Skip to main content

Pesticides’ Impact on Pollinators

  • Reference work entry
  • First Online:
Book cover Zero Hunger

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

  • 52 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19(11):915–918. https://doi.org/10.1016/j.cub.2009.03.071

  • Aizen MA, Aguiar S, Biesmeijer JC, Garibaldi LA, Inouye DW, Jung C, Martins DJ, Medel R, Morales CL, Ngo H, Pauw A, Paxton RJ, Saez A, Seymour CL (2019) Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob Chang Biol 25:3516–3527

    Article  Google Scholar 

  • Atauri JA, de Lucio JV (2001) The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc Ecol 16:147–159

    Article  Google Scholar 

  • Baskar K, Sudha V, Jayakumar M (2017) Effect of Pesticides on Pollinators. MOJ Ecology & Environmental Science 2(8):00052. https://doi.org/10.15406/mojes.2017.02.00052

  • Biddinger DJ, Rajotte EG (2015) Integrated pest and pollinator management-adding a new dimension to an accepted paradigm. Curr Opin Insect Sci 10:204–209

    Article  Google Scholar 

  • Brittain CA, Vighi M, Bommarco R, Settele J, Potts SG (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11(2):106–115. https://doi.org/10.1016/j.baae.2009.11.007

    Article  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  Google Scholar 

  • Carvell C, Meek WR, Pywell RF, Nowakowski M (2004) The response of foraging bumblebees to successional change in newly created arable field margins. Biol Conserv 118:327–339

    Article  Google Scholar 

  • Challa GK, Firake DM, Behere GT (2019) Bio-pesticide applications may impair the pollination services and survival of foragers of honey bee, Apis cerana Fabricius in oilseed brassica. Environ Pollut 249:598–609. https://doi.org/10.1016/j.envpol.2019.03.048

    Article  Google Scholar 

  • Cresswell JE, Robert FX, Florance H, Smirnoff N (2014) Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Pest Manag Sci 70:332–337. https://doi.org/10.1002/ps.3569

    Article  Google Scholar 

  • de Oliveira AC, Junqueira CN, Augusto SC (2019) Pesticides affect pollinator abundance and productivity of sunflower (Helianthus annuus L.). J Apic Res 58(1):2–8. https://doi.org/10.1080/00218839.2018.1494441

    Article  Google Scholar 

  • Doublet V, Labarussias M, de Miranda JR, Moritz RF, Paxton RJ (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983

    Article  Google Scholar 

  • Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ Sci Technol 49:5088–5097

    Article  Google Scholar 

  • European Commission (2013) Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013 Amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances.15 pp.

    Google Scholar 

  • European Food Safety Authority (2018). Evaluation of the data on clothianidin, imidacloprid and thiamethoxam for the updated risk assessment to bees for seed treatments and granules in the EU. EFSA supporting publication 2018:EN-1378. 31pp. https://doi.org/10.2903/sp.efsa.2018.EN-1378

  • Evans AN, Llanos JE, Kunin WE, Evison SE (2018) Indirect effects of agricultural pesticide use on parasite prevalence in wild pollinators. Agric Ecosyst Environ 258:40–48. https://doi.org/10.1016/j.agee.2018.02.002

    Article  Google Scholar 

  • Fishel FM, Ellis J, McAvoy G (2017) Pesticide labeling: protection of pollinators 1 (UF/IFAS Extension)

    Google Scholar 

  • Flockhart DTT, Pichancourt JB, Norris DR, Martin TG (2015) Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J Anim Ecol 84:155–165. https://doi.org/10.1111/1365-2656.12253

    Article  Google Scholar 

  • Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491(7422):105–109. https://doi.org/10.1038/nature11585

    Article  Google Scholar 

  • Godfray HCJ et al (2015) A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc R Soc B Biol Sci 282:20151821

    Article  Google Scholar 

  • Goulson D (2013) Review: an overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987. https://doi.org/10.1111/1365-2664.12111

    Article  Google Scholar 

  • Grassl J, Holt S, Cremen N, Peso M, Hahne D, Baer B (2018) Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. J Invertebr Pathol 159:78–86. https://doi.org/10.1016/j.jip.2018.10.005

    Article  Google Scholar 

  • Graystock P, Goulson D, Hughes WOH (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc Lond B Biol Sci 282:1

    Google Scholar 

  • Guarino B (2016) “Like it’s been nuked”: millions of bees’ dead after South Carolina sprays for Zika mosquitoes. The Washington Post

    Google Scholar 

  • Halm M-P, Rortais A, Arnold G, Taséi JN, Rault S (2006) New risk assessment approach for systemic insecticides: the case of honey bees and imidacloprid (Gaucho). Environ Sci Technol 40:2448–2454

    Article  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  Google Scholar 

  • Hernández López J, Krainer S, Engert A, Schuehly W, Riessberger-Gallé U, Crailsheim K (2017) Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Sci Rep 7:408537

    Google Scholar 

  • Higes M, Martín-Hernández R, Martínez-Salvador A, Garrido-Bailón E, González-Porto AV et al (2010) A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ Microbiol Rep 2:243–250

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 2:83–112

    Article  Google Scholar 

  • Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M et al (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414. https://doi.org/10.1038/ncomms8414

    Article  Google Scholar 

  • Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Royal Soc B Biol Sci 274:303–313. https://doi.org/10.1098/rspb.2006.3721

    Article  Google Scholar 

  • Kuan AC, DeGrandi-Hoffman G, Curry RJ, Garber KV, Kanarek AR, Snyder MN et al (2018) Sensitivity analyses for simulating pesticide impacts on honey bee colonies. Ecol Model 376:15–27. https://doi.org/10.1016/j.ecolmodel.2018.02.010

    Article  Google Scholar 

  • Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 7:11629

    Article  Google Scholar 

  • Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580. https://doi.org/10.1016/S0165-6147(00)01820-4

    Article  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PloS one 5(3):e9754

    Article  Google Scholar 

  • Mussen EC, Lopez JE, Peng CYS (2004) Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ Entomol 3:1151–1154

    Article  Google Scholar 

  • Pamminger T, Botías C, Goulson D, Hughes WO (2018) A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Funct Ecol 32(8):1921–1930. https://doi.org/10.1111/1365-2435.13119

    Article  Google Scholar 

  • Perry CJ, Søvik E, Myerscough MR, Barron AB (2015) Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc Natl Acad Sci USA 112:3427–3432

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  Google Scholar 

  • Rundlöf M, Andersson GKS, Bommarco R et al (2015) Seed coating with aneonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

    Article  Google Scholar 

  • Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees–a risk assessment. PLoS One 9(4):e94482. https://doi.org/10.1371/journal.pone.0094482

    Article  Google Scholar 

  • Siviter H, Koricheva J, Brown MJ, Leadbeater E (2018) Quantifying the impact of pesticides on learning and memory in bees. J Appl Ecol 55(6):2812–2821. https://doi.org/10.1111/1365-2664.13193

    Article  Google Scholar 

  • Sponsler DB, Grozinger CM, Hitaj C, Rundlöf M, Botías C, Code A, … Douglas MR (2019) Pesticides and pollinators: a socioecological synthesis. Sci Total Envir 662:1012–1027. https://doi.org/10.1016/j.scitotenv.2019.01.016

  • Stanley DA, Garratt MPD, Wickens JB et al (2015) Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528:548–550

    Article  Google Scholar 

  • Suryanarayanan S, Kleinman DL (2014) Beekeepers’ collective resistance and the politics of pesticide regulation in France and the United States. Polit Power Soc Theory 27:89–122

    Article  Google Scholar 

  • Tennekes HA, Sanchez-Bayo F (2012) Time-dependent toxicity of neonicotinoids and other toxicants: implications for a new approach to risk assessment. J Environ Anal Toxicol S4:001

    Google Scholar 

  • The European Commission (2018) Commission implementing regulation (EU) 2018/783/784/785. Off J Eur Union L 132

    Google Scholar 

  • Tschoeke PH, Oliveira EE, Dalcin MS, Silveira-Tschoeke MCA, Sarmento RA, Santos GR (2019) Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environ Pollut 251:591–599. https://doi.org/10.1016/j.envpol.2019.04.133

    Article  Google Scholar 

  • Tsvetkov N, Samson-Robert O, Sood K et al (2017) Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356:1395–1397

    Article  Google Scholar 

  • US Environmental Protection Agency (2014) Guidance for assessing pesticide risks to bees. United States Environmental Protection Agency, Office of Pesticide Programs, Washington, DC

    Google Scholar 

  • Van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305. https://doi.org/10.1016/j.cosust.2013.05.007

    Article  Google Scholar 

  • Vieira RF, Sumner DR (1999) Application of fungicides to foliage through overhead sprinkler irrigation – a review. Pestic Sci 55:412–422

    Article  Google Scholar 

  • Wechsler S, Smith D (2018) Has resistance taken root in U.S. corn fields? Demand for insect control. Am J Agric Econ 100:1136–1150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirella Aoun .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aoun, M. (2020). Pesticides’ Impact on Pollinators. In: Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T. (eds) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-95675-6_38

Download citation

Publish with us

Policies and ethics