Advertisement

Endophytes as a Source of High-Value, Bioactive Metabolites

  • Nitika Kapoor
  • Vijay Lakshmi Jamwal
  • Sumit G. GandhiEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Endophytes, microbes that reside within plants, are capable of producing high-value bioactive metabolites with diverse biological activities such as antimicrobial, insecticidal, antidiabetic, antioxidant, anticancer, etc. Endophytes thus represent a subset of microbes that reside in unique niches and, if explored properly, may prove to be a reservoir of bioactive principles. Despite this, less than 5% of total plant diversity has been screened for its endophyte content. Moreover, detailed examination of natural products and their bioactivities have been carried out for even lesser number of endophytes. Further, genome sequencing of several microbes has revealed that the potential of microbes to produce secondary metabolites has been substantially underestimated because many of the secondary metabolite biosynthetic gene clusters are silent under standard laboratory growth conditions. This chapter provides an overview of microbial natural products that have been isolated from endophytes and discusses the above issues and possible mitigation strategies.

Keywords

Anticancer Antidiabetic Antimicrobial Antioxidant BGC Bioactivity Biosynthetic gene cluster Cryptic gene cluster Silent gene cluster Secondary metabolite 

References

  1. 1.
    Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bérdy J (2005) Bioactive microbial metabolites. J Antibiotics 58(1):1CrossRefGoogle Scholar
  3. 3.
    Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiotics 62(1):5CrossRefGoogle Scholar
  4. 4.
    Verdine GL (1996) The combinatorial chemistry of nature. Nature 384(6604):11–13PubMedCrossRefGoogle Scholar
  5. 5.
    Bary A (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. W. Engelmann, LeipzigCrossRefGoogle Scholar
  6. 6.
    Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49(4):229–232CrossRefGoogle Scholar
  7. 7.
    Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97(22):9589–9596PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43(3):1174–1182PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014(ArticleID 250693):1–11CrossRefGoogle Scholar
  11. 11.
    Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Am J Biochem Mol Biol 1:291–309CrossRefGoogle Scholar
  12. 12.
    Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940CrossRefGoogle Scholar
  13. 13.
    Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581–1581PubMedCrossRefGoogle Scholar
  14. 14.
    Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wang J-l, Li T, Liu G-y, Smith JM, Zhao Z-w (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bao X, Roossinck MJ (2013) Multiplexed interactions: viruses of endophytic fungi. In: Advances in virus research. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sun H, He Y, Xiao Q, Ye R, Tian Y (2013) Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr J Microbiol Res 7(16):1496–1504CrossRefGoogle Scholar
  19. 19.
    Rodriguez R, White J Jr, Arnold A, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330PubMedCrossRefGoogle Scholar
  20. 20.
    Mostert L, Crous P, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52(1):46–58Google Scholar
  21. 21.
    Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New YorkGoogle Scholar
  22. 22.
    Saikkonen K, Faeth SH, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343CrossRefGoogle Scholar
  23. 23.
    Schardl CL, Liu J-S, White JF, Finkel RA, An Z, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178(1–2):27–41CrossRefGoogle Scholar
  24. 24.
    Owen NL, Hundley N (2004) Endophytes–the chemical synthesizers inside plants. Sci Prog 87(2):79–99PubMedCrossRefGoogle Scholar
  25. 25.
    Parthasarathi S, Sathya S, Bupesh G, Samy RD, Mohan MR, Kumar GS, Manikandan M, Kim C, Balakrishnan K (2012) Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopicus BDUS 49. World J Fish Mar Sci 4(3):268–277Google Scholar
  26. 26.
    Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7–8):483–495CrossRefGoogle Scholar
  27. 27.
    Kumara PM, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Shaanker RU (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329CrossRefGoogle Scholar
  28. 28.
    Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72(1):2–7CrossRefGoogle Scholar
  29. 29.
    Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28(7):1203–1207PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004CrossRefGoogle Scholar
  32. 32.
    Jalgaonwala RE, Mohite BV, Mahajan RT (2017) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32Google Scholar
  33. 33.
    Pimental MR, Molina G, Dionisio AP, Marostica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011(ArticleID 576286):1–11Google Scholar
  34. 34.
    Omojate Godstime C, Enwa Felix O, Jewo Augustina O, Eze Christopher O (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens – a review. J Pharm Chem Biol Sci 2(2):77–85Google Scholar
  35. 35.
    Ding L, Münch J, Goerls H, Maier A, Fiebig H-H, Lin W-H, Hertweck C (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 20(22):6685–6687PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Horn W, Simmonds M, Schwartz R, Blaney W (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51(14):3969–3978CrossRefGoogle Scholar
  37. 37.
    Zou W, Meng J, Lu H, Chen G, Shi G, Zhang T, Tan R (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63(11):1529–1530PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li J, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. q uercina. Org Lett 2(6):767–770PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess W (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Li H-Q, Li X-J, Wang Y-L, Zhang Q, Zhang A-L, Gao J-M, Zhang X-C (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Syst Ecol 4(39):876–879CrossRefGoogle Scholar
  41. 41.
    Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151(1):67–73CrossRefGoogle Scholar
  42. 42.
    Gu W (2009) Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana. World J Microbiol Biotechnol 25(9):1677CrossRefGoogle Scholar
  43. 43.
    Silva GH, de Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DH, Bolzani VS, Young MC, Costa-Neto CM, Pfenning LH (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3(3):164–167CrossRefGoogle Scholar
  44. 44.
    Koshino H, Togiya S, Terada S, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A (1989) New fungitoxic sesquiterpenoids, chokols AG, from stromata of Epichloe typhina [invade timothy, Phleum pratense] and the absolute configuration of chokol E. Agric Biol Chem (Jpn) 53(3):789–796CrossRefGoogle Scholar
  45. 45.
    Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147(11):2943–2950PubMedCrossRefGoogle Scholar
  46. 46.
    Strobel G (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33(7):514PubMedCrossRefGoogle Scholar
  47. 47.
    Snipes CE, Duebelbeis DO, Olson M, Hahn DR, Dent Iii WH, Gilbert JR, Werk TL, Davis GE, Lee-Lu R, Graupner PR (2007) The ansacarbamitocins: polar ansamitocin derivatives. J Nat Prod 70(10):1578–1581PubMedCrossRefGoogle Scholar
  48. 48.
    Kupchan SM, Komoda Y, Court W, Thomas G, Smith R, Karim A, Gilmore C, Haltiwanger R, Bryan R (1972) Tumor inhibitors. LXXIII. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94(4):1354–1356PubMedCrossRefGoogle Scholar
  49. 49.
    Powell RG, Smith CR (1980) Antitumor agents from higher plants. In: The resource potential in phytochemistry. Springer, New YorkGoogle Scholar
  50. 50.
    Igarashi Y, Yanase S, Sugimoto K, Enomoto M, Miyanaga S, Trujillo ME, Saiki I, Kuwahara S, Lupinacidin C (2011) An inhibitor of tumor cell invasion from Micromonospora lupini. J Nat Prod 74(4):862–865PubMedCrossRefGoogle Scholar
  51. 51.
    Kim N, Shin JC, Kim W, Hwang BY, Kim BS, Hong Y-S, Lee D (2006) Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J Antibiotics 59(12):797CrossRefGoogle Scholar
  52. 52.
    Igarashi Y, S-s M, Fujita T, Furumai T (2006) Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiotics 59(3):193CrossRefGoogle Scholar
  53. 53.
    Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Li J, Lu C, Shen Y (2010) Macrolides of the bafilomycin family produced by Streptomyces sp. CS. J Antibiot 63(10):595PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Joshi RD, Kulkarni NS (2016) Optimization studies on L-asparaginase production from endophytic bacteria. IJAR 2(3):624–629Google Scholar
  56. 56.
    Egler RA, Ahuja SP, Matloub Y (2016) L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother 7(2):62PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    van der Sar SA, Blunt JW, Munro MH (2006) Spiro-Mamakone A: a unique relative of the spirobisnaphthalene class of compounds. Org Lett 8(10):2059–2061PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Liu S, Dai H, Makhloufi G, Heering C, Janiak C, Hartmann R, Mándi A, Kurtán T, Müller WE, Kassack MU (2016) Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus, Pestalotiopsis microspora. J Nat Prod 79(9):2332–2340PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mandavid H, Rodrigues AM, Espindola LS, Vr E, Stien D (2015) Secondary metabolites isolated from the Amazonian endophytic fungus Diaporthe sp. SNB-GSS10. J Nat Prod 78(7):1735–1739PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Organic Chem 61(10):3232–3233CrossRefGoogle Scholar
  61. 61.
    Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105(2):548–554CrossRefGoogle Scholar
  62. 62.
    Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59(14):2471–2476CrossRefGoogle Scholar
  63. 63.
    Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60(2):179–183CrossRefGoogle Scholar
  64. 64.
    Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res 28(4):265–267PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Jasmine DJ, Agastian P (2013) In vitro antioxidant activity and in vivo alpha glucosidase activity of endophytic actinomycetes isolated from Catharanthus roseus (l.) G. Don. J Pharm Res 6(6):674–678Google Scholar
  66. 66.
    Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D, Dı́ez MT, Pelaez F, Ruby C (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284(5416):974–977PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Savi DC, Shaaban KA, Vargas N, Ponomareva LV, Possiede YM, Thorson JS, Glienke C, Rohr J (2015) Microbispora sp. LGMB259 endophytic actinomycete isolated from Vochysia divergens (Pantanal, Brazil) producing β-carbolines and indoles with biological activity. Curr Microbiol 70(3):345–354PubMedCrossRefGoogle Scholar
  68. 68.
    Irawan D (2009) Isolation of endophytic actinomycetes in medicinal plants and their potency as an antidiabetes based on α-glucosidase activity, IPB Scient Repos – Bogor Agricultural UniversityGoogle Scholar
  69. 69.
    Pujiyanto S, Lestari Y, Suwanto A, Budiarti S, Darusman LK (2012) Alpha-glucosidase inhibitor activity and characterization of endophytic actinomycetes isolated from some Indonesian diabetic medicinal plants. Int J Pharm Pharm Sci 4(1):327–333Google Scholar
  70. 70.
    Christhudas IN, Kumar PP, Agastian P (2013) In Vitro α-Glucosidase inhibition and antioxidative potential of an endophyte species (Streptomyces sp. Loyola UGC) isolated from Datura stramonium L. Curr Microbiol 67(1):69–76CrossRefGoogle Scholar
  71. 71.
    Smith MM, Warren VA, Thomas BS, Brochu RM, Ertel EA, Rohrer S, Schaeffer J, Schmatz D, Petuch BR, Tang YS (2000) Nodulisporic acid opens insect glutamate-gated chloride channels: identification of a new high affinity modulator. Biochemistry 39(18):5543–5554PubMedCrossRefGoogle Scholar
  72. 72.
    Webber J (1981) A natural biological control of Dutch elm disease. Nature 292(5822):449CrossRefGoogle Scholar
  73. 73.
    Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148(11):3737–3741PubMedCrossRefGoogle Scholar
  74. 74.
    VanderMolen KM, Raja HA, El-Elimat T, Oberlies NH (2013) Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express 3(1):71PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zahn JA Scale-up and optimization of natural product fermentation processes using mass-guided metabolite fingerprinting. Adv Biotech & Micro 3(AIBM.MS.ID.555614):1–8Google Scholar
  76. 76.
    Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79PubMedCrossRefGoogle Scholar
  77. 77.
    Lertcanawanichakul M, Sawangnop S (2011) A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J Sci Technol (WJST) 5(2):161–171Google Scholar
  78. 78.
    Nijs A, Cartuyvels R, Mewis A, Peeters V, Rummens J, Magerman K (2003) Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility systems in the clinical microbiology laboratory. J Clin Microbiol 41(8):3627–3630PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hausdorfer J, Sompek E, Allerberger F, Dierich M, Rüsch-Gerdes S (1998) E-test for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberculosis Lung Dis 2(9):751–755Google Scholar
  80. 80.
    Pfaller M, Sheehan D, Rex J (2004) Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev 17(2):268–280PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Pore R (1994) Antibiotic susceptibility testing by flow cytometry. J Antimicrob Chemother 34(5):613–627PubMedCrossRefGoogle Scholar
  82. 82.
    Ramani R, Chaturvedi V (2000) Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test. Antimicrob Agents Chemother 44(10):2752–2758PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Peyron F, Favel A, Guiraud-Dauriac H, El Mzibri M, Chastin C, Dumenil G, Regli P (1997) Evaluation of a flow cytofluorometric method for rapid determination of amphotericin B susceptibility of yeast isolates. Antimicrob Agents Chemother 41(7):1537–1540PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hadjigogos K (2003) The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med 45(1):7–13PubMedGoogle Scholar
  86. 86.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Xue D, Slivka A, Buchan AM (1992) Tirilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 23(6):894–899PubMedCrossRefGoogle Scholar
  88. 88.
    Green AR, Ashwood T, Odergren T, Jackson DM (2003) Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol Ther 100(3):195–214PubMedCrossRefGoogle Scholar
  89. 89.
    Bath P, Gray L, Bath A, Buchan A, Miyata T, Green A (2009) Effects of NXY-059 in experimental stroke: an individual animal meta-analysis. Br J Pharmacol 157(7):1157–1171PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Committee TIS (2001) Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev 4Google Scholar
  91. 91.
    Hipol RM, Magtoto LM, Tamang SMA, Damatac AM II (2014) Antioxidant activities of fungal endophytes isolated from strawberry Fragaria × ananassa fruit. Electronic J Biol 10(4):107–112Google Scholar
  92. 92.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237PubMedCrossRefGoogle Scholar
  93. 93.
    McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055PubMedGoogle Scholar
  94. 94.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMedCrossRefGoogle Scholar
  95. 95.
    Yamaki K, Mori Y (2006) Evaluation of a-glucosidase inhibitory activity in colored foods: a trial using slope factors of regression curves. J Jpn Soc Food Sci Technol – Nippon Shokuhin Kagaku Kogaku Kaishi 53(4):229–231CrossRefGoogle Scholar
  96. 96.
    Sunitha V, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213–1221PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Boyd MR, Paull KD (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 34(2):91–109CrossRefGoogle Scholar
  98. 98.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anti-Cancer Drugs 16(8):797–803PubMedCrossRefGoogle Scholar
  100. 100.
    Khan KH, Yap TA, Yan L, Cunningham D (2013) Targeting the PI3K-AKT-mTOR signaling network in cancer. Chinese J Cancer 32(5):253CrossRefGoogle Scholar
  101. 101.
    Shapiro GI, Harper JW (1999) Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 104(12):1645–1653PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wang L, Chen L, Yu M, Xu L-H, Cheng B, Lin Y-S, Gu Q, He X-H, Xu J (2016) Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays. Sci Rep 6:18987PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chuang C-H, Cheng T-C, Leu Y-L, Chuang K-H, Tzou S-C, Chen C-S (2015) Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int J Mol Sci 16(2):3202–3212PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wong C, Cheng K-W, Rigas B (2012) Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther 341(3):572–578PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hollingshead MG, Alley MC, Camalier RF, Abbott BJ, Mayo JG, Malspeis L, Grever MR (1995) In vivo cultivation of tumor cells in hollow fibers. Life Sci 57(2):131–141PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Mi Q, Pezzuto JM, Farnsworth NR, Wani MC, Kinghorn AD, Swanson SM (2009) Use of the in vivo hollow fiber assay in natural products anticancer drug discovery. J Nat Prod 72(3):573–580PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26(10):449–457PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132(8):2469–2493PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Valayil J (2016) Activation of microbial silent gene clusters: genomics driven drug discovery approaches. Biochem Anal Biochem 5:276Google Scholar
  111. 111.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(Suppl 2):W339–W346PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736–741PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Weber T, Rausch C, Lopez P, Hoof I, Gaykova V, Huson D, Wohlleben W (2009) CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol 140(1–2):13–17PubMedCrossRefGoogle Scholar
  114. 114.
    Wolf T, Shelest V, Nath N, Shelest E (2015) CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. Bioinformatics 32(8):1138–1143PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA (2011) FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol 48(4):353–358PubMedCrossRefGoogle Scholar
  116. 116.
    Burmester A, Shelest E, Glöckner G, Heddergott C, Schindler S, Staib P, Heidel A, Felder M, Petzold A, Szafranski K (2011) Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 12(1):R7PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    von Döhren H (2009) A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet Biol 46(1):S45–S52CrossRefGoogle Scholar
  118. 118.
    Romano S, Jackson SA, Patry S, Dobson AD (2018) Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Mar drugs 16(7):244–273PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44(4–5):573–588PubMedCrossRefGoogle Scholar
  120. 120.
    Challis GL (2014) Exploitation of the Streptomyces coelicolor A3 (2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41(2):219–232PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson N, James KD, Harris DE, Quail MA, Kieser H, Harper D (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885):141PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98(21):12215–12220PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, Team A, Shank EA, Bowers AA (2017) Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology. MSystems 2(6):e00040–e00017PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Morohoshi T, Fukamachi K, Kato M, Kato N, Ikeda T (2010) Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC 12472. Biosci Biotechnol Biochem 74(10):2116–2119PubMedCrossRefGoogle Scholar
  126. 126.
    Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21PubMedCrossRefGoogle Scholar
  127. 127.
    van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333PubMedCrossRefGoogle Scholar
  128. 128.
    Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13(8):509PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature's chemical diversity. ChemBioChem 3(7):619–627PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco A-M, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68(4):493–496PubMedCrossRefGoogle Scholar
  131. 131.
    Rateb ME, Houssen WE, Harrison WT, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R (2011) Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 74(9):1965–1971PubMedCrossRefGoogle Scholar
  132. 132.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455PubMedCrossRefGoogle Scholar
  133. 133.
    Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation – a powerful emerging tool for enhancing the chemical diversity of microorganisms. Marine Drug 12(2):1043–1065CrossRefGoogle Scholar
  134. 134.
    Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106(34):14558–14563CrossRefGoogle Scholar
  135. 135.
    Oh D-C, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70(4):515–520PubMedCrossRefGoogle Scholar
  136. 136.
    Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci 111(20):7266–7271 201400019PubMedCrossRefGoogle Scholar
  137. 137.
    Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27(5):462PubMedCrossRefGoogle Scholar
  138. 138.
    Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3(9):2716–2720CrossRefGoogle Scholar
  139. 139.
    Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6(11):1895–1897PubMedCrossRefGoogle Scholar
  140. 140.
    Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7(3):435–438PubMedCrossRefGoogle Scholar
  141. 141.
    Magotra A, Kumar M, Kushwaha M, Awasthi P, Raina C, Gupta AP, Shah BA, Gandhi SG, Chaubey A (2017) Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L. AMB Express 7(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wong KH, Todd RB, Oakley BR, Oakley CE, Hynes MJ, Davis MA (2008) Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genet Biol 45(5):728–737PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Szewczyk E, Chiang Y-M, Oakley CE, Davidson AD, Wang CC, Oakley BR (2008) Identification and characterization of the asperthecin gene cluster of Aspergillus nidulans. Appl Environ Microbiol 74(24):7607–7612PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sharma R, Jamwal V, Singh VP, Wazir P, Awasthi P, Singh D, Vishwakarma RA, Gandhi SG, Chaubey A (2017) Revelation and cloning of valinomycin synthetase genes in Streptomyces lavendulae ACR-DA1 and their expression analysis under different fermentation and elicitation conditions. J Biotechnol 253:40–47PubMedCrossRefGoogle Scholar
  145. 145.
    Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22CrossRefGoogle Scholar
  146. 146.
    Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem 124(46):11779–11783CrossRefGoogle Scholar
  147. 147.
    Biggins JB, Liu X, Feng Z, Brady SF (2011) Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J Am Chem Soc 133(6):1638–1641PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Chou WK, Fanizza I, Uchiyama T, Komatsu M, Ikeda H, Cane DE (2010) Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J Am Chem Soc 132(26):8850–8851PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, Van Der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci 103(46):17243–17248PubMedCrossRefGoogle Scholar
  150. 150.
    Lin X, Hopson R, Cane DE (2006) Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sesquiterpene synthase. J Am Chem Soc 128(18):6022–6023PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ (2013) Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8(7):e69319PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wu Q, Zhu L, Jiang L, Xu X, Xu Q, Zhang Z, Huang H (2015) Draft genome sequence of Paenibacillus dauci sp. nov., a carrot-associated endophytic actinobacteria. Genom Data 5:241–253PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Angolini CF, Gonçalves AB, Sigrist R, Paulo BS, Samborskyy M, Cruz PL, Vivian AF, Schmidt EM, Eberlin MN, Araújo WL (2016) Genome mining of endophytic Streptomyces wadayamensis reveals high antibiotic production capability. J Braz Chem Soc 27(8):1465–1475Google Scholar
  154. 154.
    Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 9(9):e108522PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Trujillo ME, Riesco R, Benito P, Carro L (2015) Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol 6:1341PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Xing K, Bian G-K, Qin S, Klenk H-P, Yuan B, Zhang Y-J, Li W-J, Jiang J-H (2012) Kibdelosporangium phytohabitans sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. containing 1-aminocyclopropane-1-carboxylic acid deaminase. Antonie Van Leeuwenhoek 101(2):433–441PubMedCrossRefGoogle Scholar
  157. 157.
    Remali J, Sarmin NIM, Ng CL, Tiong JJ, Aizat WM, Keong LK, Zin NM (2017) Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production. Peer J 5:e3738PubMedCrossRefGoogle Scholar
  158. 158.
    Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3 (2). J Biol Chem 283(13):8183–8189PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4(2):57CrossRefGoogle Scholar
  160. 160.
    Aanen DK, Henrik H, Debets AJ, Kerstes NA, Hoekstra RF, Boomsma JJ (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326(5956):1103–1106PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Beemelmanns C, Guo H, Rischer M, Poulsen M (2016) Natural products from microbes associated with insects. Beilstein J Org Chem 12:314PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Blin K, Kim HU, Medema MH, Weber T (2017) Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform 2017(bbx146):1–11Google Scholar
  163. 163.
    Luo Y, Huang H, Liang J, Wang M, Lu L, Shao Z, Cobb RE, Zhao H (2013) Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 4:2894PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang MM, Qiao Y, Ang EL, Zhao H (2017) Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discovery 12(5):475–487CrossRefGoogle Scholar
  165. 165.
    Kallifidas D, Kang H-S, Brady SF (2012) Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J Am Chem Soc 134(48):19552–19555PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Chang F-Y, Ternei MA, Calle PY, Brady SF (2013) Discovery and synthetic refactoring of tryptophan dimer gene clusters from the environment. J Am Chem Soc 135(47):17906–17912PubMedCrossRefGoogle Scholar
  167. 167.
    Ding L, Maier A, Fiebig HH, Görls H, Lin WH, Peschel G, Hertweck C (2011) Divergolides A–D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angew Chem Int Ed 123(7):1668–1672CrossRefGoogle Scholar
  168. 168.
    Inahashi Y, Iwatsuki M, Ishiyama A, Matsumoto A, Hirose T, Oshita J, Sunazuka T, Panbangred W, Takahashi Y, Kaiser M (2015) Actinoallolides A–E, new anti-trypanosomal macrolides, produced by an endophytic actinomycete, Actinoallomurus fulvus MK10-036. Org Lett 17(4):864–867PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang W, Krohn K, Flörke U, Pescitelli G, Di Bari L, Antus S, Kurtán T, Rheinheimer J, Draeger S, Schulz B (2008) New mono-and dimeric members of the secalonic acid family: blennolides A–G isolated from the fungus Blennoria sp. Chem Eur J 14(16):4913–4923PubMedCrossRefGoogle Scholar
  170. 170.
    Pontius A, Krick A, Kehraus S, Foegen SE, Müller M, Klimo K, Gerhäuser C, König GM (2008) Noduliprevenone: a novel heterodimeric chromanone with cancer chemopreventive potential. Chem Eur J 14(32):9860–9863PubMedCrossRefGoogle Scholar
  171. 171.
    Krohn K, Kouam SF, Kuigoua GM, Hussain H, Cludius-Brandt S, Flörke U, Kurtán T, Pescitelli G, Di Bari L, Draeger S (2009) Xanthones and Oxepino [2, 3-b] chromones from Three Endophytic Fungi. Chem Eur J 15(44):12121–12132PubMedCrossRefGoogle Scholar
  172. 172.
    Lösgen S, Magull J, Schulz B, Draeger S, Zeeck A (2008) Isofusidienols: novel chromone-3-oxepines produced by the endophytic fungus Chalara sp. Eur J Org Chem 2008(4):698–703CrossRefGoogle Scholar
  173. 173.
    Li C, Yang B, Fenstemacher R, Turkson J, Cao S (2015) Lycopodiellactone, an unusual δ-lactone-isochromanone from a Hawaiian plant-associated fungus Paraphaeosphaeria neglecta FT462. Tetrahedron Lett 56(13):1724–1727CrossRefGoogle Scholar
  174. 174.
    Liu Y, Ding G, Li Y, Qu J, Ma S, Lv H, Liu Y, Wang W, Dai J, Tang Y (2013) Structures and absolute configurations of penicillactones A–C from an endophytic microorganism, Penicillium dangeardii Pitt. Org Lett 15(20):5206–5209PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2008) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72(1):182–186CrossRefGoogle Scholar
  176. 176.
    Ge HM, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun 45:5978–5980Google Scholar
  177. 177.
    Zhang AH, Jiang N, Gu W, Ma J, Wang YR, Song YC, Tan RX (2010) Characterization, synthesis and self-aggregation of (−)-alternarlactam: a new fungal cytotoxin with cyclopentenone and isoquinolinone scaffolds. Chem Eur J 16(48):14479–14485PubMedCrossRefGoogle Scholar
  178. 178.
    Yang S-X, Xiao J, Laatsch H, Holstein JJ, Dittrich B, Zhang Q, Gao J-M (2012) Fusarimine, a novel polyketide isoquinoline alkaloid, from the endophytic fungus Fusarium sp. LN12, isolated from Melia azedarach. Tetrahedron Lett 53(47):6372–6375CrossRefGoogle Scholar
  179. 179.
    Cao P, Yang J, Miao C-P, Yan Y, Ma Y-T, Li X-N, Zhao L-X, Huang S-X (2015) New duclauxamide from Penicillium manginii YIM PH30375 and structure revision of the duclauxin family. Org Lett 17(5):1146–1149PubMedCrossRefGoogle Scholar
  180. 180.
    Yan Y, Ma Y-T, Yang J, Horsman GP, Luo D, Ji X, Huang S-X (2016) Tropolone ring construction in the biosynthesis of rubrolone B, a cationic tropolone alkaloid from endophytic Streptomyces. Org Lett 18(6):1254–1257PubMedCrossRefGoogle Scholar
  181. 181.
    Zhang HW, Huang WY, Chen JR, Yan WZ, Xie DQ, Tan RX (2008) Cephalosol: an antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB-E007. Chem Eur J 14(34):10670–10674PubMedCrossRefGoogle Scholar
  182. 182.
    Lhamo S, Wang X-B, Li T-X, Wang Y, Li Z-R, Shi Y-M, Yang M-H, Kong L-Y (2015) Three unusual indole diketopiperazine alkaloids from a terrestrial-derived endophytic fungus, Aspergillus sp. Tetrahedron Lett 56(21):2823–2826CrossRefGoogle Scholar
  183. 183.
    Zhang D, Ge H, Zou J-h, Tao X, Chen R, Dai J (2014) Periconianone A, a new 6/6/6 carbocyclic sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org Lett 16(5):1410–1413PubMedCrossRefGoogle Scholar
  184. 184.
    Pulici M, Sugawara F, Koshino H, Okada G, Esumi Y, Uzawa J, Yoshida S (1997) Metabolites of Pestalotiopsis spp., endophytic fungi of Taxus brevifolia. Phytochemistry 46(2):313–319CrossRefGoogle Scholar
  185. 185.
    Huang X, Huang H, Li H, Sun X, Huang H, Lu Y, Lin Y, Long Y, She Z (2013) Asperterpenoid A, a new sesterterpenoid as an inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B from the culture of Aspergillus sp. 16-5c. Org Lett 15(4):721–723PubMedCrossRefGoogle Scholar
  186. 186.
    Ze X, Huang H, Shao C, Xia X, Ma L, Huang X, Lu Y, Lin Y, Long Y, She Z (2013) Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungus Aspergillus sp. 085242. Org Lett 15(10):2522–2525CrossRefGoogle Scholar
  187. 187.
    Ding G, Wang H, Li L, Chen AJ, Chen L, Chen H, Zhang H, Liu X, Zou Z (2012) Trichoderones A and B: two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur J Org Chem 2012(13):2516–2519CrossRefGoogle Scholar
  188. 188.
    Ding G, Wang H, Li L, Song B, Chen H, Zhang H, Liu X, Zou Z (2014) Trichodermone, a spiro-cytochalasan with a tetracyclic nucleus (7/5/6/5) skeleton from the plant endophytic fungus Trichoderma gamsii. J Nat Prod 77(1):164–167PubMedCrossRefGoogle Scholar
  189. 189.
    Li C-S, Ding Y, Yang B-J, Miklossy G, Yin H-Q, Walker LA, Turkson J, Cao S (2015) A new metabolite with a unique 4-Pyranone− γ-Lactam–1, 4-Thiazine moiety from a hawaiian-plant associated fungus. Org Lett 17(14):3556–3559PubMedCrossRefGoogle Scholar
  190. 190.
    Gao S-S, Li X-M, Williams K, Proksch P, Ji N-Y, Wang B-G (2016) Rhizovarins A–F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J Nat Prod 79(8):2066–2074PubMedCrossRefGoogle Scholar
  191. 191.
    Ji N-Y, Liu X-H, Miao F-P, Qiao M-F (2013) Aspeverin, a new alkaloid from an algicolous strain of Aspergillus versicolor. Org Lett 15(10):2327–2329PubMedCrossRefGoogle Scholar
  192. 192.
    Zhang P, Mandi A, Li X-M, Du F-Y, Wang J-N, Li X, Kurtan T, Wang B-G (2014) Varioxepine A, a 3 H-oxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii. Org Lett 16(18):4834–4837PubMedCrossRefGoogle Scholar
  193. 193.
    Li C-S, Ren G, Yang B-J, Miklossy G, Turkson J, Fei P, Ding Y, Walker LA, Cao S (2016) Meroterpenoids with antiproliferative activity from a Hawaiian-plant associated fungus Peyronellaea coffeae-arabicae FT238. Org Lett 18(10):2335–2338PubMedCrossRefGoogle Scholar
  194. 194.
    Zhou M, Miao M-M, Du G, Li X-N, Shang S-Z, Zhao W, Liu Z-H, Yang G-Y, Che C-T, Hu Q-F (2014) Aspergillines A–E, highly oxygenated hexacyclic indole–tetrahydrofuran–tetramic acid derivatives from Aspergillus versicolor. Org Lett 16(19):5016–5019PubMedCrossRefGoogle Scholar
  195. 195.
    Yang L-J, Liao H-X, Bai M, Huang G-L, Luo Y-P, Niu Y-Y, Zheng C-J, Wang C-Y (2018) One new cytochalasin metabolite isolated from a mangrove-derived fungus Daldinia eschscholtzii HJ001. Nat Prod Res 32(2):208–213PubMedCrossRefGoogle Scholar
  196. 196.
    Ma Y, Li J, Huang M, Liu L, Wang J, Lin Y (2015) Six new polyketide decalin compounds from mangrove endophytic fungus Penicillium aurantiogriseum 328. Mar Drug 13(10):6306–6318CrossRefGoogle Scholar
  197. 197.
    Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drug 10(5):1081–1091CrossRefGoogle Scholar
  198. 198.
    Fu J, Zhou Y, Li H-F, Ye Y-H, Guo J-H (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. Afr J Microbiol Res 5(10):1231–1236CrossRefGoogle Scholar
  199. 199.
    Cole RJ, Kirksey JW, Dorner JW, Wilson DM, Johnson JC Jr, Johnson AN, Bedell DM, Springer JP, Chexal KK (1977) Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage. J Agric Food Chem 25(4):826–830PubMedCrossRefGoogle Scholar
  200. 200.
    Donald T, Shoshannah R, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109(5):610–618CrossRefGoogle Scholar
  201. 201.
    He H, Yang HY, Bigelis R, Solum EH, Greenstein M, Carter GT (2002) Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett 43(9):1633–1636CrossRefGoogle Scholar
  202. 202.
    Zheng C-J, Li L, Zou J-p, Han T, Qin L-P (2012) Identification of a quinazoline alkaloid produced by Penicillium vinaceum, an endophytic fungus from Crocus sativus. Pharm Biol 50(2):129–133PubMedCrossRefGoogle Scholar
  203. 203.
    Siddiqui IN, Zahoor A, Hussain H, Ahmed I, Ahmad VU, Padula D, Draeger S, Schulz B, Meier K, Steinert M (2011) Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: absolute configuration of diversonol. J Nat Prod 74(3):365–373PubMedCrossRefGoogle Scholar
  204. 204.
    Schmeda-Hirschmann G, Hormazabal E, Astudillo L, Rodriguez J, Theoduloz C (2005) Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World J Microbiol Biotechnol 21(1):27–32CrossRefGoogle Scholar
  205. 205.
    Silva GH, Teles HL, Zanardi LM, Young MCM, Eberlin MN, Hadad R, Pfenning LH, Costa-Neto CM, Castro-Gamboa I, da Silva Bolzani V (2006) Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67(17):1964–1969PubMedCrossRefGoogle Scholar
  206. 206.
    Peláez F, Cabello A, Platas G, Díez MT, del Val AG, Basilio A, Martán I, Vicente F, Bills GF, Giacobbe RA (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23(3):333–343PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Ding G, Liu S, Guo L, Zhou Y, Che Y (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71(4):615–618PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Zhang W, Krohn K, Draeger S, Schulz B (2008) Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J Nat Prod 71(6):1078–1081PubMedCrossRefGoogle Scholar
  209. 209.
    Oliveira CM, Regasini LO, Silva GH, Pfenning LH, Young MC, Berlinck RG, Bolzani VS, Araujo AR (2011) Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp., endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochem Lett 4(2):93–96CrossRefGoogle Scholar
  210. 210.
    Oliveira CM, Silva GH, Regasini LO, Zanardi LM, Evangelista AH, Young MC, Bolzani VS, Araujo AR (2009) Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae). Zeitschrift Für Naturforschung C 64(11–12):824–830CrossRefGoogle Scholar
  211. 211.
    Song Y, Li H, Ye Y, Shan C, Yang Y, Tan R (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241(1):67–72PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Chen X, Sang X, Li S, Zhang S, Bai L (2010) Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J Ind Microbiol Biotechnol 37(5):447–454PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Abdou R, Scherlach K, Dahse H-M, Sattler I, Hertweck C (2010) Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71(1):110–116PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Mao B-Z, Huang C, Yang G-M, Chen Y-Z, Chen S-Y (2010) Separation and determination of the bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol 9(36):5955–5961Google Scholar
  215. 215.
    Brady SF, Wagenaar MM, Singh MP, Janso JE, Clardy J (2000) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2(25):4043–4046PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Brady SF, Singh MP, Janso JE, Clardy J (2000) Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org Lett 2(25):4047–4049PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Xu Q, Wang J, Huang Y, Zheng Z, Song S, Zhang Y, Su W (2004) Metabolites from mangrove endophytic fungus Dothiorella sp. Acta Oceanologica Sinica 23(3):541–547Google Scholar
  218. 218.
    Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57(2):261–265PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Macías-Rubalcava ML, Hernández-Bautista BE, Jiménez-Estrada M, González MC, Glenn AE, Hanlin RT, Hernández-Ortega S, Saucedo-García A, Muria-González JM, Anaya AL (2008) Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry 69(5):1185–1196PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Liu L, Liu S, Chen X, Guo L, Che Y (2009) Pestalofones A–E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 17(2):606–613PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Dai J, Krohn K, Draeger S, Schulz B (2009) New naphthalene-chroman coupling products from the endophytic fungus Nodulisporium sp from Erica arborea. Eur J Org Chem 2009(10):1564–1569CrossRefGoogle Scholar
  222. 222.
    Hussain H, Krohn K, Draeger S, Meier K, Schulz B (2009) Bioactive chemical constituents of a sterile endophytic fungus from Meliotus dentatus. Records Nat Product 3(2):114–117Google Scholar
  223. 223.
    Maddau L, Cabras A, Franceschini A, Linaldeddu BT, Crobu S, Roggio T, Pagnozzi D (2009) Occurrence and characterization of peptaibols from Trichoderma citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Microbiology 155(10):3371–3381PubMedCrossRefGoogle Scholar
  224. 224.
    Zhao J, Shan T, Huang Y, Liu X, Gao X, Wang M, Jiang W, Zhou L (2009) Chemical composition and in vitro antimicrobial activity of the volatile oils from Gliomastix murorum and Pichia guilliermondii, two endophytic fungi in Paris polyphylla var. yunnanensis. Nat Prod Commun 4(11):1491–1496PubMedPubMedCentralGoogle Scholar
  225. 225.
    Wang L-W, Xu B-G, Wang J-Y, Su Z-Z, Lin F-C, Zhang C-L, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93(3):1231–1239PubMedCrossRefGoogle Scholar
  226. 226.
    Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol Medl Microbiol 34(1):51–57CrossRefGoogle Scholar
  227. 227.
    Wu S-H, Chen Y-W, Shao S-C, Wang L-D, Li Z-Y, Yang L-Y, Li S-L, Huang R (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71(4):731–734CrossRefGoogle Scholar
  228. 228.
    Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Tewtrakul S, Rungjindamai N, Sakayaroj J (2010) Azaphilone and isocoumarin derivatives from the endophytic fungus Penicillium sclerotiorum PSU-A13. Chem Pharm Bull 58(8):1033–1036PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nitika Kapoor
    • 1
  • Vijay Lakshmi Jamwal
    • 1
  • Sumit G. Gandhi
    • 1
    Email author
  1. 1.Plant Biotechnology DivisionCSIR-Indian Institute of Integrative MedicineJammuIndia

Personalised recommendations