Advertisement

Stimuli-Responsive Polymers

  • Emily T. Baldwin
  • Laura A. Wells
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Stimuli-responsive polymers undergo a change in their physical properties in response to a given physical or biological stimulus. In biomedical applications, a physician could use an external stimulus, such as light, to promote a change in a device. Alternatively, the microenvironment surrounding an implant could provide a natural, internal stimulus, such as a change in pH or the increased concentration of an enzyme, to promote changes in a device. This chapter focuses on the biomedical applications of polymers that respond to the physical stimuli temperature, pH, and light and polymers that respond to the biological stimuli glucose, enzymes, and other proteins.

References

  1. 1.
    D. Schmaljohann, Thermo- and pH- responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah, Phase-transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980)CrossRefGoogle Scholar
  3. 3.
    H.G. Schild, Poly (N-isopropylacrylamide) – experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992)CrossRefGoogle Scholar
  4. 4.
    H.E. Canavan, X.H. Cheng, D.J. Graham, B.D. Ratner, D.G. Castner, Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. A 75A, 1–13 (2005)CrossRefGoogle Scholar
  5. 5.
    M.A. Cooperstein, P.A.H. Nguyen, H.E. Canavan, Poly(N-isopropyl acrylamide)-coated surfaces: investigation of the mechanism of cell detachment. Biointerphases 12, 02C401 (2017)CrossRefPubMedGoogle Scholar
  6. 6.
    T. Hoare, R. Pelton, Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 24, 1005–1012 (2008)CrossRefPubMedGoogle Scholar
  7. 7.
    W. Leobandung, H. Ichikawa, Y. Fukumori, N.A. Peppas, Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J. Control. Release 80, 357–363 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    S.D. Fitzpatrick, M.A.J. Mazumder, F. Lasowski, L.E. Fitzpatrick, H. Sheardown, PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules 11, 2261–2267 (2010)CrossRefPubMedGoogle Scholar
  9. 9.
    M. Patenaude, T. Hoare, Injectable, degradable thermoresponsive poly(N-isopropylacrylamide) hydrogels. ACS Macro Lett. 1, 409–413 (2012)CrossRefGoogle Scholar
  10. 10.
    J.Q. Gan, X.X. Guan, J. Zheng, H.L. Guo, K. Wu, L.Y. Liang, M.G. Lu, Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Adv. 6, 32967–32978 (2016)CrossRefGoogle Scholar
  11. 11.
    S.D. Fitzpatrick, M.A.J. Mazumder, B. Muirhead, H. Sheardown, Development of injectable, resorbable drug-releasing copolymer scaffolds for minimally invasive sustained ophthalmic therapeutics. Acta Biomater. 8, 2517–2528 (2012)CrossRefPubMedGoogle Scholar
  12. 12.
    M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. Rep. 93, 1–49 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    J.J. Escobar-Chavez, M. Lopez-Cervantes, A. Naik, Y.N. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 9, 339–358 (2006)PubMedGoogle Scholar
  14. 14.
    C. Charrueau, C. Tuleu, V. Astre, J.L. Grossiord, J.C. Chaumeil, Poloxamer 407 as a thermogelling and adhesive polymer for rectal administration of short-chain fatty acids. Drug Dev. Ind. Pharm. 27, 351–357 (2001)CrossRefPubMedGoogle Scholar
  15. 15.
    N. Sarkar, Thermal gelation properties of methy and hydroxypropyl methylcellulose. J. Appl. Polym. Sci. 24, 1073–1087 (1979)CrossRefGoogle Scholar
  16. 16.
    M.D. Baumann, C.E. Kang, J.C. Stanwick, Y.F. Wang, H. Kim, Y. Lapitsky, M.S. Shoichet, An injectable drug delivery platform for sustained combination therapy. J. Control. Release 138, 205–213 (2009)CrossRefPubMedGoogle Scholar
  17. 17.
    M.J. Caicco, T. Zahir, A.J. Mothe, B.G. Ballios, A.J. Kihm, C.H. Tator, M.S. Shoichet, Characterization of hyaluronan-methylcellulose hydrogels for cell delivery to the injured spinal cord. J. Biomed. Mater. Res. A 101, 1472–1477 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    M. Kanamala, W.R. Wilson, M.M. Yang, B.D. Palmer, Z.M. Wu, Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016)CrossRefGoogle Scholar
  19. 19.
    A.M. Lowman, N.A. Peppas, Analysis of the complexation/decomplexation phenomena in graft copolymer networks. Macromolecules 30, 4959–4965 (1997)CrossRefGoogle Scholar
  20. 20.
    J.E. Lopez, N.A. Peppas, Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles. Drug Dev. Ind. Pharm. 30, 497–504 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    K. Nakamura, R.J. Murray, J.I. Joseph, N.A. Peppas, M. Morishita, A.M. Lowman, Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Control. Release 95, 589–599 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    A. Shalviri, G. Raval, P. Prasad, C. Chan, Q. Liu, H. Heerklotz, A.M. Rauth, X.Y. Wu, pH-dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur. J. Pharm. Biopharm. 82, 587–597 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    S.Z. Khaled, A. Cevenini, I.K. Yazdi, A. Parodi, M. Evangelopoulos, C. Corbo, S. Scaria, Y. Hu, S.G. Haddix, B. Corradetti, F. Salvatore, E. Tasciotti, One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials 87, 57–68 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    S.J. Sonawane, R.S. Kalhapure, T. Govender, Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci. 99, 45–65 (2017)CrossRefPubMedGoogle Scholar
  25. 25.
    P. Chytil, T. Etrych, J. Kriz, V. Subr, K. Ulbrich, N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 41, 473–482 (2010)CrossRefPubMedGoogle Scholar
  26. 26.
    S. Jevsevar, M. Kunstelj, V.G. Porekar, PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    R.P. Tang, W.H. Ji, D. Panus, R.N. Palumbo, C. Wang, Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells. J. Control. Release 151, 18–27 (2011)CrossRefPubMedGoogle Scholar
  28. 28.
    T. Yoshida, T.C. Lai, G.S. Kwon, K. Sako, pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv. 10, 1497–1513 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    M. Kaur, A.K. Srivastava, Photopolymerization: a review. J. Macromol. Sci. Polym. Rev. C42, 481–512 (2002)CrossRefGoogle Scholar
  30. 30.
    S. Deshayes, A.M. Kasko, Polymeric biomaterials with engineered degradation. J. Polym. Sci. A Polym. Chem. 51, 3531–3566 (2013)CrossRefGoogle Scholar
  31. 31.
    A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    W. Yuan, G. Jiang, J. Wang, G. Wang, Y. Song, L. Jiang, Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer. Macromolecules 39, 1300–1303 (2006)CrossRefGoogle Scholar
  33. 33.
    C. Decker, C. Bianchi, Photocrosslinking of a maleimide functionalized polymethacrylate. Polym. Int. 52, 722–732 (2003)CrossRefGoogle Scholar
  34. 34.
    T. Ishigama, T. Murata, T. Endo, The solution photodimerization of (E)-p-nitrocinnamates. Bull. Chem. Soc. Jpn. 49, 3578–3583 (1976)CrossRefGoogle Scholar
  35. 35.
    F.D. Greene, S.L. Misrock, J.R. Wolfe Jr., The structure of anthracene photodimers. J. Am. Chem. Soc. 77, 3852–3855 (1955)CrossRefGoogle Scholar
  36. 36.
    L.A. Wells, M.A. Brook, H. Sheardown, Generic, anthracene-based hydrogel crosslinkers for photo-controllable drug delivery. Macromol. Biosci. 11, 988–998 (2011)CrossRefPubMedGoogle Scholar
  37. 37.
    L.A. Wells, S. Furukawa, H. Sheardown, Photoresponsive PEG-anthracene grafted hyaluronan as a controlled-delivery biomaterial. Biomacromolecules 12, 923–932 (2011)CrossRefPubMedGoogle Scholar
  38. 38.
    L.A. Wells, H. Sheardown, Photosensitive controlled release with polyethylene glycol-anthracene modified alginate. Eur. J. Pharm. Biopharm. 79, 304–313 (2011)CrossRefPubMedGoogle Scholar
  39. 39.
    Y. Zheng, M. Micic, S.V. Mello, M. Mabrouki, F.M. Andreopoulos, V. Konka, S.M. Pham, R.M. Leblanc, PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002)CrossRefGoogle Scholar
  40. 40.
    M. Coursan, J.P. Desvergne, Reversible photodimerization of w-anthrylpolystyrenes. Macromol. Chem. Phys. 197, 1599–1608 (1996)CrossRefGoogle Scholar
  41. 41.
    J. Manhart, S. Ayalur-Karunakaran, S. Radl, A. Oesterreicher, A. Moser, C. Ganser, C. Teichert, G. Pinter, W. Kern, T. Griesser, S. Schlogl, Design and application of photo-reversible elastomer networks by using the 4 pi s+4 pi s cycloaddition reaction of pendant anthracene groups. Polymer 102, 10–20 (2016)CrossRefGoogle Scholar
  42. 42.
    S.V. Radl, M. Roth, M. Gassner, A. Wolfberger, A. Lang, B. Hirschmann, G. Trimmel, W. Kern, T. Griesser, Photo-induced crosslinking and thermal de-crosslinking in polynorbornenes bearing pendant anthracene groups. Eur. Poylm. J. 52, 98–104 (2014)CrossRefGoogle Scholar
  43. 43.
    F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Photoswitchable PEG-CA hydrogels and factors that affect their photosensitivity. J. Polym. Sci. A Polym. Chem. 38, 1466–1476 (2000)CrossRefGoogle Scholar
  44. 44.
    F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)CrossRefPubMedGoogle Scholar
  45. 45.
    F.M. Andreopoulos, C.R. Deible, M.T. Stauffer, S.G. Weber, W.R. Wagner, E.J. Backman, A.J. Russell, Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiator. J. Am. Chem. Soc. 118, 6235–6240 (1996)CrossRefGoogle Scholar
  46. 46.
    F.M. Andreopoulos, M.J. Roberts, M.D. Bentley, J.M. Harris, E.J. Beckman, A.J. Russell, Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel. Biotechnol. Bioeng. 65, 579–588 (1999)CrossRefPubMedGoogle Scholar
  47. 47.
    M. Micic, Y. Zheng, V. Moy, X.H. Zhang, M. Andreopolous, R.M. Leblanc, Comparative studies of surface topography and mechanical properties of a new, photo-switchable PEG-based hydrogel. Colloids Surf. B: Biointerfaces 27, 147–158 (2002)CrossRefGoogle Scholar
  48. 48.
    Y. Zheng, F.M. Andreopoulos, M. Micic, Q. Huo, S.M. Pham, R.M. Leblanc, A novel photoscissile poly(ethylene glycol)-based hydrogel. Adv. Funct. Mater. 11, 37–40 (2001)CrossRefGoogle Scholar
  49. 49.
    F.M. Andreopoulos, I. Persaud, Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials 27, 2468–2476 (2006)CrossRefPubMedGoogle Scholar
  50. 50.
    S. Sirpal, K.M. Gattas-Asfura, R.M. Leblanc, A photodimerization approach to crosslink and functionalize microgels. Colloids Surf. B: Biointerfaces 58, 116–120 (2007)CrossRefPubMedGoogle Scholar
  51. 51.
    K.M. Gattas-Asfura, E. Weisman, F.M. Andreopoulos, M. Micic, B. Muller, S. Sirpal, S.M. Pham, R.M. Leblanc, Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 6, 1503–1509 (2005)CrossRefPubMedGoogle Scholar
  52. 52.
    S. Deshmukh, L. Bromberg, K.A. Smith, T.A. Hatton, Photoresponsive behavior of amphiphilic copolymers of azobenzene and N,N-dimethylacrylamide in aqueous solutions. Langmuir 25, 3459–3466 (2009)CrossRefPubMedGoogle Scholar
  53. 53.
    J.J. Zhang, W.J. Ma, X.P. He, H. Tian, Taking orders from light: photo-switchable working/inactive smart surfaces for protein and cell adhesion. ACS Appl. Mater. Interfaces 9, 8498–8507 (2017)CrossRefPubMedGoogle Scholar
  54. 54.
    R. Micheletto, M. Yokokawa, M. Schroeder, D. Hobara, Y. Ding, T. Kakiuchi, Real time observation of trans-cis isomerization on azobenzene SAM induced by optical near field enhancement. Appl. Surf. Sci. 228, 265–270 (2004)CrossRefGoogle Scholar
  55. 55.
    A.M. Rosales, K.M. Mabry, E.M. Nehls, K.S. Anseth, Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    R.V. Ulijn, N. Bibi, V. Jayawarna, P.D. Thornton, S.J. Todd, R.J. Mart, A.M. Smith, J.E. Gough, Bioresponsive hydrogels. Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  57. 57.
    W. Wu, S. Zhou, Responsive materials for self-regulated insulin delivery. Macromol. Biosci. 13, 1464–1477 (2013)CrossRefPubMedGoogle Scholar
  58. 58.
    K. Zhang, X.Y. Wu, Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release 80, 169–178 (2002)CrossRefPubMedGoogle Scholar
  59. 59.
    T. Traitel, Y. Cohen, J. Kost, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials 21, 1679–1687 (2000)CrossRefPubMedGoogle Scholar
  60. 60.
    J. Kost, T.A. Horbett, B.D. Ratner, M. Singh, Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. J. Biomed. Mater. Res. 19, 1117–1133 (1985)CrossRefPubMedGoogle Scholar
  61. 61.
    K. Podual, F.J. Doyle, N.A. Peppas, Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase. Polymer 41, 3975–3983 (2000)CrossRefGoogle Scholar
  62. 62.
    S.I. Kang, Y.H. Bae, A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86, 115–121 (2003)CrossRefPubMedGoogle Scholar
  63. 63.
    R. Yin, Z. Tong, D. Yang, J. Nie, Glucose and pH dual-responsive concanavalin A based microhydrogels for insulin delivery. Int. J. Biol. Macromol. 49, 1137–1142 (2011)CrossRefPubMedGoogle Scholar
  64. 64.
    R. Yin, K. Wang, S. Du, L. Chen, J. Nie, W. Zhang, Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydr. Polym. 103, 369–376 (2014)CrossRefPubMedGoogle Scholar
  65. 65.
    A.A. Obaidat, K. Park, Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18, 801–806 (1997)CrossRefPubMedGoogle Scholar
  66. 66.
    A. Matsumoto, S. Ikeda, A. Harada, K. Kataoka, Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4, 1410–1416 (2003)CrossRefPubMedGoogle Scholar
  67. 67.
    V. Lapeyre, I. Gosse, S. Chevreux, V. Ravaine, Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules 7, 3356–3363 (2006)CrossRefPubMedGoogle Scholar
  68. 68.
    Y. Zhang, Y. Guan, S. Zhou, Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules 7, 3196–3201 (2006)CrossRefPubMedGoogle Scholar
  69. 69.
    K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, Y. Sakurai, Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 120, 12694–12695 (1998)CrossRefGoogle Scholar
  70. 70.
    L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)CrossRefGoogle Scholar
  71. 71.
    A. Banerjee, K. Chatterjee, G. Madras, Enzymatic degradation of polymers: a brief review. J. Mater. Sci. Technol. 30, 567–573 (2014)CrossRefGoogle Scholar
  72. 72.
    E. Ozsagiroglu, B. Iyisan, Y.A. Guvenilir, Biodegradation and characterization studies of different kinds of polyurethanes with several enzyme solutions. Pol. J. Environ. Stud. 21, 1777–1782 (2012)Google Scholar
  73. 73.
    S. Cai, Y. Liu, X. Zheng Shu, G.D. Prestwich, Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26, 6054–6067 (2005)CrossRefPubMedGoogle Scholar
  74. 74.
    A.M. Gajria, V. Davé, R.A. Gross, S.P. McCarthy, Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37, 437–444 (1996)CrossRefGoogle Scholar
  75. 75.
    D. Bacinello, E. Garanger, D. Taton, K.C. Tam, S. Lecommandoux, Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids. Biomacromolecules 15, 1882–1888 (2014)CrossRefPubMedGoogle Scholar
  76. 76.
    S. Kim, E.H. Chung, M. Gilbert, K.E. Healy, Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co- acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J. Biomed. Mater. Res. A 75, 73–88 (2005)CrossRefPubMedGoogle Scholar
  77. 77.
    S. Kim, K.E. Healy, Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4, 1214–1223 (2003)CrossRefPubMedGoogle Scholar
  78. 78.
    V.K. Garripelli, J.K. Kim, S. Son, W.J. Kim, M.A. Repka, S. Jo, Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater. 7, 1984–1992 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    B.F. Sloane, K. Moin, E. Krepela, J. Rozhin, Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev. 9, 333–352 (1990)CrossRefPubMedGoogle Scholar
  80. 80.
    C.S. Gondi, J.S. Rao, Cathepsin B as a cancer target. Expert Opin. Ther. Targets 17, 281–291 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    D.S.H. Chu, R.N. Johnson, S.H. Pun, Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release. J. Control. Release 157, 445–454 (2012)CrossRefPubMedGoogle Scholar
  82. 82.
    N. Hamaguchi, A. Ellington, M. Stanton, Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001)CrossRefPubMedGoogle Scholar
  83. 83.
    G. Mayer, M.S.L. Ahmed, A. Dolf, E. Endl, P.A. Knolle, M. Famulok, Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 5, 1993–2004 (2010)CrossRefPubMedGoogle Scholar
  84. 84.
    W. Tan, H. Wang, Y. Chen, X. Zhang, H. Zhu, C. Yang, R. Yang, C. Liu, Molecular aptamers for drug delivery. Trends Biotechnol. 29, 634–640 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    E. Mastronardi, A. Foster, X. Zhang, M.C. DeRosa, Smart materials based on DNA aptamers: taking aptasensing to the next level. Sensors 14, 3156–3171 (2014)CrossRefPubMedGoogle Scholar
  86. 86.
    J. Zhou, M.R. Battig, Y. Wang, Aptamer-based molecular recognition for biosensor development. Anal. Bioanal. Chem. 398, 2471–2480 (2010)CrossRefPubMedGoogle Scholar
  87. 87.
    K. Sefah, J.A. Phillips, X. Xiong, L. Meng, D. Van Simaeys, H. Chen, J. Martin, W. Tan, Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 134, 1765–1775 (2009)CrossRefPubMedGoogle Scholar
  88. 88.
    Z. Zhu, C. Wu, H. Liu, Y. Zou, X. Zhang, H. Kang, C.J. Yang, W. Tan, An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew. Chem. Int. Ed. Eng. 49, 1052–1056 (2010)CrossRefGoogle Scholar
  89. 89.
    H. Yang, H. Liu, H. Kang, W. Tan, Engineering target-responsive hydrogels based on aptamer – target interactions. J. Am. Chem. Soc. 130, 6320–6321 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    M.R. Battig, B. Soontornworajit, Y. Wang, Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J. Am. Chem. Soc. 134, 12410–12413 (2012)CrossRefPubMedGoogle Scholar
  91. 91.
    F. El-Hamed, N. Dave, J. Liu, Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology 22, 494011 (2011)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations