeneuve, K. Studer, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto, Advancements in photoinitiators – Opening up new applications for radiation curing. Prog. Org. Coat. 58, 146–157 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Lalevee, M. El-Roz, F. Morlet-Savary, B. Graff, X. Allonas, J.-P. Fouassier, New highly efficient radical photoinitiators based on si-si bond cleavage. Macromolecules 40, 8527–8530 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Chatgilialoglu, Organosilanes in Radical Chemistry (Wiley, Chichester, 2004)CrossRefGoogle Scholar
  14. 14.
    E. Rizzardo, D.H. Solomon, A new method for investigating the mechanism of initiation of radical polymerization. Polym. Bull. 1, 529–534 (1979)CrossRefGoogle Scholar
  15. 15.
    D.H. Solomon, G. Moad, Initiation. The reactions of primary radicals. Macromol. Symp. 10, 109–125 (1987)CrossRefGoogle Scholar
  16. 16.
    C.S. Colley, D.C. Grills, N.A. Besley, S. Jockusch, P. Matousek, A.W. Parker, M. Towrie, N.J. Turro, P.M. Gill, M.W. George, Probing the reactivity of photoinitiators for free radical polymerization: Time-resolved infrared spectroscopic study of benzoyl radicals. J. Am. Chem. Soc. 124, 14952–14958 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    A. Fedorov, E. Danilov, A. Merzlikine, M. Rodgers, D. Neckers, Application of time-resolved step-scan Fourier transform infrared spectroscopy to photochemical mechanistic investigations of alkyl phenylglyoxylates. J. Phys. Chem. A 107, 3208–3214 (2003)CrossRefGoogle Scholar
  18. 18.
    W.K. Robbins, R. Eastman, Photodecarbonylation in solution. II. Trapping of intermediates in the photolysis of dibenzyl ketone. J. Am. Chem. Soc. 92, 6077–6079 (1970)CrossRefGoogle Scholar
  19. 19.
    M. Kamachi, ESR studies on radical polymerization, in Polymer Physics, vol. 82, (Springer, Berlin/Heidelberg, 1987), pp. 207–275CrossRefGoogle Scholar
  20. 20.
    K.A. McLauchlan, D. Stevens, Flash photolysis electron spin resonance. Acc. Chem. Res. 21, 54–59 (1988)CrossRefGoogle Scholar
  21. 21.
    I. Gatlik, P. Rzadek, G. Gescheidt, G. Rist, B. Hellrung, J. Wirz, K. Dietliker, G. Hug, M. Kunz, J.-P. Wolf, Structure-reactivity relationships in radical reactions: A novel method for the simultaneous determination of absolute rate constants and structural features. J. Am. Chem. Soc. 121, 8332–8336 (1999)CrossRefGoogle Scholar
  22. 22.
    P. Hore, C. Joslin, K. McLauchlan, The role of chemically-induced dynamic electron polarization (CIDEP) in chemistry. Chem. Soc. Rev. 8, 29–61 (1979)CrossRefGoogle Scholar
  23. 23.
    J.S. Baskin, L. Banares, S. Pedersen, A. Zewail, Femtosecond real-time probing of reactions. 20. Dynamics of twisting, alignment, and IVR in the trans-stilbene isomerization reaction. J. Phys. Chem. 100, 11920–11933 (1996)CrossRefGoogle Scholar
  24. 24.
    A.B. Oelkers, L.F. Scatena, D.R. Tyler, Femtosecond pump-probe transient absorption study of the photolysis of [Cp′Mo (CO) 3] 2 (Cp′= η5−C5H4CH3): Role of translational and rotational diffusion in the radical cage effect. J. Phys. Chem. A 111, 5353–5360 (2007)Google Scholar
  25. 25.
    A. Morandeira, A. Fürstenberg, E. Vauthey, Fluorescence quenching in electron-donating solvents. 2. Solvent dependence and product dynamics. J. Phys. Chem. A 108, 8190–8200 (2004)CrossRefGoogle Scholar
  26. 26.
    F. Morlet-Savary, C. Ley, P. Jacques, J. Fouassier, Photophysics of a bridged 7-diethylamino-4-methyl-coumarin C102: Studying the hydrogen bonding effect by time resolved stimulated emission. J. Phys. Chem. A 105, 11026–11033 (2001)CrossRefGoogle Scholar
  27. 27.
    D.W. McCamant, P. Kukura, R.A. Mathies, Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B 109, 10449–10457 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    H. Mohapatra, S. Umapathy, Influence of solvent on photoinduced electron-transfer reaction: Time-resolved resonance Raman study. J. Phys. Chem. A 113, 6904–6909 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    S.E. Braslavsky, G.E. Heibel, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 92, 1381–1410 (1992)CrossRefGoogle Scholar
  30. 30.
    M. Buback, A. M. van Herk (eds.), Radical Polymerization: Kinetics and Mechanism (Wiley, Weinheim, 2007)Google Scholar
  31. 31.
    W. Schnabel, J. Fouassier, J. Rabek, Lasers in Polymer Science and Technology: Applications (CRC Press, Boca Raton, 1990)Google Scholar
  32. 32.
    J.-P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications (Hanser, Munich, 1995)Google Scholar
  33. 33.
    X. Allonas, J. Lalevee, J. Fouassier, in Photoinitiated Polymerization, ACS Symposium Series, ed. by K.D. Belfield, J.V. Crivello, vol 847 (American Chemical Society, Washington, DC, 2003), p. 140Google Scholar
  34. 34.
    G. Odian, Principles of Polymerization (Wiley, Hoboken, 2004)CrossRefGoogle Scholar
  35. 35.
    N.S. Allen, Photochemistry and Photophysics of Polymeric Materials (Wiley, Weinheim, 2010)CrossRefGoogle Scholar
  36. 36.
    P. Xiao, J. Zhang, F. Dumur, M.A. Tehfe, F. Morlet-Savary, B. Graff, D. Gigmes, J.P. Fouassier, J. Lalevée, Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 41, 32–66 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Lalevée, M.-A. Tehfe, F. Dumur, D. Gigmes, B. Graff, F. Morlet-Savary, J.-P. Fouassier, Light-harvesting organic photoinitiators of polymerization. Macromol. Rapid Commun. 34, 239–245 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    M.-A. Tehfe, J. Lalevée, S. Telitel, E. Contal, F. Dumur, D. Gigmes, D. Bertin, M. Nechab, B. Graff, F. Morlet-Savary, J.-P. Fouassier, Polyaromatic structures as organo-photoinitiator catalysts for efficient visible light induced dual radical/cationic photopolymerization and interpenetrated polymer networks synthesis. Macromolecules 45, 4454–4460 (2012)CrossRefGoogle Scholar
  39. 39.
    B. Ganster, U.K. Fischer, N. Moszner, R. Liska, New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing. Macromolecules 41, 2394–2400 (2008)CrossRefGoogle Scholar
  40. 40.
    N. Moszner, U.K. Fischer, B. Ganster, R. Liska, V. Rheinberger, Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent. Mater. 24, 901–907 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    M.-A. Tehfe, N. Blanchard, C. Fries, J. Lalevée, X. Allonas, J.P. Fouassier, Bis(germyl)ketones: Toward a new class of type I photoinitiating systems sensitive above 500 nm? Macromol. Rapid Commun. 31, 473–478 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    J. Lalevée, X. Allonas, J.P. Fouassier, Acylgermanes: Excited state processes and reactivity. Chem. Phys. Lett. 469, 298–303 (2009)CrossRefGoogle Scholar
  43. 43.
    J. Lalevée, N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, J.P. Fouassier, A novel photopolymerization initiating system based on an iridium complex photocatalyst. Macromol. Rapid Commun. 32, 917–920 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    J. Lalevée, M. Peter, F. Dumur, D. Gigmes, N. Blanchard, M.-A. Tehfe, F. Morlet-Savary, J.P. Fouassier, Subtle ligand effects in oxidative photocatalysis with iridium complexes: Application to photopolymerization. Chem. Eur. J. 17, 15027–15031 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    A.F. Jacobine, Thiol-ene photopolymers, in Radiation Curing in Polymer Science and Technology, vol. 3, (Kluwer Academic Publishers Group, Netherlands, 1993), pp. 219–268Google Scholar
  46. 46.
    C.E. Hoyle, T.Y. Lee, T. Roper, Thiol-enes: Chemistry of the past with promise for the future. J. Polym. Sci. Part A: Polym. Chem. 42, 5301–5338 (2004)CrossRefGoogle Scholar
  47. 47.
    C.E. Hoyle, C.N. Bowman, Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Dondoni, The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew. Chem. Int. Ed. 47, 8995–8997 (2008)CrossRefGoogle Scholar
  49. 49.
    A.B. Lowe, Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010)CrossRefGoogle Scholar
  50. 50.
    T.Y. Lee, C.A. Guymon, E.S. Jönsson, C.E. Hoyle, The effect of monomer structure on oxygen inhibition of (meth)acrylates photopolymerization. Polymer 45, 6155–6162 (2004)CrossRefGoogle Scholar
  51. 51.
    V.S. Khire, Y. Yi, N.A. Clark, C.N. Bowman, Formation and surface modification of nanopatterned thiol-ene substrates using step and flash imprint lithography. Adv. Mater. 20, 3308–3313 (2008)CrossRefGoogle Scholar
  52. 52.
    S.K. Reddy, R.P. Sebra, K.S. Anseth, C.N. Bowman, Living radical photopolymerization induced grafting on thiol-ene based substrates. J. Polym. Sci. Part A: Polym. Chem. 43, 2134–2144 (2005)CrossRefGoogle Scholar
  53. 53.
    M. Liu, J. van Hensbergen, R.P. Burford, A.B. Lowe, Thiol-Michael coupling chemistry: Facile access to a library of functional exo-7-oxanorbornenes and their ring-opening metathesis (co)polymerization. Polym. Chem. 3, 1647–1658 (2012)CrossRefGoogle Scholar
  54. 54.
    M. Liu, B.H. Tan, R.P. Burford, A.B. Lowe, Nucleophilic thiol-Michael chemistry and hyperbranched (co)polymers: Synthesis and ring-opening metathesis (co)polymerization of novel difunctional exo-7-oxanorbornenes with in situ inimer formation. Polym. Chem. 4, 3300–3311 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Ohsawa, K. Morino, A. Sudo, T. Endo, Synthesis of bicyclic bis (γ-butyrolactone) derivatives bearing sulfide moieties and their alternating copolymers with epoxide. J. Polym. Sci. Part A: Polym. Chem. 50, 4666–4673 (2012)CrossRefGoogle Scholar
  56. 56.
    M. Firdaus, L. Montero de Espinosa, M.A. Meier, Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules 44, 7253–7262 (2011)CrossRefGoogle Scholar
  57. 57.
    Y. Li, W.-B. Zhang, J.E. Janoski, X. Li, X. Dong, C. Wesdemiotis, R.P. Quirk, S.Z. Cheng, Anionic synthesis of mono-and heterotelechelic polystyrenes via thiol-ene “click” chemistry and hydrosilylation. Macromolecules 44, 3328–3337 (2011)CrossRefGoogle Scholar
  58. 58.
    A.J. Magenau, J.W. Chan, C.E. Hoyle, R.F. Storey, Facile polyisobutylene functionalization via thiol-ene click chemistry. Polym. Chem. 1, 831–833 (2010)CrossRefGoogle Scholar
  59. 59.
    J.A. Syrett, M.W. Jones, D.M. Haddleton, A facile route to end-functionalised polymers synthesised by SET-LRP via a one-pot reduction/thiol-ene Michael-type addition. Chem. Commun. 46, 7181–7183 (2010)CrossRefGoogle Scholar
  60. 60.
    M. Hong, S.R. Liu, B.X. Li, Y.S. Li, Application of thiol-ene click chemistry to preparation of functional polyethylene with high molecular weight and high polar group content: Influence of thiol structure and vinyl type on reactivity. J. Polym. Sci. Part A: Polym. Chem. 50, 2499–2506 (2012)CrossRefGoogle Scholar
  61. 61.
    J. Mazzolini, O. Boyron, V. Monteil, F. D’Agosto, C. Boisson, G.C. Sanders, J.P. Heuts, R. Duchateau, D. Gigmes, D. Bertin, Polyethylene end functionalization using thia-Michael addition chemistry. Polym. Chem. 3, 2383–2392 (2012)CrossRefGoogle Scholar
  62. 62.
    H. Durmaz, M. Butun, G. Hizal, U. Tunca, Postfunctionalization of polyoxanorbornene via sequential Michael addition and radical thiol-ene click reactions. J. Polym. Sci. Part A: Polym. Chem. 50, 3116–3125 (2012)CrossRefGoogle Scholar
  63. 63.
    H. Mutlu, A.N. Parvulescu, P.C. Bruijnincx, B.M. Weckhuysen, M.A. Meier, On the polymerization behavior of telomers: Metathesis versus thiol-ene chemistry. Macromolecules 45, 1866–1878 (2012)CrossRefGoogle Scholar
  64. 64.
    J.S. Silverstein, B.J. Casey, M.E. Natoli, B.J. Dair, P. Kofinas, Rapid modular synthesis and processing of thiol-ene functionalized styrene–butadiene block copolymers. Macromolecules 45, 3161–3167 (2012)CrossRefGoogle Scholar
  65. 65.
    O. Kreye, T. Tóth, M.A. Meier, Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition. Eur. Polym. J. 47, 1804–1816 (2011)CrossRefGoogle Scholar
  66. 66.
    N.K. Singha, M.I. Gibson, B.P. Koiry, M. Danial, H.-A. Klok, Side-chain peptide-synthetic polymer conjugates via tandem “ester-amide/thiol-ene” post-polymerization modification of poly (pentafluorophenyl methacrylate) obtained using ATRP. Biomacromolecules 12, 2908–2913 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    J. Kienberger, N. Noormofidi, I. Mühlbacher, I. Klarholz, C. Harms, C. Slugovc, Antimicrobial equipment of poly (isoprene) applying thiol-ene chemistry. J. Polym. Sci. Part A: Polym. Chem. 50, 2236–2243 (2012)CrossRefGoogle Scholar
  68. 68.
    L. Yin, M.C. Dalsin, A. Sizovs, T.M. Reineke, M.A. Hillmyer, Glucose-functionalized, serum-stable polymeric micelles from the combination of anionic and RAFT polymerizations. Macromolecules 45, 4322–4332 (2012)CrossRefGoogle Scholar
  69. 69.
    O. Türünç, M.A. Meier, Thiol-ene vs. ADMET: A complementary approach to fatty acid-based biodegradable polymers. Green Chem. 13, 314–320 (2011)CrossRefGoogle Scholar
  70. 70.
    J. Mergy, A. Fournier, E. Hachet, R. Auzély-Velty, Modification of polysaccharides via thiol-ene chemistry: A versatile route to functional biomaterials. J. Polym. Sci. Part A: Polym. Chem. 50, 4019–4028 (2012)CrossRefGoogle Scholar
  71. 71.
    C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: A multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    A.F. Senyurt, C.E. Hoyle, Three component ketocoumarin, amine, maleimide photoinitiator II. Eur. Polym. J. 42, 3133–3139 (2006)CrossRefGoogle Scholar
  73. 73.
    T.M. Roper, C.A. Guymon, E.S. Jönsson, C.E. Hoyle, Influence of the alkene structure on the mechanism and kinetics of thiol-alkene photopolymerizations with real-time infrared spectroscopy. J. Polym. Sci. Part A: Polym. Chem. 42, 6283–6298 (2004)CrossRefGoogle Scholar
  74. 74.
    T.M. Roper, T.Y. Lee, C.A. Guymon, C.E. Hoyle, In situ characterization of photopolymerizable systems using a thin-film calorimeter. Macromolecules 38, 10109–10116 (2005)CrossRefGoogle Scholar
  75. 75.
    S.K. Reddy, N.B. Cramer, C.N. Bowman, Thiol-vinyl mechanisms. 2. Kinetic modeling of ternary thiol-vinyl photopolymerizations. Macromolecules 39, 3681–3687 (2006)CrossRefGoogle Scholar
  76. 76.
    O. Okay, C.N. Bowman, Kinetic modeling of thiol-ene reactions with both step and chain growth aspects. Macromol. Theory Simul. 14, 267–277 (2005)CrossRefGoogle Scholar
  77. 77.
    H. Lu, J.A. Carioscia, J.W. Stansbury, C.N. Bowman, Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater. 21, 1129–1136 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    T.Y. Lee, T.M. Roper, C.A. Guymon, E.S. Jonsson, C.E. Hoyle, Film Formation, vol 941 (American Chemical Society, Washington, DC, 2006), pp. 17–28, Chap. 2CrossRefGoogle Scholar
  79. 79.
    T.Y. Lee, J. Carioscia, Z. Smith, C.N. Bowman, Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties. Macromolecules 40, 1473–1479 (2007)CrossRefGoogle Scholar
  80. 80.
    T.Y. Lee, Z. Smith, S.K. Reddy, N.B. Cramer, C.N. Bowman, Thiol-allyl ether-methacrylate ternary systems. Polymerization mechanism. Macromolecules 40, 1466–1472 (2007)CrossRefGoogle Scholar
  81. 81.
    S.K. Reddy, N.B. Cramer, M. Kalvaitas, T.Y. Lee, C.N. Bowman, Mechanistic modelling and network properties of thiol-vinyl photopolymerizations. Aust. J. Chem. 59, 586–593 (2006)CrossRefGoogle Scholar
  82. 82.
    J.V. Crivello, The discovery and development of onium salt cationic photoinitiators. J. Polym. Sci. A Polym. 37, 4241–4254 (1999)CrossRefGoogle Scholar
  83. 83.
    J.V. Crivello, J. Lam, Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules 10, 1307–1315 (1977)CrossRefGoogle Scholar
  84. 84.
    J.V. Crivello, J. Lam, Photoinitiated cationic polymerization with triarylsulfonium salts. J. Polym. Sci. Part A: Polym. Chem. 17, 977–999 (1979)Google Scholar
  85. 85.
    J. Crivello, Initiators, Poly-reactions, Optical Activity (Springer, Heidelberg, 1984), pp. 1–48CrossRefGoogle Scholar
  86. 86.
    M.U. Kahveci, A.G. Yilmaz, Y. Yagci, Photoinitiated cationic polymerization reactivity and mechanistic aspects, in Photochemistry and Photophysics of Polymer Materaterials, ed. by N. S. Allen (Wiley, Hoboken, 2010), pp. 421–478Google Scholar
  87. 87.
    M. Sangermano, N. Razza, J.V. Crivello, Cationic UV-curing: Technology and applications. Macromol. Mater. Eng. 299, 775–793 (2014)CrossRefGoogle Scholar
  88. 88.
    J.V. Crivello, Diaryliodonium salt photoacid generators, in Iodine Chemistry and Applications, ed. by T. Kaiho (Wiley, Weinheim, 2014), p. 459Google Scholar
  89. 89.
    J. Lalevée, A. Dirani, M. El-Roz, X. Allonas, J.P. Fouassier, Germanes as efficient coinitiators in radical and cationic photopolymerizations. J. Polym. Sci. Part A: Polym. Chem. 46, 3042–3047 (2008)CrossRefGoogle Scholar
  90. 90.
    J. Lalevée, N. Blanchard, M. El-Roz, B. Graff, X. Allonas, J.P. Fouassier, New photoinitiators based on the silyl radical chemistry: Polymerization ability, ESR spin trapping, and laser flash photolysis investigation. Macromolecules 41, 4180–4186 (2008)CrossRefGoogle Scholar
  91. 91.
    N. Moszner, F. Zeuner, I. Lamparth, U.K. Fischer, Benzoylgermanium derivatives as novel visible-light photoinitiators for dental composites. Macromol. Mater. Eng. 294, 877–886 (2009)CrossRefGoogle Scholar
  92. 92.
    Y.Y. Durmaz, M. Kukut, N. Moszner, Y. Yagci, Sequential photodecomposition of bisacylgermane type photoinitiator: Synthesis of block copolymers by combination of free radical promoted cationic and free radical polymerization mechanisms. J. Polym. Sci. Part A: Polym. Chem. 47, 4793–4799 (2009)CrossRefGoogle Scholar
  93. 93.
    Y.Y. Durmaz, N. Moszner, Y. Yagci, Visible light initiated free radical promoted cationic polymerization using acylgermane based photoinitiator in the presence of onium salts. Macromolecules 41, 6714–6718 (2008)CrossRefGoogle Scholar
  94. 94.
    J.V. Crivello, M.F. Aldersley, Supramolecular diaryliodonium salt-crown ether complexes as cationic photoinitiators. J. Polym. Sci. Part A: Polym. Chem. 51, 801–814 (2013)CrossRefGoogle Scholar
  95. 95.
    M.U. Kahveci, M.A. Tasdelen, Y. Yagci, Photochemically initiated free radical promoted living cationic polymerization of isobutyl vinyl ether. Polymer 48, 2199–2202 (2007)CrossRefGoogle Scholar
  96. 96.
    Y. Yagci, S. Jockusch, N.J. Turro, Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010)CrossRefGoogle Scholar
  97. 97.
    M.U. Kahveci, M. Uygun, M.A. Tasdelen, W. Schnabel, W.D. Cook, Y. Yagci, Photoinitiated cationic polymerization of vinyl ethers using substituted vinyl halides. Macromolecules 42, 4443–4448 (2009)CrossRefGoogle Scholar
  98. 98.
    J. Lalevée, N. Blanchard, M.-A. Tehfe, F. Morlet-Savary, J.P. Fouassier, Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals. Macromolecules 43, 10191–10195 (2010)CrossRefGoogle Scholar
  99. 99.
    J. Lalevee, N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, D. Gigmes, J.P. Fouassier, Efficient dual radical/cationic photoinitiator under visible light: A new concept. Polym. Chem. 2, 1986–1991 (2011)CrossRefGoogle Scholar
  100. 100.
    J. Lalevée, M.-A. Tehfe, F. Dumur, D. Gigmes, N. Blanchard, F. Morlet-Savary, J.P. Fouassier, Iridium photocatalysts in free radical photopolymerization under visible lights. ACS Macro Lett. 1, 286–290 (2012)CrossRefGoogle Scholar
  101. 101.
    M.-A. Tehfe, D. Gigmes, F. Dumur, D. Bertin, F. Morlet-Savary, B. Graff, J. Lalevee, J.-P. Fouassier, Cationic photosensitive formulations based on silyl radical chemistry for green and red diode laser exposure. Polym. Chem. 3, 1899–1902 (2012)CrossRefGoogle Scholar
  102. 102.
    J. Lalevée, F. Dumur, C.R. Mayer, D. Gigmes, G. Nasr, M.-A. Tehfe, S. Telitel, F. Morlet-Savary, B. Graff, J.P. Fouassier, Photopolymerization of N-vinylcarbazole using visible-light harvesting iridium complexes as photoinitiators. Macromolecules 45, 4134–4141 (2012)CrossRefGoogle Scholar
  103. 103.
    M.-A. Tehfe, J. Lalevée, S. Telitel, J. Sun, J. Zhao, B. Graff, F. Morlet-Savary, J.-P. Fouassier, Iridium complexes incorporating coumarin moiety as catalyst photoinitiators: Towards household green LED bulb and halogen lamp irradiation. Polymer 53, 2803–2808 (2012)CrossRefGoogle Scholar
  104. 104.
    M. Shirai, M. Tsunooka, Photoacid and photobase generators: Chemistry and applications to polymeric materials. Prog. Polym. Sci. 21, 1–45 (1996)CrossRefGoogle Scholar
  105. 105.
    H. Yamato, T. Asakura, T. Hintermann, M. Ohwa, Novel Nonionic Photoacid Generator Releasing Strong Acid for Chemically Amplified Resists, Proc. SPIE 5376 (SPIE, Bellingham, 2004), pp. 103–114Google Scholar
  106. 106.
    M.K. Gupta, R.P. Singh, Diphenyldiselenide as novel non-salt photoinitiator for photosensitized cationic polymerization of N-vinyl carbazole. Macromol. Symp. 240, 186–193 (2006)CrossRefGoogle Scholar
  107. 107.
    M. Shirai, H. Okamura, i-Line sensitive photoacid generators for UV curing. Prog. Org. Coat. 64, 175–181 (2009)CrossRefGoogle Scholar
  108. 108.
    J.-P. Malval, S. Suzuki, F. Morlet-Savary, X. Allonas, J.-P. Fouassier, S. Takahara, T. Yamaoka, Photochemistry of naphthalimide photoacid generators. J. Phys. Chem. A 112, 3879–3885 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    J.-P. Pascault, R. J. Williams (eds.), Epoxy Polymers (Wiley, Weinheim, 2009)Google Scholar
  110. 110.
    Y. Yagci, Photoinitiated cationic polymerization of unconventional monomers. Macromol. Symp. 240, 93–101 (2006)CrossRefGoogle Scholar
  111. 111.
    J.-P. Fouassier, X. Allonas, Basics and Applications of Photopolymerization Reactions (Research Signpost, Trivandrum, 2010)Google Scholar
  112. 112.
    J.V. Crivello, R. Acosta Ortiz, Benzyl alcohols as accelerators in the photoinitiated cationic polymerization of epoxide monomers. J. Polym. Sci. Part A: Polym. Chem. 40, 2298–2309 (2002)CrossRefGoogle Scholar
  113. 113.
    S. Penczek, Cationic ring-opening polymerization (CROP) major mechanistic phenomena. J. Polym. Sci. Part A: Polym. Chem. 38, 1919–1933 (2000)CrossRefGoogle Scholar
  114. 114.
    P. Kubisa, Hyperbranched polyethers by ring-opening polymerization: Contribution of activated monomer mechanism. J. Polym. Sci. Part A: Polym. Chem. 41, 457–468 (2003)CrossRefGoogle Scholar
  115. 115.
    J.V. Crivello, J. Ma, F. Jiang, H. Hua, J. Ahn, R. Acosta Ortiz, Advances in the design of photoinitiators, photo-sensitizers and monomers for photoinitiated cationic polymerization. Macromol. Symp. 215, 165–178 (2004)CrossRefGoogle Scholar
  116. 116.
    Y. Hua, J.V. Crivello, Development of polymeric photosensitizers for photoinitiated cationic polymerization. Macromolecules 34, 2488–2494 (2001)CrossRefGoogle Scholar
  117. 117.
    J.V. Crivello, J.L. Lee, D.A. Conlon, Developments in the design and applications of novel thermal and photochemical initiators for cationic polymerization. Macromol. Symp. 13–14, 145–160 (1988)CrossRefGoogle Scholar
  118. 118.
    R.W. Lenz, in Polymer Syntheses, vol 1, ed. by S.R. Sandler, Wolf Karo, Monographs on Organic Chemistry, vol 29-l (Academic, New York, 1974)Google Scholar
  119. 119.
    K.S. Anseth, L.M. Kline, T.A. Walker, K.J. Anderson, C.N. Bowman, Reaction kinetics and volume relaxation during polymerizations of multiethylene glycol dimethacrylates. Macromolecules 28, 2491–2499 (1995)CrossRefGoogle Scholar
  120. 120.
    C.M. Chung, J.G. Kim, M.S. Kim, K.M. Kim, K.N. Kim, Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 18, 174–178 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    M. Atai, D.C. Watts, A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent. Mater. 22, 785–791 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    A. del Campo, E. Arzt (eds.), Generating Micro-and Nanopatterns on Polymeric Materials (Wiley, Weinheim, 2011)Google Scholar
  123. 123.
    D. Nagai, M. Nishida, T. Nagasawa, B. Ochiai, K. Miyazaki, T. Endo, Non-shrinking networkedmaterials from the cross-linking copolymerization of spiroorthocarbonate with bifunctional oxetane. Macromol. Rapid Commun. 27, 921–925 (2006)CrossRefGoogle Scholar
  124. 124.
    S. Putzien, E. Louis, O. Nuyken, J.V. Crivello, F.E. Kühn, UV curing of epoxy functional hybrid silicones. J. Appl. Polym. Sci. 126, 1188–1197 (2012)CrossRefGoogle Scholar
  125. 125.
    Y. Fukuchi, T. Takahashi, H. Noguchi, M. Saburi, Y. Uchida, Photoinitiated anionic coordination polymerization of epoxides, a novel polymerization process. Macromolecules 20, 2316–2317 (1987)CrossRefGoogle Scholar
  126. 126.
    D.B. Yang, C. Kutal, Radiation curing, in Inorganic and Organometallic Photoinitiators, ed. by S. P. Pappas (Springer, Heidelberg, 1992), pp. 21–55Google Scholar
  127. 127.
    C. Kutal, P.A. Grutsch, D.B. Yang, A novel strategy for photoinitiated anionic polymerization. Macromolecules 24, 6872–6873 (1991)CrossRefGoogle Scholar
  128. 128.
    Y. Yamaguchi, B.J. Palmer, C. Kutal, T. Wakamatsu, D.B. Yang, Ferrocenes as anionic photoinitiators. Macromolecules 31, 5155–5157 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    V.V. Jarikov, D.C. Neckers, Anionic photopolymerization of methyl 2-cyanoacrylate and simultaneous color formation. Macromolecules 33, 7761–7764 (2000)CrossRefGoogle Scholar
  130. 130.
    R.B. Paul, J.M. Kelly, D.C. Pepper, C. Long, Photoinduced anionic polymerization of cyanoacrylates using substituted pyridine pentacarbonyl complexes of tungsten or chromium. Polymer 38, 2011–2014 (1997)CrossRefGoogle Scholar
  131. 131.
    Y. Yamaguchi, C. Kutal, Benzoyl-substituted ferrocenes: An attractive new class of anionic photoinitiators. Macromolecules 33, 1152–1156 (2000)CrossRefGoogle Scholar
  132. 132.
    Y. Watanabe, T. Aida, S. Inoue, First example of photoinduced copolymerizability enhancement: copolymerization of epoxide and episulfide initiated with zinc N-substituted porphyrin under visible light irradiation. Macromolecules 24, 3970–3972 (1991)CrossRefGoogle Scholar
  133. 133.
    W. Schnabel, Polymers and Light (Wiley-VCH, Weinheim, 2007), pp. 273–304CrossRefGoogle Scholar
  134. 134.
    C.T. Sanderson, B.J. Palmer, A. Morgan, M. Murphy, R.A. Dluhy, T. Mize, I.J. Amster, C. Kutal, Classical metallocenes as photoinitiators for the anionic polymerization of an alkyl 2-cyanoacrylate. Macromolecules 35, 9648–9652 (2002)CrossRefGoogle Scholar
  135. 135.
    B.J. Palmer, C. Kutal, R. Billing, H. Hennig, A new photoinitiator for anionic polymerization. Macromolecules 28, 1328–1329 (1995)CrossRefGoogle Scholar
  136. 136.
    R.J. Lavallee, B.J. Palmer, R. Billing, H. Hennig, G. Ferraudi, C. Kutal, Efficient substitutional photochemistry of a third-row transition metal β-diketonate complex. Inorg. Chem. 36, 5552–5558 (1997)CrossRefGoogle Scholar
  137. 137.
    Y.-H. Wang, P. Wan, Ketoprofen as a photoinitiator for anionic polymerization. Photochem. Photobiol. 14, 1120–1126 (2015)CrossRefGoogle Scholar
  138. 138.
    M. Tanabe, I. Manners, Photolytic living anionic ring-opening polymerization (ROP) of silicon-bridged [1] ferrocenophanes via an iron-cyclopentadienyl bond cleavage mechanism. J. Am. Chem. Soc. 126, 11434–11435 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    W.Y. Chan, A.J. Lough, I. Manners, Synthesis, characterization, and photocontrolled ring-opening polymerization of sila[1]ferrocenophanes with multiple alkyne substituents. Organometallics 26, 1217–1225 (2007)CrossRefGoogle Scholar
  140. 140.
    R.L.N. Hailes, A.M. Oliver, J. Gwyther, G.R. Whittell, I. Manners, Polyferrocenylsilanes: Synthesis, properties, and applications. Chem. Soc. Rev. 45, 5358–5407 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    M. Tanabe, G.W.M. Vandermeulen, W.Y. Chan, P.W. Cyr, L. Vanderark, D.A. Rider, I. Manners, Photocontrolled living polymerizations. Nat. Mater. 5, 467–470 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    G.S. Smith, S.K. Patra, L. Vanderark, S. Saithong, J.P. Charmant, I. Manners, Photocontrolled living anionic polymerization of silicon-bridged [1] ferrocenophanes with fluorinated substituents: Synthesis and characterization of fluorinated polyferrocenylsilane (PFS) homopolymers and block copolymers. Macromol. Chem. Phys. 211, 303–312 (2010)CrossRefGoogle Scholar
  143. 143.
    Z. Wang, G. Masson, F.C. Peiris, G.A. Ozin, I. Manners, Living photolytic ring-opening polymerization of amino-functionalized [1] ferrocenophanes: Synthesis and layer-by-layer self-assembly of well-defined water-soluble polyferrocenylsilane polyelectrolytes. Chem. Eur. J. 13, 9372–9383 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    X. Wang, M.A. Winnik, I. Manners, Synthesis, self-assembly, and applications of polyferrocenylsilane block copolymers, in ACS Symposium Series, vol 928 (American Chemical Society, Washington, DC, 2006), pp. 274–291Google Scholar
  145. 145.
    F. Wurm, S. Hilf, H. Frey, Electroactive linear–hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s. Chem. Eur. J. 15, 9068–9077 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    I. Hamley, Nanostructure fabrication using block copolymers. Nanotechnology 14, R39 (2003)CrossRefGoogle Scholar
  147. 147.
    M.P. Stoykovich, P.F. Nealey, Block copolymers and conventional lithography. Mater. Today 9, 20–29 (2006)CrossRefGoogle Scholar
  148. 148.
    J.Y. Cheng, C.A. Ross, H.I. Smith, E.L. Thomas, Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv. Mater. 18, 2505–2521 (2006)CrossRefGoogle Scholar
  149. 149.
    J. Bang, U. Jeong, D.Y. Ryu, T.P. Russell, C.J. Hawker, Block copolymer nanolithography: Translation of molecular level control to nanoscale patterns. Adv. Mater. 21, 4769–4792 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    C. Hinderling, Y. Keles, T. Stöckli, H.F. Knapp, T. De los Arcos, P. Oelhafen, I. Korczagin, M.A. Hempenius, G.J. Vancso, R. Pugin, Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv. Mater. 16, 876–879 (2004)CrossRefGoogle Scholar
  151. 151.
    C. Acikgoz, B. Vratzov, M.A. Hempenius, G.J. Vancso, J. Huskens, Nanoscale patterning by UV nanoimprint lithography using an organometallic resist. ACS Appl. Mater. Interfaces 1, 2645–2650 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    C. Acikgoz, X.Y. Ling, I.Y. Phang, M.A. Hempenius, D.N. Reinhoudt, J. Huskens, G.J. Vancso, Fabrication of free-standing nanoporous polyethersulfone membranes using organometallic polymer resists patterned by nanosphere lithography. Adv. Mater. 21, 2064–2067 (2009)CrossRefGoogle Scholar
  153. 153.
    X.Y. Ling, C. Acikgoz, I.Y. Phang, M.A. Hempenius, D.N. Reinhoudt, G.J. Vancso, J. Huskens, 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask. Nanoscale 2, 1455–1460 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    R.G. Lammertink, M.A. Hempenius, V.Z.-H. Chan, E.L. Thomas, G.J. Vancso, Poly (ferrocenyldimethylsilanes) for reactive ion etch barrier applications. Chem. Mater. 13, 429–434 (2001)CrossRefGoogle Scholar
  155. 155.
    K.Y. Suh, Y.S. Kim, H.H. Lee, Capillary force lithography. Adv. Mater. 13, 1386–1389 (2001)CrossRefGoogle Scholar
  156. 156.
    I. Korczagin, H. Xu, M.A. Hempenius, G.J. Vancso, Pattern transfer fidelity in capillary force lithography with poly (ferrocenylsilane) plasma etch resists. Eur. Polym. J. 44, 2523–2528 (2008)CrossRefGoogle Scholar
  157. 157.
    K. Suyama, M. Shirai, Photobase generators: Recent progress and application trend in polymer systems. Prog. Polym. Sci. 34, 194–209 (2009)CrossRefGoogle Scholar
  158. 158.
    A. Chemtob, F. Courtecuisse, C. Croutxe-Barghorn, S. Rigolet, Simultaneous sol-gel and anionic photopolymerization of 3-(glycidyloxypropyl)trimethoxysilanevia photobase catalysis. New J. Chem. 35, 1803–1808 (2011)CrossRefGoogle Scholar
  159. 159.
    K.-S. Lee, R.H. Kim, D.-Y. Yang, S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631–681 (2008)CrossRefGoogle Scholar
  160. 160.
    P. Prabhakaran, T.D. Kim, K.S. Lee, in Polymer Science: A Comprehensive Reference, ed. by M. Möller (Elsevier, Amsterdam, 2012), pp. 211–260Google Scholar
  161. 161.
    M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, J.-Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levine, S.R. Marder, D. McCord-Maughon, Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653–1656 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    H.-K. Yang, M.-S. Kim, S.-W. Kang, K.-S. Kim, K.-S. Lee, S.H. Park, D.-Y. Yang, H.J. Kong, H.-B. Sun, S. Kawata, Recent progress of lithographic microfabrication by the TPA-induced photopolymerization. J. Photopolym. Sci. Technol. 17, 385–392 (2004)CrossRefGoogle Scholar
  163. 163.
    O.-K. Kim, K.-S. Lee, H.Y. Woo, K.-S. Kim, G.S. He, J. Swiatkiewicz, P.N. Prasad, New class of two-photon-absorbing chromophores based on dithienothiophene. Chem. Mater. 12, 284–286 (2000)CrossRefGoogle Scholar
  164. 164.
    S.J. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.-L. Brédas, S.R. Marder, J.W. Perry, Metal-ion sensing fluorophores with large two-photon absorption cross sections: aza-crown ether substituted donor-acceptor-donor distyrylbenzenes. J. Am. Chem. Soc. 126, 9291–9306 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    J.-G. Lim, P. Prabhakaran, J.S. Park, Y. Son, T.-D. Kim, D.-Y. Yang, K.-S. Lee, Synthesis and photophysical properties of two-photon absorbing spirofluorene derivatives. J. Nanosci. Nanotechnol. 12, 4403–4408 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    N. Cho, P.L. Baldeck, G.S. He, D.-H. Hwang, P.N. Prasad, P. Prabhakaran, T.-D. Kim, K.-S. Lee, Degenerate multi-photon properties of spirofluorene derivatives. J. Nanosci. Nanotechnol. 10, 6958–6961 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    N. Cho, G. Zhou, K. Kamada, R.H. Kim, K. Ohta, S.-H. Jin, K. Müllen, K.-S. Lee, The impact of charge defects and resonance enhancement on the two-photon absorption activity of spirofluorene and ladder-type pentaphenylene derivatives. J. Mater. Chem. 22, 185–191 (2012)CrossRefGoogle Scholar
  168. 168.
    M. Albota, D. Beljonne, J.L. Breas, J.E. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, Design of organic molecules with large two-photon absorption cross sections. Science 281, 1653 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    M. Barzoukas, M. Blanchard-Desce, Molecular engineering of push–pull dipolar and quadrupolar molecules for two-photon absorption: A multivalence-bond states approach. J. Chem. Phys. 113, 3951–3959 (2000)CrossRefGoogle Scholar
  170. 170.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)CrossRefGoogle Scholar
  171. 171.
    O. Mongin, L. Porrès, L. Moreaux, J. Mertz, M. Blanchard-Desce, Synthesis and photophysical properties of new conjugated fluorophores designed for two-photon-excited fluorescence. Org. Lett. 4, 719–722 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    S.L. Oliveira, D.S. Correa, L. Misoguti, C.J.L. Constantino, R.F. Aroca, S.C. Zilio, C.R. Mendonca, Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing. Adv. Mater. 17, 1890–1893 (2005)CrossRefGoogle Scholar
  173. 173.
    D. Beljonne, W. Wenseleers, E. Zojer, Z. Shuai, H. Vogel, S.J.K. Pond, J.W. Perry, S.R. Marder, J.L. Bredas, Role of dimensionality on the two-photon absorption response of conjugated molecules: The case of octupolar compounds. Adv. Funct. Mater. 12, 631–641 (2002)CrossRefGoogle Scholar
  174. 174.
    A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J.M. Hales, D.J. Hagan, E. Van Stryland, T. Goodson, Investigation of two-photon absorption properties in branched alkene and alkyne chromophores. J. Am. Chem. Soc. 128, 11840–11849 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    B.R. Cho, J.P. Ming, K.H. Son, S.H. Lee, S.J. Yoon, S.-J. Jeon, M. Cho, Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers. Chem. Eur. J. 8, 3907–3916 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    S.J. Chung, K.S. Kim, T.C. Lin, G.S. He, J. Swiatkiewicz, P.N. Prasad, Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B 103, 10741–10745 (1999)CrossRefGoogle Scholar
  177. 177.
    G.S. He, T.C. Lin, J. Dai, P.N. Prasad, R. Kannan, A.G. Dombroskie, R.A. Vaia, L.S. Tan, Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores. J. Chem. Phys. 120, 5275 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    S.J. Chung, T.C. Lin, K.S. Kim, G.S. He, J. Swiatkiewicz, P.N. Prasad, G.A. Baker, F.V. Bright, Two-photon absorption and excited-state energy-transfer properties of a new multibranched molecule. Chem. Mater. 13, 4071–4076 (2001)CrossRefGoogle Scholar
  179. 179.
    F. Meng, B. Li, S. Qian, K. Chen, H. Tian, Enhanced two-photon properties of tri-branched styryl derivatives based on 1,3,5-triazine. Chem. Lett. 33, 470–471 (2004)CrossRefGoogle Scholar
  180. 180.
    M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, C.W. Spangler, Strong cooperative enhancement of two-photon absorption in dendrimers. J. Phys. Chem. B 107, 7540–7543 (2003)CrossRefGoogle Scholar
  181. 181.
    O. Mongin, J. Brunel, L. Porr, M. Blanchard-Desce, Synthesis and two-photon absorption of triphenylbenzene-cored dendritic chromophores. Tetrahedron Lett. 44, 2813–2816 (2003)CrossRefGoogle Scholar
  182. 182.
    Q. Zheng, G.S. He, P.N. Prasad, π-Conjugated dendritic nanosized chromophore with enhanced two-photon absorption. Chem. Mater. 17, 6004–6011 (2005)CrossRefGoogle Scholar
  183. 183.
    J.M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J.W. Perry, S.R. Marder, Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 327, 1485–1488 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    M.J. Piao, B.R. Cho, K.H. Son, S.H.L. Soo, J.Y. Seung-Joon, J.M. Cho, Nonlinear optical and two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers. Chem. Eur. J. 8, 3907–3916 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, G. Leising, Efficient continuous-wave two-photon absorption in para-phenylene-type polymers. Adv. Mater. 13, 1303 (2001)CrossRefGoogle Scholar
  186. 186.
    J. Hua, B. Li, F. Meng, F. Ding, S. Qian, H. Tian, Two-photon absorption properties of hyperbranched conjugated polymers with triphenylamine as the core. Polymer 45, 7143–7149 (2004)CrossRefGoogle Scholar
  187. 187.
    S.L. Oliveira, D.S. Correa, L. De Boni, L. Misoguti, S.C. Zilio, C.R. Mendonca, Two-photon absorption cross-section spectrum of a pi-conjugated polymer obtained using the white-light continuum Z-scan technique. Appl. Phys. Lett. 88, 021911–021913 (2006)CrossRefGoogle Scholar
  188. 188.
    W.J. Yang, C.H. Kim, M.Y. Jeong, Synthesis and two-photon absorption properties of 9, 10-bis(arylethynyl) anthracene derivatives. Chem. Mater. 16, 2783–2789 (2004)CrossRefGoogle Scholar
  189. 189.
    W. Zhou, S.M. Kuebler, K.L. Braun, T. Yu, J.K. Cammack, C.K. Ober, J.W. Perry, S.R. Marder, An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296, 1106–1109 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    C.O. Yanez, C.D. Andrade, K.D. Belfield, Characterization of novel sulfonium photoacid generators and their microwave-assisted synthesis. Chem. Commun. (7), 827–829 (2009)Google Scholar
  191. 191.
    R. Xia, J.-P. Malval, M. Jin, A. Spangenberg, D. Wan, H. Pu, T. Vergote, F. Morlet-Savary, H. Chaumeil, P. Baldeck, O. Poizat, O. Soppera, Enhancement of acid photogeneration through a para-to-meta substitution strategy in a sulfonium-based alkoxystilbene designed for two-photon polymerization. Chem. Mater. 24, 237–244 (2011)CrossRefGoogle Scholar
  192. 192.
    P. Prabhakaran, K.-S. Lee, Two-photon sensitized cationic polymerization for 3D nano/micro patterning. Display Imag. 1, 25–45 (2013)Google Scholar
  193. 193.
    C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Multiphoton fabrication. Angew. Chem. Int. Ed. 46, 6238–6258 (2007)CrossRefGoogle Scholar
  194. 194.
    I. Toshiro, K. Takahiro, Resist materials and processes for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 52, 010002 (2013)CrossRefGoogle Scholar
  195. 195.
    K. Takahiro, O. Hiroaki, I. Toshiro, T. Seiichi, Relationship between chemical gradient and line edge roughness of chemically amplified extreme ultraviolet resist. Appl. Phys. Exp. 3, 036501 (2010)CrossRefGoogle Scholar
  196. 196.
    P.D. Ashby, D.L. Olynick, D.F. Ogletree, P.P. Naulleau, Resist materials for extreme ultraviolet lithography: Toward low-cost single-digit-nanometer patterning. Adv. Mater. 27, 5813–5819 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    T. Kozawa, H. Oizumi, T. Itani, S. Tagawa, Assessment and extendibility of chemically amplified resists for extreme ultraviolet lithography: consideration of nanolithography beyond 22 nm half-pitch, Japanese J. Appl. Phys. 50(7R), 076503 (2011)CrossRefGoogle Scholar
  198. 198.
    N. Mojarad, M. Hojeij, L. Wang, J. Gobrecht, Y. Ekinci, Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond. Nanoscale 7, 4031–4037 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    M. Kryask, M. Trikeriotis, C. Ouyang, S. Chakrabarty, E.P. Giannelis, C.K. Ober, Nanoparticle photoresists: Ligand exchange as a new, sensitive EUV patterning mechanism. J. Photopolym. Sci. Technol. 26, 659–664 (2013)CrossRefGoogle Scholar
  200. 200.
    S. Chakrabarty, C. Sarma, L. Li, E.P. Giannelis, C.K. Ober, Increasing sensitivity of oxide nanoparticle photoresists, in Proc. SPIE, vol 9048 (SPIE, Bellingham, 2014), pp. 90481C–90485CGoogle Scholar
  201. 201.
    L. Li, S. Chakrabarty, K. Spyrou, C.K. Ober, E.P. Giannelis, Studying the mechanism of hybrid nanoparticle photoresists: Effect of particle size on photopatterning. Chem. Mater. 27, 5027–5031 (2015)CrossRefGoogle Scholar
  202. 202.
    S.K. Sharma, S.P. Pal, P.G. Reddy, P. Kumar, S. Ghosh, K.E. Gonsalves, Design and development of low activation energy based nonchemically amplified resists (n-CARs) for next generation EUV lithography. Microelectron. Eng. 164, 115–122 (2016)CrossRefGoogle Scholar
  203. 203.
    L. Li, S. Chakrabarty, J. Jiang, B. Zhang, C. Ober, E.P. Giannelis, Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups. Nanoscale 8, 1338–1343 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    C.N. Lafratta, L. Li, Making two-photon polymerization faster, in Three-Dimensional Microfabrication Using Two-Photon Polymerization Fundamentals, Technology and Applications, ed. by T. Baldacchini (William Andrew, Oxford, 2016), pp. 221–240CrossRefGoogle Scholar
  206. 206.
    L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, A.L. Harris, Photopolymers for digital holographic data storage, in Holographic Data Storage, ed. by A. Glass, M. Cardillo, H.J. Coufal, D. Psaltis, G.T. Sincerbox (Springer, Heidelberg, 2012), pp. 199–208CrossRefGoogle Scholar
  207. 207.
    F. Karasu, C. Croutxé-Barghorn, X. Allonas, L.G. Ven, Free radical photopolymerization initiated by UV and LED: Towards UV stabilized, tack free coatings. J. Polym. Sci. Part A: Polym. Chem. 52, 3597–3607 (2014)Google Scholar
  208. 208.
    T. Nardi, L.P. Canal, M. Hausmann, F. Dujonc, V. Michaud, J.-A.E. Månson, Y. Leterrier, Stress reduction mechanisms during photopolymerization of functionally graded polymer nanocomposite coatings. Prog. Org. Coat. 87, 204–212 (2015)CrossRefGoogle Scholar
  209. 209.
    S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, F. Brandi, Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings. Mater. Sci. Eng. C 44, 38–43 (2014)CrossRefGoogle Scholar
  210. 210.
    K.D. Jandt, R.W. Mills, A brief history of LED photopolymerization. Dent. Mater. 29, 605–617 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    R. Gauvin, Y.-C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    D.L. Elbert, Bottom-up tissue engineering. Curr. Opin. Biotechnol. 22, 674–680 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, F. Brandi, Towards excimer-laser-based stereolithography: A rapid process to fabricate rigid biodegradable photopolymer scaffolds. J. R. Soc. Interface 9, 3017 (2012). rsif20120300CrossRefGoogle Scholar
  214. 214.
    M. Gonen-Wadmany, L. Oss-Ronen, D. Seliktar, Protein–polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 28, 3876–3886 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    S. Suri, L.-H. Han, W. Zhang, A. Singh, S. Chen, C.E. Schmidt, Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 13, 983–993 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    K. Kojima, M. Ito, H. Morishita, N. Hayashi, A novel water-soluble photoinitiator for the acrylic photopolymerization type resist system. Chem. Mater. 10, 3429–3433 (1998)CrossRefGoogle Scholar
  217. 217.
    M. Hasegawa, A. Tominaga, Environmentally friendly positive-and negative-tone photo-patterning systems of low-K and low-CTE polyimides. J. Photopolym. Sci. Technol. 18, 307–312 (2005)CrossRefGoogle Scholar
  218. 218.
    A. Drizo, J. Pegna, Environmental impacts of rapid prototyping: An overview of research to date. Rapid Prototyping J. 12, 64–71 (2006)CrossRefGoogle Scholar
  219. 219.
    S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013)CrossRefGoogle Scholar
  220. 220.
    L. Ionov, S. Diez, Environment-friendly photolithography using poly (N-isopropylacrylamide)-based thermoresponsive photoresists. J. Am. Chem. Soc. 131, 13315–13319 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    D. Cody, I. Naydenova, E. Mihaylova, New non-toxic holographic photopolymer material. J. Opt. 14, 015601 (2011)CrossRefGoogle Scholar
  222. 222.
    S. Chatani, T. Gong, B.A. Earle, M. Podgorski, C.N. Bowman, Visible-light initiated thiol-Michael addition photopolymerization reactions. ACS Macro Lett. 3, 315–318 (2014)CrossRefGoogle Scholar
  223. 223.
    G. Bai, S. Ma, R. Qie, Z. Liu, Y. Shi, C. Li, R. Wang, X. Guo, F. Zhou, X. Jia, UV-Triggered surface-initiated polymerization from colorless green tea polyphenol-coated surfaces. Macromol. Rapid Commun. 37, 1256–1261 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    E. Sharmin, F. Zafar, D. Akram, M. Alam, S. Ahmad, Recent advances in vegetable oils based environment friendly coatings: A review. Ind. Crops Prod. 76, 215–229 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials and Chemical EngineeringHannam UniversityDaejeonSouth Korea

Personalised recommendations