Advertisement

Drug Delivery: Polymers in the Development of Controlled Release Systems

  • Scott CampbellEmail author
  • Niels Smeets
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

This chapter comprises an overview of the basic elements that one must take into account when developing a new drug delivery system. It begins with an outline of traditional methods to deliver drugs, relating these to important considerations that must be taken into account when developing a drug delivery system, including the importance of controlling the drug concentration and location, and the properties of the device and the therapeutic. This chapter then continues by describing various types of polymeric delivery systems, including implants, hydrogels, and nanoparticles, microgels, and micelle nanomedicines. This chapter then concludes with a brief perspective on the potential of nanomedicine drug delivery systems; a much more thorough perspective can be found in a follow-up chapter “Drug Delivery: Localized and Systemic Therapeutic Strategies with Polymer Systems.”

List of Abbreviations

BA

Bioavailability

BMA

Butyl methacrylate

CLRP

Controlled-living free radical polymerization

CMC

Carboxymethyl cellulose

DPA

Hydrophobic block

DPB

Hydrophilic block

EPR

Enhanced permeability and retention

FDA

US Food and Drug Administration

GI

Gastrointestinal

HA

Hyaluronic acid

IM

Intramuscular

IR

Infrared

IV

Intravenous

MPS

Mononuclear phagocyte system

NIPAM

N-isopropyl acrylamide

PBA

Phenyl boronic acid

PEG

Poly(ethylene glycol)

PGA

Poly(glycolic acid)

PLA

Poly(L-lactic acid)

PLGA

Poly(lactic acid-co-glycolic acid)

PMMA

Poly(methyl methacrylate)

PNIPAM

Poly(N-isopropyl acrylamide)

POEGMA

Poly(oligoethylene glycol methacrylate)

PVA

Polyvinyl alcohol

RGD

Arginine-glycine-aspartic acid

SC

Subcutaneous

SPIONs

Superparamagnetic iron oxide nanoparticles

Tg

Glass transition temperature

Z

Aggregation number

References

  1. 1.
    N. Huebsch, C.J. Kearney, X. Zhao, J. Kim, C.A. Cezar, Z. Suo, D.J. Mooney, Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 111, 9762–9767 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    D. Maitland, S.B. Campbell, J. Chen, T. Hoare, Controlling the resolution and duration of pulsatile release from injectable magnetic “plum pudding” nanocomposite hydrogels. RSC Adv. 6, 15770–15781 (2016)CrossRefGoogle Scholar
  3. 3.
    L.T. Kuhn, Biomaterials, ed. By J. Enderle, S. Blanchard, J. Bronzino. Introduction to Biomedical Engineering, 4th edn (Elsevier Academic Press, Burlington, 2005)Google Scholar
  4. 4.
    S.L. Tao, T.A. Desai, Gastrointestinal patch systems for oral drug delivery. Drug Discov. Today 10, 909–915 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    D.R. Friend, G. Sri, M. Park, Colon-specific drug delivery. Adv. Drug Deliv. Rev. 7, 149–199 (1991)CrossRefGoogle Scholar
  6. 6.
    R. Talukder, R. Fassihi, Gastroretentive delivery systems: A mini review. Drug Dev. Ind. Pharm. 30, 1019–1028 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    M. Gibaldi, R.N. Boyes, S. Feldman, Influence of first-pass effect on availability of drugs on oral administration. J. Pharm. Sci. 60, 1338–1340 (1971)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    K. Park, I. Chan, K. Park, Oral protein delivery: Current status and future prospect. React. Funct. Polym. 71, 280–287 (2011)CrossRefGoogle Scholar
  9. 9.
    M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    N.R. Mathias, M.A. Hussain, Non-invasive systemic drug delivery: Developability considerations for alternate routes of administration. J. Pharm. Sci. 99, 1–20 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    M.J. Rathbone, B.K. Drummond, I.G. Tucker, The oral cavity as a site for systemic drug delivery. Adv. Drug Deliv. Rev. 13, 1–22 (1994)CrossRefGoogle Scholar
  12. 12.
    L. Illum, Nasal drug delivery – Possibilities, problems and solutions. J. Control. Release 87, 187–198 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    J.S. Patton, C.S. Fishburn, J.G. Weers, The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 1, 338–344 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 46, 125–148 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    S.B. Campbell, M. Patenaude, T. Hoare, Injectable Superparamagnets: Highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14, 644–653 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    J. Kost, R. Langer, Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64, 327–341 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Merino, C. Martin, K. Kostarelos, M. Prato, E. Vázquez, Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9, 4686–4697 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    S.B. Campbell, T. Hoare, Externally addressable hydrogel nanocomposites for biomedical applications. Curr. Opin. Chem. Eng. 4, 1–10 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Bechgaard, G.H. Nielsen, Controlled-release multiple-units and single-unit doses a literature review. Drug Dev. Ind. Pharm. 4, 53–67 (2008)CrossRefGoogle Scholar
  20. 20.
    E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer 49, 1993–2007 (2008)CrossRefGoogle Scholar
  24. 24.
    J.H. Brauker, V.E. Carr-Brendel, L.A. Martinson, J. Crudele, W.D. Johnston, R.C. Johnson, B.H. Corp, B.T. Park, R. Lake, Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524 (1995)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    O. Veiseh, J.C. Dolo, M. Ma, A.J. Vegas, H.H. Tam, A.R. Bader, J. Li, E. Langan, J. Wycko, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-lock, S. Aresta-dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D.M. Lavin, M. Chen, N. Dholakia, R. Thakrar, I. Lacík, G.C. Weir, J. Oberholzer, D.L. Greiner, R. Langer, Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–652 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42, 1147–1235 (2013)PubMedCrossRefGoogle Scholar
  27. 27.
    M.K. Nguyen, E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog. Polym. Sci. 39, 1235–1265 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Zhao, F. Fay, S. Hak, J.M. Perez-aguilar, B.L. Sanchez-Gaytan, C.D.L. Davies, A. Bjørkøy, H. Weinstein, B. Goode, W.J.M. Mulder, Z.A. Fayad, C. Perez-Medina, W.J.M. Mulder, Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat. Commun. 1–11 (2016)Google Scholar
  29. 29.
    T. Hoare, R. Pelton, Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 24, 1005–1012 (2008)PubMedCrossRefGoogle Scholar
  30. 30.
    E.A. Appel, R.A. Forster, M.J. Rowland, O.A. Scherman, The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials 35, 9897–9903 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    P.R. Lockman, R.J. Mumper, M.A. Khan, D.D. Allen, Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 28, 1–13 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    D.A. LaVan, T. McGuire, R. Langer, Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    A.C. Anselmo, S. Mitragotri, An overview of clinical and commercial impact of drug delivery systems. J. Control. Release 190, 15–28 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    I.M. Carvalho, C.S. Marques, R.S. Oliveira, P.B. Coelho, P.C. Costa, D.C. Ferreira, Sustained drug release by contact lenses for glaucoma treatment – A review. J. Control. Release 202, 76–82 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    G. Acharya, K. Park, Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev. 58, 387–401 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    M. Staples, K. Daniel, M.J. Cima, R. Langer, Application of micro- and nano-electromechanical devices to drug delivery. Pharm. Res. 23, 847–863 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    L.C. Bengani, K.-H. Hsu, S. Gause, A. Chauhan, Contact lenses as a platform for ocular drug delivery. Expert Opin. Drug Deliv. 10, 1483–1496 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    H.K. Makadia, S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    B.G. Amsden, Biodegradable elastomers in drug delivery. Expert Opin. Drug Deliv. 5, 175–187 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    S.A. Rovers, R. Hoogenboom, M.F. Kemmere, J.T.F. Keurentjes, Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. Soft Matter 8, 1623–1627 (2012)CrossRefGoogle Scholar
  42. 42.
    J.T.F. Keurentjes, M.F. Kemmere, H. Bruinewoud, M.A.M.E. Vertommen, S.A. Rovers, R. Hoogenboom, L.F.S. Stemkens, F.L.A.M.A. Péters, N.J.C. Tielen, D.T.A. van Asseldonk, A.F. Gabriel, E.A. Joosten, M.A.E. Marcus, Externally triggered glass transition switch for localized on-demand drug delivery. Angew. Chem. Int. Ed. 48, 9867–9870 (2009)CrossRefGoogle Scholar
  43. 43.
    T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9, 3651–3657 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    E. Renard, G. Costalat, J. Bringer, From external to implantable insulin pump, can we close the loop? Diabetes Metab. 28, 2519–2525 (2002)Google Scholar
  45. 45.
    T. Aye, J. Block, B. Buckingham, Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems. Endocrinol. Metab. Clin. N. Am. 39, 609–624 (2010)CrossRefGoogle Scholar
  46. 46.
    S. Van Vlierberghe, P. Dubruel, E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules 12, 1387–1408 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    M.W. Tibbitt, K.S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRefGoogle Scholar
  49. 49.
    C. Maldonado-Codina, N. Efron, Hydrogel lenses – Materials and manufacture: A review. Optom. Pract. 4, 101–115 (2003)Google Scholar
  50. 50.
    H. Hiratani, C. Alvarez-Lorenzo, Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid. J. Control. Release 83, 223–230 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    J.S. Boateng, K.H. Matthews, H.N.E. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 97, 2892–2923 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    C.-C. Lin, K.S. Anseth, PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    D.J. Overstreet, D. Dutta, S.E. Stabenfeldt, B.L. Vernon, Injectable hydrogels. J. Polym. Sci. Part B Polym. Phys. 50, 881–903 (2012)CrossRefGoogle Scholar
  54. 54.
    Y. Li, J. Rodrigues, H. Tomás, Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41, 2193–2221 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35, 598–617 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    M.A. Azagarsamy, K.S. Anseth, Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell structure scaffolds. ACS Macro Lett. 2, 5–9 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    N.M.B. Smeets, E. Bakaic, M. Patenaude, T. Hoare, Injectable and tunable poly(ethylene glycol) analogue hydrogels based on poly(oligoethylene glycol methacrylate). Chem. Commun. 50, 3306–3309 (2014)CrossRefGoogle Scholar
  58. 58.
    N.M.B. Smeets, E. Bakaic, M. Patenaude, T. Hoare, Injectable poly(oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: Physicochemical and biological responses. Acta Biomater. 10, 4143–4155 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    E. Bakaic, N.M.B. Smeets, T. Hoare, Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv. 5, 35469–35486 (2015)CrossRefGoogle Scholar
  60. 60.
    E. Bakaic, N.M.B. Smeets, H. Dorrington, T.R. Hoare, “Off-the-shelf” thermoresponsive hydrogel design: Tuning hydrogel properties by mixing precursor polymers with different lower-critical solution temperatures. RSC Adv. 5, 33364–33376 (2015)CrossRefGoogle Scholar
  61. 61.
    S.P. Hudson, R. Langer, G.R. Fink, D.S. Kohane, Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 31, 1444–1452 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    A.W. Jackson, D.A. Fulton, Making polymeric nanoparticles stimuli-responsive with dynamic covalent bonds. Polym. Chem. 4, 31–45 (2013)CrossRefGoogle Scholar
  63. 63.
    N.M.B. Smeets, M. Patenaude, D. Kinio, F.M. Yavitt, E. Bakaic, F.-C. Yang, M. Rheinstädter, T. Hoare, Injectable hydrogels with in situ-forming hydrophobic domains: oligo(d ,l-lactide) modified poly(oligoethylene glycol methacrylate) hydrogels. Polym. Chem. 5, 6811–6823 (2014)CrossRefGoogle Scholar
  64. 64.
    D.A. Ossipov, J. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by “click chemistry”. Macromolecules 39, 1709–1718 (2006)CrossRefGoogle Scholar
  65. 65.
    G.N. Grover, J. Lam, T.H. Nguyen, T. Segura, H.D. Maynard, Biocompatible hydrogels by oxime click chemistry. Biomacromolecules 13, 3013–3017 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    G.N. Grover, R.L. Braden, K.L. Christman, Oxime cross-linked injectable hydrogels for catheter delivery. Adv. Mater. 25, 2937–2942 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    H.W. Ooi, K.S. Jack, H. Peng, A.K. Whittaker, “Click” PNIPAAm hydrogels – A comprehensive study of structure and properties. Polym. Chem. 4, 4788–4800 (2013)CrossRefGoogle Scholar
  68. 68.
    J.A. Yoon, T. Kowalewski, K. Matyjaszewski, Comparison of thermoresponsive deswelling kinetics of poly(oligo(ethylene oxide) methacrylate)-based thermoresponsive hydrogels prepared by “graft-from” ATRP. Macromolecules 44, 2261–2268 (2011)CrossRefGoogle Scholar
  69. 69.
    Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 64, 49–60 (2012)CrossRefGoogle Scholar
  70. 70.
    S. Cheon, I. Keun, K. Park, Hydrogels for delivery of bioactive agents: A historical perspective. Adv. Drug Deliv. Rev. 65, 17–20 (2013)CrossRefGoogle Scholar
  71. 71.
    A. Matsumoto, T. Ishii, J. Nishida, H. Matsumoto, K. Kataoka, Y. Miyahara, A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012)CrossRefGoogle Scholar
  72. 72.
    W. Wu, S. Zhou, Responsive materials for self-regulated insulin delivery. Macromol. Biosci. 13, 1464–1477 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    D. Beebe, J. Moore, J. Bauer, Q. Yu, R. Liu, C. Devadoss, B. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    D. Guarnieri, A. De Capua, M. Ventre, A. Borzacchiello, C. Pedone, D. Marasco, M. Ruvo, P.A. Netti, Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater. 6, 2532–2539 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    K.C. Koehler, K.S. Anseth, C.N. Bowman, Diels-Alder mediated controlled release from a poly(ethylene glycol) based hydrogel. Biomacromolecules 14, 538–547 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    R. Shenhar, V.M. Rotello, Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    B.D. Chithrani, W.C.W. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    B.D. Chithrani, A.A. Ghazani, W.C.W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 105, 11613–11618 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986)PubMedPubMedCentralGoogle Scholar
  85. 85.
    A. Albanese, E.A. Sykes, W.C.W. Chan, Rough around the edges: The inflammatory response of microglial cells to spiky nanoparticles. ACS Nano 4, 2490–2493 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    A.R. Kirtane, Strategies to improve plasma circulation of nanoparticles. Nirma Univ J Pharm Sci 1, 1–18 (2014)Google Scholar
  87. 87.
    M.J. Ernsting, M. Murakami, A. Roy, S.-D. Li, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 172, 782–794 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    C. Rippe, A. Rippe, O. Torffvit, B. Rippe, Size and charge selectivity of the glomerular filter in early experimental diabetes in rats. Am. J. Physiol. Renal Physiol. 293, F1533–F1538 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    D. Asgeirsson, D. Venturoli, B. Rippe, C. Rippe, Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am. J. Physiol. Renal Physiol. 291, F1083–F1089 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    R. May, L. Machesky, Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001)PubMedPubMedCentralGoogle Scholar
  92. 92.
    C. Fang, B. Shi, Y.-Y. Pei, M.-H. Hong, J. Wu, H.-Z. Chen, In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 27, 27–36 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    S.M. Ryan, G. Mantovani, X. Wang, D.M. Haddleton, D.J. Brayden, Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin. Drug Deliv. 5, 371–383 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    G. Pasut, F.M. Veronese, State of the art in PEGylation: The great versatility achieved after forty years of research. J. Control. Release 161, 461–472 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    U. Wattendorf, H.P. Merkle, PEGylation as a tool for the biomedical engineering of surface modified microparticles. J. Pharm. Sci. 97, 4655–4669 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    V.P. Torchilin, M.I. Shtilman, V.S. Trubetskoy, K. Whiteman, A.M. Milstein, Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim. Biophys. Acta Biomembr. 1195, 181–184 (1994)CrossRefGoogle Scholar
  97. 97.
    A. Moore, E. Marecos, A. Bogdanov, R. Weissleder, Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214, 568–574 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    V.P. Chauhan, T. Stylianopoulos, J.D. Martin, Z. Popović, O. Chen, W.S. Kamoun, M.G. Bawendi, D. Fukumura, R.K. Jain, Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    R. Liu, B.K. Kay, S. Jiang, S. Chen, Nanoparticle delivery: Targeting and nonspecific binding. MRS Bull. 34, 432–440 (2011)CrossRefGoogle Scholar
  100. 100.
    A.D. Friedman, S.E. Claypool, R. Liu, The smart targeting of nanoparticles. Curr. Pharm. Des. 19, 6315–6329 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    P. Couvreur, Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 65, 21–23 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    G. Birrenbach, P.P. Speiser, Polymerized micelles and their use as adjuvants in immunology. J. Pharm. Sci. 65, 1763–1766 (1976)PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    F. Tiarks, K. Landfester, M. Antonietti, Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17, 908–918 (2001)CrossRefGoogle Scholar
  104. 104.
    J. Nicolas, P. Couvreur, Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 111–127 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, P. Couvreur, Drug delivery to resistant tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 161, 505–522 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    J.S. Chawla, M.M. Amiji, Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249, 127–138 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    T.K. Dash, V.B. Konkimalla, Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release 158, 15–33 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    C. Chauvierre, D. Labarre, P. Couvreur, C. Vauthier, Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm. Res. 20, 1786–1793 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    M. Tobío, R. Gref, A. Sánchez, R. Langer, M.J. Alonso, Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm. Res. 15, 270–275 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    J. Piazza, T. Hoare, L. Molinaro, K. Terpstra, J. Bhandari, P.R. Selvaganapathy, B. Gupta, R.K. Mishra, Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly (D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur. J. Pharm. Biopharm. 87, 30–39 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    H.S. Yoo, T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96, 273–283 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Z. He, J. Huang, Y. Xu, X. Zhang, Y. Teng, C. Huang, Y. Wu, X. Zhang, H. Zhang, W. Sun, Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 6, 42150–42168 (2015)PubMedPubMedCentralGoogle Scholar
  114. 114.
    J. Wackerlig, R. Schirhagl, Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: A review. Anal. Chem. 88, 250–261 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    F.A. Ishkuh, M. Javanbakht, M. Esfandyari-Manesh, R. Dinarvand, F. Atyabi, Synthesis and characterization of paclitaxel-imprinted nanoparticles for recognition and controlled release of an anticancer drug. J. Mater. Sci. 49, 6343–6352 (2014)CrossRefGoogle Scholar
  116. 116.
    A. Musyanovych, K. Landfester, Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol. Biosci. 14, 458–477 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    A.R. Pohlmann, F.N. Fonseca, K. Paese, C.B. Detoni, K. Coradini, R.C. Beck, S.S. Guterres, Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin. Drug Deliv. 10, 623–638 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    M. Aboubakar, F. Puisieux, P. Couvreur, C. Vauthier, Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int. J. Pharm. 183, 63–66 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    R.H. Pelton, P. Chibante, Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 20, 247–256 (1986)CrossRefGoogle Scholar
  120. 120.
    N.M.B. Smeets, T. Hoare, Designing responsive microgels for drug delivery applications. J. Polym. Sci. Part A: Polym. Chem. 51, 3027–3043 (2013)CrossRefGoogle Scholar
  121. 121.
    D. Klinger, K. Landfester, Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer 53, 5209–5231 (2012)CrossRefGoogle Scholar
  122. 122.
    J. Kwon, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448–477 (2008)CrossRefGoogle Scholar
  123. 123.
    A. Pich, W. Richtering, Microgels by precipitation polymerization: Synthesis, characterization, and functionalization. Adv. Polym. Sci. 234, 1–37 (2010)CrossRefGoogle Scholar
  124. 124.
    K. Landfester, M. Willert, M. Antonietti, Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33, 2370–2376 (2000)CrossRefGoogle Scholar
  125. 125.
    Z. An, Q. Shi, W. Tang, C. Tsung, C.J. Hawker, G.D. Stucky, Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 129, 14493–14499 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    D. Sivakumaran, E. Mueller, T. Hoare, Temperature-induced assembly of monodisperse, covalently cross-linked, and degradable poly(n-isopropylacrylamide) microgels based on oligomeric precursors. Langmuir 31, 5767–5778 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    T. Hoare, R. Pelton, Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20, 2123–2133 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    G.R. Hendrickson, L.A. Lyon, Microgel translocation through pores under confinement. Angew. Chem. Int. Ed. 49, 2193–2197 (2010)CrossRefGoogle Scholar
  130. 130.
    K. Gries, K. Bubel, M. Wohlfahrt, S. Agarwal, U. Koert, A. Greiner, Preparation of gold nanoparticle-poly(L-menthyl methacrylate) conjugates via ATRP polymerization. Macromol. Chem. Phys. 212, 2551–2557 (2011)CrossRefGoogle Scholar
  131. 131.
    H. Kirsebom, I.Y. Galaev, B. Mattiasson, Stimuli-responsive polymers in the 21st century: Elaborated architecture to achieve high sensitivity, fast response, and robust behavior. J. Polym. Sci. Part B: Polym. Phys. 49, 173–178 (2011)CrossRefGoogle Scholar
  132. 132.
    K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization. Mater. Today 8, 26–33 (2005)CrossRefGoogle Scholar
  133. 133.
    S. Förster, M. Zisenis, E. Wenz, M. Antonietti, Micellization of strongly segregated block copolymers. J. Chem. Phys. 104, 9956–9970 (1996)CrossRefGoogle Scholar
  134. 134.
    M. Yokoyama, Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 7, 145–158 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 64, 37–48 (2012)CrossRefGoogle Scholar
  136. 136.
    K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    A.W. York, S.E. Kirkland, C.L. McCormick, Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1018–1036 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Y. Wu, K. Sefah, H. Liu, R. Wang, W. Tan, DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc. Natl. Acad. Sci. U. S. A. 107, 5–10 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res. 24, 1029–1046 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    N. Rapoport, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962–990 (2007)CrossRefGoogle Scholar
  143. 143.
    S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126, 187–204 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Z. Ge, S. Liu, Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 42, 7289–7325 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    G. Liu, R. Ma, J. Ren, Z. Li, H. Zhang, Z. Zhang, Y. An, L. Shi, A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter 9, 1636–1644 (2013)CrossRefGoogle Scholar
  147. 147.
    Q. Zhang, N.R. Ko, J.K. Oh, Recent advances in stimuli-responsive degradable block copolymer micelles: Synthesis and controlled drug delivery applications. Chem. Commun. 48, 7542–7552 (2012)CrossRefGoogle Scholar
  148. 148.
    B. Khorsand, G. Lapointe, C. Brett, J.K. Oh, Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules 14, 2103–2111 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    L. Zhang, W. Liu, L. Lin, D. Chen, M.H. Stenzel, Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules 9, 3321–3331 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    C.F. van Nostrum, Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 7, 3246–3259 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.EcoSynthetixBurlingtonCanada

Personalised recommendations