Advertisement

Anticorrosive Coating

  • Mazen K. Nazal
  • Mohammad Abu Jafar Mazumder
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Protection of construction tools such as bridges, rails, ships, cars, engines, cargo, and storage containers against corrosion is significant. The scale-up of corrosion in a system can be prevented or at least minimized by altering the environment, changing the material properties, and/or protective coating. The main objective of this book chapter is to present and describe the different types of corrosion control methods in addition to the materials (organic, metallic, and inorganic) used as anticorrosive coatings and discuss the mechanism of different classes of anticorrosion protective coating (i.e., barrier, sacrificial, and inhibitive coating). Furthermore, some anticorrosive coating evaluation methods using outdoor exposure and laboratory tests have been discussed.

Keywords

Anticorrosion Coating Pigments Inhibitors Controlling corrosion 

List of Abbreviations

ACAT

Amine-capped aniline trimer

aq

Aqueous

Cd

Capacitance of double layers

CPE

Constant phase element

DMDES

Dimethyldiethoxysilane

EMF

Electromotive force

FGNP-TPP

Functionalized graphite nanoplatelets modified with tripolyphosphate anion

FHWA

Federal Highway Agencies

GPTMS

Glycidoxypropyltrimethoxysilane

HEE

Hydrophobic electroactive epoxy

l

Liquid

MAPTS

Methacryloxypropyltrimethoxysilane

MTES

Methyltriethoxysilane

n

Power of the diffusion impedance

PAAMPS

Poly-acetamide-acetoxyl methyl-propylsiloxane

PANI shell with AuNPs

Polyaniline-modified gold nanoparticles

PANI–MWCNT

Multiwall carbon nanotube–polyaniline

RGO

Reduced graphene oxide

Rp

Polarization resistance

Rs

Electrolyte solution resistance

s

Solid

SEPI

Superhydrophobic electroactive polyimide

TEOS

Tetraethoxysilane

W

Warburg impedance

Y0

Admittance constant

χ2

Chi square

ω

Frequency

Notes

Acknowledgments

The authors would like to gratefully acknowledge King Fahd University of Petroleum and Minerals (KFUPM) for providing excellent research facilities and Deanship of Scientific Research, KFUPM, Saudi Arabia, for financial assistance to carry out this research through internal grant project No. IN131047.

References

  1. 1.
    H.H. Uhlig, The cost of corrosion in the United States. Chem. Eng. News 97, 2764 (1949)Google Scholar
  2. 2.
    G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Cost and Preventive Strategies in the United States (Federal Highway Administration, FHWA-RD-01-156, U.S. Department of Transportation, Washington, DC, 2001)Google Scholar
  3. 3.
    C.C. Technologies Laboratories, Inc, Cost of Corrosion and Prevention Strategies in the United States, Ohio: Dublin, USA (2001)Google Scholar
  4. 4.
    National Association of Corrosion Engineers (NACE), C. C. Technologies and Federal Highway Administration (FHWA), Materials Performance, Special Issue, Houston (2002)Google Scholar
  5. 5.
    J.M. West, Basic Corrosion and Oxidation, 2nd edn. (Ellis Horwood, Chichester, 1986), pp. 312–337Google Scholar
  6. 6.
    C.R. Hegedus, A holistic perspective of coating technology. JCT Res. 1(1), 5–19 (2004)Google Scholar
  7. 7.
    4MS Common Approach, Acceptance of metallic materials used for products in contact with drinking water, 6th Revision. (2016) http://www.umweltbundesamt.de/sites/default/files/medien/374/dokumente/6th_revision_4ms_scheme_for_metallic_materials_part_b.pdf
  8. 8.
    P.R. Sere, A.R. Armas, C.I. Elsner, A.R. Di Sarli, The surface condition effect on adhesion and corrosion resistance of carbon steel chlorinated rubber artificial sea water systems. Corros. Sci. 38, 853–866 (1996)CrossRefGoogle Scholar
  9. 9.
    J. Boxall, J.A. von Fraunhofer, Paint Formulation: Principles and Practice (George Godwin Limited, London, UK, 1980)Google Scholar
  10. 10.
    F. Rodriguez, Principles of Polymer Systems, 2nd edn. (Hemisphere, New York, 1982)Google Scholar
  11. 11.
    V.D. Atkinson, Corrosion and its Control, 2nd edn. (ANACE international, Houston, 1995)Google Scholar
  12. 12.
    S. Bhadra, N.K. Singha, J.H. Lee, D. Khastgir, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Bhadra, N.K. Singha, D. Khastgir, Polyaniline based anticorrosive and anti-molding coating. J. Chem. Eng. Mater. Sci. 2(1), 1–11 (2011)Google Scholar
  14. 14.
    B. Wessling, Scientific engineering of anti-corrosion coating systems based on organic metals (Polyaniline). J. Corros. Sci. Eng. 15(1), 1–13 (1999)Google Scholar
  15. 15.
    T. Wang, Y. Tan, Understanding electrodeposition of polyaniline coatings for corrosion prevention applications using the wire beam electrode method. Corros. Sci. 48, 2274–2290 (2006)CrossRefGoogle Scholar
  16. 16.
    A.A. Hermas, M. Abdel Salam, S.S. Al-Juaid, In situ electrochemical preparation of multi-walled carbon nanotubes/polyaniline composite on the stainless steel. Prog. Org. Coat. 76, 1810–1813 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Gupta, N. Birbilis, A.B.. Cook, A.S. Khanna, Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3. Corros. Sci. 67, 256–267 (2013)Google Scholar
  18. 18.
    Z. Tian, H. Yu, L. Wang, M. Saleem, F. Ren, P. Ren, Y. Chen, R. Sun, Y. Sun, L. Huang, Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Adv. 4, 28195–28208 (2014)CrossRefGoogle Scholar
  19. 19.
    A. Vimalanandan, L. Lv, T.H. Tran, K. Landfester, D. Crespy, M. Rohwerder, Redox-responsive self-healing for corrosion protection. Adv. Mater. 25, 6980–6984 (2013)CrossRefPubMedGoogle Scholar
  20. 20.
    H. Gomez, M.K. Ram, F. Alvi, E. Stefanakos, A. Kumar, Novel synthesis, characterization, and corrosion inhibition properties of nanodiamond–polyaniline films. J. Phys. Chem. C 114, 18797–18804 (2010)CrossRefGoogle Scholar
  21. 21.
    E. Akbarinezhad, M. Ebrahimi, F. Sharif, M.M. Attar, H.R. Faridi, Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Prog. Org. Coat. 70, 39–44 (2011)CrossRefGoogle Scholar
  22. 22.
    J. Xu, P. Yao, Z. Jiang, H. Liu, X. Li, L. Liu, M. Li, Y. Zheng, Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J. Appl. Polym. Sci. 125, E334–E341 (2012)CrossRefGoogle Scholar
  23. 23.
    M.R. Mahmoudian, Y. Alias, W.J. Basirun, Effect of narrow diameter polyaniline nanotubes and nanofibers in polyvinyl butyral coating on corrosion protective performance of mild steel. Prog. Org. Coat. 75, 301–308 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Mostafaei, F. Nasirpouri, Epoxy/polyaniline–ZnO nanorods hybrid protection performance of conducting paints. Prog. Org. Coat. 77, 146–159 (2014)CrossRefGoogle Scholar
  25. 25.
    X. Yang, B. Li, H. Wang, B. Hou, Anticorrosion performance of polyaniline nanostructures on mild steel. Prog. Org. Coat. 69, 267–271 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Weng, C. Chang, C. Peng, S. Chen, J. Yeh, C. Hsu, Y. Wei, Advanced anticorrosive coatings prepared from the Mimicked Xanthosoma Sagittifolium-leaf-like electroactive epoxy with synergistic effects of super hydrophobicity and redox catalytic capability. Chem. Mater. 23, 2075–2083 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Prasannan, T.L.B. Truong, P. Hong, N. Somanathan, I. Shown, T. Imae, Synthesis and characterization of “hairy urchin”-like polyaniline by using β-cyclodextrin as a template. Langmuir 27, 766–773 (2010)CrossRefPubMedGoogle Scholar
  28. 28.
    B. Averill, P. Eldredge, General Chemistry: Principles, Patterns, and Applications (Saylor Foundation, Arlington, 2011)Google Scholar
  29. 29.
    R.A. Dickie, A.G. Smith, How paint arrests rust. Chem. Tech. 10, 31 (1980)Google Scholar
  30. 30.
    C.R. Bacon, J.J. Smith, F.G. Rugg, Electrolytic resistance in evaluating protective merit of coatings on metals. Ind. Eng. Chem. 40, 161–167 (1948)CrossRefGoogle Scholar
  31. 31.
    W.W. Kittelberger, A.C. Elm, Diffusion of chloride through various paint systems. Ind. Eng. Chem. Res. 44, 326–329 (1952)CrossRefGoogle Scholar
  32. 32.
    C. Hare, Barrier coatings. J Protect. Coat. Linings 6, 59 (1989)Google Scholar
  33. 33.
    P. Galliano, J.J.D. Damborenea, M.J. Pascual, A. Duran, Sol-gel coatings on 316L steel for clinical applications. J. Sol-Gel Sci. Technol. 13, 723–727 (1998)CrossRefGoogle Scholar
  34. 34.
    D.C.L. Vasconcelos, J.A.N. Carvalho, M. Mantel, W.L. Vasconcelos, Corrosion resistance of stainless steel coated with sol-gel silica. J. Non-Cryst. Solids 273, 135–139 (2000)CrossRefGoogle Scholar
  35. 35.
    M. Atik, P. Neto, L.A. Avaca, M.A. Aegerter, Sol-gel thin films for corrosion protection. Ceram. Int. 21, 403–406 (1995)CrossRefGoogle Scholar
  36. 36.
    L. Fedrizzi, F.J. Rodriguez, S. Rossi, F. Deflorian, R.D. Maggio, The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films. Electrochim. Acta 46, 3715–3724 (2001)CrossRefGoogle Scholar
  37. 37.
    Y. Su, V.G. Kravets, S.L. Wong, J. Waters, A.K. Geim, R.R. Nair, Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5, 4843–4842 (2014)CrossRefPubMedGoogle Scholar
  38. 38.
    G.P. Thim, M.A.S. Oliveria, E.D.A. Oliveria, F.C.L. Melo, Sol-gel silica film preparation from aqueous solutions for corrosion protection. J. Non-Cryst. Solids 273, 124–128 (2000)CrossRefGoogle Scholar
  39. 39.
    Y. Joshua Du, M. Damron, G. Tang, H. Zheng, C.J. Chu, J.H. Osborne, Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Prog. Org. Coat. 41, 226–232 (2001)CrossRefGoogle Scholar
  40. 40.
    K.H. Wu, C.M. Chao, T.F. Yeh, T.C. Chang, Thermal stability and corrosion resistance of polysiloxane coatings on 2024-T3 and 6061-T6 aluminum alloy. Surf. Coat. Technol. 201, 5782–5788 (2007)CrossRefGoogle Scholar
  41. 41.
    L. Jianguo, G. Gaoping, Y. Chuanwei, Enhancement of the erosion–corrosion resistance of Dacromet with hybrid SiO2 sol-gel. Surf. Coat. Technol. 200, 4967–4975 (2006)CrossRefGoogle Scholar
  42. 42.
    A. Conde, J.D. Damborenea, A. Duran, M. Menning, Protective properties of a sol-gel coating on zinc coated steel. J. Sol-Gel Sci. Technol. 37, 79–85 (2006)CrossRefGoogle Scholar
  43. 43.
    U. Vijayalakshmi, S. Rajeswari, Synthesis and characterization of sol-gel derived glass-ceramic and its corrosion protection on 316L SS. J. Sol-Gel Sci. Technol. 43, 251–258 (2007)CrossRefGoogle Scholar
  44. 44.
    W. Datchary, A. Mehner, H.W. Zoch, D.A. Lucca, M.J. Klopfstein, R. Ghisleni, D. Grimme, E. Brinksmeier, High precision diamond machining of hybrid sol-gel coatings. J. Sol-Gel Sci. Technol. 35, 245–251 (2005)CrossRefGoogle Scholar
  45. 45.
    T. Sugama, Cerium acetate-modified aminopropylsilane triol: A precursor of corrosion-preventing coating for aluminum-finned condensers. J. Coat. Technol. Res. 2, 649–659 (2005)CrossRefGoogle Scholar
  46. 46.
    A. Pepe, M. Aparicio, A. Duran, S. Cere, Cerium hybrid silica coatings on stainless steel AISI 304 substrate. J. Sol-Gel Sci. Technol. 39, 131–132 (2006)CrossRefGoogle Scholar
  47. 47.
    M. Sheffer, A. Groysman, D. Mandler, Electrodeposition of sol-gel films on Al for corrosion protection. Corros. Sci. 45, 2893–2904 (2003)CrossRefGoogle Scholar
  48. 48.
    M. Aparicio, A. Jitianu, G. Rodriguez, A. Degnah, K. Al-Marzoki, J. Mosa, L.C. Klein, Corrosion protection of AISI 304 stainless steel with melting gel coatings. Electrochim. Acta 202, 325–332 (2016)CrossRefGoogle Scholar
  49. 49.
    Y. Liu, X. Zhou, S.B. Lyon, R. Emad, T. Hashimoto, A. Gholinia, G.E. Thompson, D. Graham, S.R. Gibbon, D. Francis, An organic coating pigmented with strontium aluminium polyphosphate for corrosion protection of zinc alloy coated steel. Prog. Org. Coat. 102, 29–36 (2017)CrossRefGoogle Scholar
  50. 50.
    C. Hare, M. Steele, S.P. Collins, Zinc loadings, cathodic protection, and post-cathodic protective mechanisms in organic zinc-rich metal primers. J. Protect. Coat. Linings 18, 54–72 (2001)Google Scholar
  51. 51.
    O. Satoshi, N. Hiroaki, K. Shigeo, A. Tetsuya, F. Hisaaki, O. Kazuo, J. Surf. Finish. Soc. Jpn. 53, 920 (2002)CrossRefGoogle Scholar
  52. 52.
    C.T.J. Low, R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Technol. 201, 371–383 (2006)CrossRefGoogle Scholar
  53. 53.
    B.M. Praveen, T.V. Venkatesha, Electrodeposition and properties of Zn-nanosized TiO2 composite coatings. Appl. Surf. Sci. 254, 2418–2424 (2008)CrossRefGoogle Scholar
  54. 54.
    A. Vlasa, S. Varvara, A. Pop, C. Bulea, L.M. Muresan, Electrodeposited Zn-TiO2 nanocomposite coatings and their corrosion behavior. J. Appl. Electrochem. 40, 1519–1527 (2010)CrossRefGoogle Scholar
  55. 55.
    T.R. Khan, A. Erbe, M. Auinger, F. Marlow, M. Rohwerder, Electrodeposition of zinc–silica composite coatings: Challenges in incorporating functionalized silica particles into a zinc matrix. Sci. Technol. Adv. Mater. 12, 1–9 (2011)CrossRefGoogle Scholar
  56. 56.
    M.K. Camargo, I. Tudela, U. Schmidt, A.J. Cobley, A. Bund, Ultrasound assisted electrodeposition of Zn and Zn-TiO2 coatings. Electrochim. Acta 198, 287–295 (2016)CrossRefGoogle Scholar
  57. 57.
    N. Perez, Electrochemistry and Corrosion Science (Kluwer, Boston, 2004)CrossRefGoogle Scholar
  58. 58.
    E. Ituen, O. Akaranta, A. James, Evaluation of performance of corrosion inhibitors using adsorption isotherm models: An overview. Chem. Sci. Int. J. 18(1), 1–34 (2017)CrossRefGoogle Scholar
  59. 59.
    P.A. Sørensen, S. Kiil, K. Dam-Johansen, Anticorrosive coatings: A review. J. Coat. Technol. Res. 6(2), 135–176 (2009)CrossRefGoogle Scholar
  60. 60.
    R. Romagnoli, V.F. Vetere, Heterogeneous reaction between steel and zinc phosphate. Corrosion 51(2), 116–123 (1995)CrossRefGoogle Scholar
  61. 61.
    J. Sinko, Challenges of chromate inhibitor pigments replacement in organic coatings. Prog. Org. Coat. 42, 267–282 (2001)CrossRefGoogle Scholar
  62. 62.
    Q. Meng, T. Ramgopal, G.S. Frankel, The influence of inhibitor ions on dissolution kinetics of Al and Mg using the artificial crevice technique. Electrochem. Solid-State Lett. 5(2), B1–B4 (2002)CrossRefGoogle Scholar
  63. 63.
    T. Prosek, D. Thierry, A model for the release of chromate from organic coatings. Prog. Org. Coat. 49(3), 209–217 (2004)CrossRefGoogle Scholar
  64. 64.
    M. Beiro, A. Collazo, M. Izquierdo, X. Novoa, C. Perez, Characterisation of barrier properties of organic paints: The zinc phosphate effectiveness. Prog. Org. Coat. 46(2), 97–106 (2003)CrossRefGoogle Scholar
  65. 65.
    S. Mousavifard, P.M. Nouri, M. Attar, B. Ramezanzadeh, The effects of zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on corrosion inhibition performance of epoxy/polyamide coating. J. Ind. Eng. Chem. 19(3), 1031–1039 (2013)CrossRefGoogle Scholar
  66. 66.
    F. Askari, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian, Synthesis and characterization of the fourth generation of zinc phosphate pigment in the presence of benzotriazole. Dyes Pigments 124, 18–26 (2016)CrossRefGoogle Scholar
  67. 67.
    S. Mohammadi, H. Shariatpanahi, F.A. Taromi, J. Neshati, Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel. Mater. Res. Bull. 80, 7–22 (2016)CrossRefGoogle Scholar
  68. 68.
    R.M. Palou, O. Olivares-Xomelt, N.V. Likhanova, Environmentally Friendly Corrosion Inhibitors, Developments in Corrosion Protection (InTech, London, UK, 2014)Google Scholar
  69. 69.
    S.A. Ali, M.T. Saeed, S.U. Rahman, The isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic medium. Corros. Sci. 45(2), 253–266 (2003)CrossRefGoogle Scholar
  70. 70.
    S.A. Abd El-Maksoud, A.S. Fouda, Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater. Chem. Phys. 93, 84–90 (2005)CrossRefGoogle Scholar
  71. 71.
    Ü. Ergun, D. Yüzer, K.C. Emregül, The inhibitory effect of bis-2,6-(3,5-dimethylpyrazolyl) pyridine on the corrosion behaviour of mild steel in HCl solution. Mater. Chem. Phys. 109, 492–499 (2008)CrossRefGoogle Scholar
  72. 72.
    E.A. Noor, Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al–Cu alloy in hydrochloric acid. Mater. Chem. Phys. 114, 533–541 (2009)CrossRefGoogle Scholar
  73. 73.
    O. Olivares-Xometl, N.V. Likhanova, B. Gómez, J. Navarrete, M.E. Llanos-Serrano, E. Arce, J.M. Hallen, Electrochemical and XPS studies of decylamides of alpha-amino acids adsorption on carbon steel in acidic environment. Appl. Surf. Sci. 252(6), 2894–2909 (2006)CrossRefGoogle Scholar
  74. 74.
    O. Olivares-Xometl, N.V. Likhanova, M.A. Domínguez-Aguilar, E. Arce, H. Dorante, P. Arellanes-Lozada, Synthesis and corrosion inhibition of alpha-amino acids alkylamides for mild steel in acidic environment. Mater. Chem. Phys. 110(2–3), 344–351 (2008)CrossRefGoogle Scholar
  75. 75.
    M.A.J. Mazumder, M.K. Nazal, M. Faiz, S.A. Ali, Imidazolines containing single-, twin-and triple-tailed hydrophobes and hydrophilic pendants (CH2CH2NH)nH as inhibitors of mild steel corrosion in CO2 – 0.5 M NaCl. RSC Adv. 6(15), 12348–12362 (2016)CrossRefGoogle Scholar
  76. 76.
    J. Cruz, R. Martínez-Palou, J. Genesca, E. García-Ochoa, Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J. Electroanal. Chem. 566(1), 111–121 (2004)CrossRefGoogle Scholar
  77. 77.
    R. Martinez-Palou, J. Rivera, L.G. Zepeda, A.N. Rodríguez, M.A. Hernandez, J. Marín-Cruz, A. Estrada, Evaluation of corrosion inhibitors synthesized from fatty acids and fatty alcohols isolated from sugar cane wax. Corros. Sci. 60(5), 465–470 (2004)CrossRefGoogle Scholar
  78. 78.
    O. Olivares-Xometl, N.V. Likhanova, R. Martínez-Palou, M.A. Dominguez-Aguilar, Electrochemistry and XPS study of an imidazoline as corrosion inhibitor of mild steel in an acidic environment. Mater. Corros. 60(1), 14–21 (2009)CrossRefGoogle Scholar
  79. 79.
    F.G. Liu, M. Du, J. Zhang, M. Qiu, Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor. Corros. Sci. 51(1), 102–109 (2009)CrossRefGoogle Scholar
  80. 80.
    D.E. Tallman, G. Spinks, A. Dominis, G.G. Wallace, Electroactive conducting polymers for corrosion control. Part 1. General introduction and a review of non-ferrous metals. J. Solid States Electrochem. 6(2), 73–84 (2002)CrossRefGoogle Scholar
  81. 81.
    M. Morcillo, J. Simanacas, J.M. Bastidas, S. Feliu, C. Blanco, F. Camón, Comparison of laboratory tests and outdoor tests of paint coatings for atmospheric exposure, in Polymeric Materials for Corrosion Control, ed. by R.A. Dickie, F.L. Floyd (American Chemical Society, Washington, DC, 1986), pp. 86–100Google Scholar
  82. 82.
    B.R. Appleman, Survey of accelerated test methods for anti-corrosive coating performance. J. Coatings Technol. 67, 57–67 (1990)Google Scholar
  83. 83.
    S.M. Park, J.S. Yoo, Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem. 75(21), 455–461 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre for Environment and Water (CEW)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations