Advertisement

Pharmaceutical Potential of Marine Fungal Endophytes

  • Rajesh JeewonEmail author
  • Amiirah Bibi Luckhun
  • Vishwakalyan Bhoyroo
  • Nabeelah B. Sadeer
  • Mohamad Fawzi Mahomoodally
  • Sillma Rampadarath
  • Daneshwar Puchooa
  • V. Venkateswara Sarma
  • Siva Sundara Kumar Durairajan
  • Kevin D. Hyde
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The marine environment is currently well explored as one of the most essential sources regarding to natural products in research, since organisms from oceans have exhibited exceptional biological, biochemical, and biosynthetic potential. Similarly, microorganisms’ natural products represent a substantial area for novel therapeutic compounds search. Many reviews highlighted microbial metabolites as targets for discovery and development of new drugs, especially anticancer, antibiotics, antifungals, and antiparasitics among others. Marine fungal endophytes are therefore virtually unlimited sources of novel compounds with numerous potential therapeutic applications due to their immense diversity and proven ability to produce natural products of medicinal and pharmaceutical importance, thus inspiring researchers to further study them. This book chapter reviews some of the endophytic fungi isolated from marine sources that produce metabolites with various biological activities against human pathogenic microorganisms. The potential for the exploitation in the pharmaceutical industry and concerns are also discussed.

Keywords

Fungi Metabolites Biological activities Industry Medicine Mangroves 

References

  1. 1.
    Felício R, Pavãoa BG, Oliveira ALL, Erberta C, Contib R, Pupob MT, Debonsia HM (2016) Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Braz J Pharmacol 25:641–650CrossRefGoogle Scholar
  2. 2.
    Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richard TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203PubMedCrossRefGoogle Scholar
  3. 3.
    Marine Fungi (2018) About marine fungi. Retrieved from http://www.marinefungi.org/
  4. 4.
    Swe A, Jeewon R, Pointing SB, Hyde KD (2008) Taxonomy and phylogeny of Arthrobotrys mangrovispora, a new marine nematode-trapping fungal species. Bot Mar 51:331–338CrossRefGoogle Scholar
  5. 5.
    Li J, Jeewon R, Phookamsak R, Bhat DJ, Mapook A, Chukeatirote E, Hyde KD, Lumyong S, McKenzie EHC (2018) Marinophialophora garethjonesii gen. et sp. nov.: a new hyphomycete associated with Halocyphina from marine habitats in Thailand. Phytotaxa 345(1):1–12CrossRefGoogle Scholar
  6. 6.
    Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN, Hyde KD, Jones EBG (2018) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Prog 17:791.  https://doi.org/10.1007/s11557-018-1387-4CrossRefGoogle Scholar
  7. 7.
    Devadatha B, Sarma VV, Jeewon R, Hyde KD, Jones EBG (2018) Morosphaeria muthupetensis sp. nov. (Morosphaeriaceae) from India: morphological characterisation and multigene phylogenetic inference. Bot Mar.  https://doi.org/10.1515/bot-2017-0124CrossRefGoogle Scholar
  8. 8.
    Doley P, Kha DK (2015) Antimicrobial activity of bacterial endophytes from medicinal endemic plant Garcinia lancifolia Roxb. Ann Plant Sci 4(12):1243–1247Google Scholar
  9. 9.
    Compant S, Saikkonen K, Mitter B, Campisano A, Mercado-Blanco J (2016) Editorial special issue: soil, plants and endophytes. Plant Soil 405(1–2):1–11CrossRefGoogle Scholar
  10. 10.
    Jeewon R, Ittoo J, Mahadeb D, Jaufeerally-Fakim Y, Hong-Kai W, Liu A-R (2013) DNA based identification and phylogenetic characterisation of endophytic and saprobic fungi from Antidesma madagascariense, a medicinal plant in Mauritius. J Mycol.  https://doi.org/10.1155/2013/781914CrossRefGoogle Scholar
  11. 11.
    Jeewon R, Wanasinghe DN, Rampadaruth S, Puchooa D, Zhou L-G, Liu A-R, Wang H-K (2017) Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence analyses of ribosomal and protein genes phylogenetic markers: a taxonomic dead end? Mycosphere 8(10):1802–1817.  https://doi.org/10.5943/mycosphere/8/10/7CrossRefGoogle Scholar
  12. 12.
    Radic N, Strukelj B (2012) Endophytic fungi- the treasure chest of antibacterial substances. Phytomedicine 19:1270–1284PubMedCrossRefGoogle Scholar
  13. 13.
    Doilom M, Manawasinghe IS, Jeewon R, Jayawardena RS, Tibpromma S, Hongsanan S, Meepol W, Lumyong S, Jones EBG, Hyde KD (2017) Can ITS sequence data identify fungal endophytes from cultures? A case study from Rhizophora apiculata. Mycosphere 8:1869–1892CrossRefGoogle Scholar
  14. 14.
    Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA phylogenies reveal uncharacterized fungal phylotypes on living leaves of Magnolia liliifera. Fungal Divers 23:121–138Google Scholar
  15. 15.
    Promputtha I, Lumyong S, Vijaykrishna D, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590PubMedCrossRefGoogle Scholar
  16. 16.
    Rampadarath S, Puchooa D, Jeewon R, Bandhoa K (2018) Diversity, seasonal variation and antibacterial activity of endophytic fungi associated with the genus Jatropha in Mauritius. J Biotechnol Biomater 8(280):2Google Scholar
  17. 17.
    World Health Organization (2018) Cancer; key statistics. Retrieved from https://www.who.int/cancer/resources/keyfacts/en/
  18. 18.
    Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targets 7:453–461PubMedCrossRefGoogle Scholar
  19. 19.
    Flores-Bustamante FZ, Rivera-Orduna FN, Martinez-Cádenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467PubMedCrossRefGoogle Scholar
  20. 20.
    Gond SK, Kharwar RN, White JJF (2014) Will fungi be the new source of the blockbuster drug taxol? Fungal Biol Rev 28:77–84CrossRefGoogle Scholar
  21. 21.
    El-Sayed A, Safan S, Mohamed N, Shaban L, Ali G, Sitohy M (2018) Induction of taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem 71:31–40CrossRefGoogle Scholar
  22. 22.
    El-Maali N, Mohrram A, El-Kashef H, Gamal K (2018) Novel resources of Taxol from endophytic and entomopathogenic fungi: isolation, characterization and LC-Triple mass spectrometric quantification. Talanta 190:466–474PubMedCrossRefGoogle Scholar
  23. 23.
    Qadri M, Johri S, Shah A, Khajuria A, Sidiq T, Lattoo S, … Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2(8):1–14PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour – the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92(8).  https://doi.org/10.1093/femsec/fiw114PubMedCrossRefGoogle Scholar
  25. 25.
    Morrison E, Emery R, Saville B (2017) Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol 66:726–742CrossRefGoogle Scholar
  26. 26.
    Bender SF, Wagg C, Van Der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31(6):440–452PubMedCrossRefGoogle Scholar
  27. 27.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 4(67):491–502CrossRefGoogle Scholar
  28. 28.
    Vinit K, Doilom M, Wanasinghe DN, Bhat DJ, Brahmanage RS, Jeewon R, Xiao Y, Hyde KD (2018) Phylogenetic placement of Akanthomyces muscarius, a new endophyte record from Nypa fruticans in Thailand. Curr Res Environ Appl Mycol 8(3):404–417CrossRefGoogle Scholar
  29. 29.
    Barnes AD, Weigelt P, Jochum M, Ott D, Hodapp D, Haneda NF, Brose U (2016) Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos Trans R Soc B Biol Sci 371(1694):20150279.  https://doi.org/10.1098/rstb.2015.0279CrossRefGoogle Scholar
  30. 30.
    Sarmiento-Vizcaíno A, Braña AF, Pérez-Victoria I, Martín J, De Pedro N, la Cruz MD, … Blanco G (2017) Paulomycin G, a new natural product with cytotoxic activity against tumor cell lines produced by deep-sea sediment derived Micromonospora matsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea. Mar Drugs 15(9):271PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Luiz RH, Mariana LV, Betania BC, Johann S, Tânia MA, Carlos LZ, Carlos AR (2011) Endophytic fungi of tropical forests: a promising source of bioactive prototype molecules for the treatment of neglected diseases. In: Drug development – a case study based insight into modern strategies. InTech, London, pp 469–486Google Scholar
  32. 32.
    Promputtha I, Jeewon R, Lumyong S, EHC MK, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non-sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 20:167–186Google Scholar
  33. 33.
    Tenguria R, Kahn F, Quereshi S (2011) Endophytes-mines of pharmacological therapeutics. World J Sci Technol 1(15):127–149Google Scholar
  34. 34.
    Kalaiselvam M (2015) Marine fungal diversity and bioprospecting. In: Springer-Verlag Berlin Heidelberg. pp 13–25CrossRefGoogle Scholar
  35. 35.
    Kjer J, Debbab A, Aly A, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5(3):479–490PubMedCrossRefGoogle Scholar
  36. 36.
    Imhoff JF (2016) Natural products from marine fungi – still an underrepresented resource. Mar Drugs 14(1):19PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Di Camillo CG, Cerrano C, Romagnoli T, Calcinai B (2017) Living inside a sponge skeleton: the association of a sponge, a macroalga and a diatom. Symbiosis 71(3):185–189CrossRefGoogle Scholar
  38. 38.
    Bugni S, Ireland C (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. R Soc Chem 21:143–163Google Scholar
  39. 39.
    Stone JK, Polishook JD, White JF (2004) Endophytic fungi. In: Biodiversity of fungi. Elsevier Academic Press, USACrossRefGoogle Scholar
  40. 40.
    Liu AR, Chen SC, Lin XM, Wu SY, Xu T, Cai FM, Jeewon R (2010) Endophytic Pestalotiopsis species associated with plants of Palmae, Rhizophoraceae, Planchonellae and Podocarpaceae in Hainan, China. Afr J Microbiol Res 4(24):2661–2669Google Scholar
  41. 41.
    Uzma F, Mohan C, Hashem A, Konappa N, Rangappa S, Kamath P, … Allah EA (2018) Endophytic fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309Google Scholar
  42. 42.
    Bano N, Rizvi I, Sharma N, Siddiqui M, Khan M, Akhtar S (2016) Production of bioactive secondary metabolites from endophytic fungi. Int Res J Eng Technol 3(6)Google Scholar
  43. 43.
    Chen L, Zhang Q, Jia M, Ming Q, Yue W, Rahman K, Qin LP, Han T (2016) Endophytic fungi with antitumour activities: their occurrence and anticancer compounds. J Crit Rev Microbiol 42(3):454–473Google Scholar
  44. 44.
    Li S-J, Zhang X, Wang X-H, Zhao C-Q (2018) Novel natural compounds from endophytic fungi with anticancer activity. Eur J Med Chem 156:316–343PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, Gu P, … Zhu Y (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar Drugs 7:97–112PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zeilinger S, Gruber S, Bansal R, Murkherjee P (2016) Secondary metabolism in Trichoderma-chemistry meets genomics. Fungal Biol Rev 30:74–90CrossRefGoogle Scholar
  47. 47.
    Venkatesan S, Ramar G, Kathirvelu B, Naif A, Veeramuthu D (2016) Biological properties of endophytic fungi. Braz Arch Biol Technol 59:e16150436Google Scholar
  48. 48.
    Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, … Liu Y (2016) Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol 32:110Google Scholar
  49. 49.
    Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Current research, technology education topics in applied microbiology and microbial biotechnology, vol 1. pp 567–576. Formatex Research Center - Badajoz, SpainGoogle Scholar
  50. 50.
    Palaniswamy M, Raghunath R, Radhakrishna A, Angayarkanni J (2012) Production and cytotoxicity studies of lovastatin from Aspergillus niger PN2 an endophytic fungi isolated from Taxus baccata. Int J Appl Biol Pharm Technol 3(3):342–351Google Scholar
  51. 51.
    Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, … Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):115–1121CrossRefGoogle Scholar
  52. 52.
    Huang J, Zhang J, Zhang X, Zhang K, Zhang X, He X (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 52(10): 1237–1240PubMedCrossRefGoogle Scholar
  53. 53.
    Liu L, Liu S, Liu S, Guo L, Chen X, Che Y (2009) Isoprenylated chromone derivatives from the plant endophytic fungus Pestalotiopsis fici. J Nat Prod 72(8):1482–1486PubMedCrossRefGoogle Scholar
  54. 54.
    Katoch M, Paul A, Singh G, Sridhar S (2017) Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med 17:385PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Cragg G, Newman D (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vazquez-Rodriguez S, Matos MJ, Borges F, Uriate E, Santana L (2015) Bioactive coumarins from marine sources: origin, structural features and pharmacological properties. Curr Top Med Chem 15(17):1755–1766PubMedCrossRefGoogle Scholar
  57. 57.
    Trindade M, Van Zyl LJ, Navarro-Fernández J, Elrazak AA (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:890PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kumar K, Gousia S, Latha J (2015) Evaluation of biological activity of secondary metabolites of Neurospora crassa from Machilipatnam Sea Water. Res J Microbiol 10(8):377–384CrossRefGoogle Scholar
  59. 59.
    Zainuddin N, Siti A, Lee C, Ebel R, Othman N, Mukhtar M, Awang K (2010) Antimicrobial activities of marine fungi from Malaysia. Bot Mar 53:507–513CrossRefGoogle Scholar
  60. 60.
    Doshi G, Aggarwal G, Martis E, Shanbhag P (2011) Novel antibiotics from marine sources. Int J Pharm Sci Nanotechnol 4(3):1446–1461Google Scholar
  61. 61.
    Giddings L-A, Newman DJ (2015) Bioactive compounds from marine extremophiles. In: Bioactive compounds from marine extremophiles. SpringerBriefs in microbiology. Springer, Cham, pp 1–124Google Scholar
  62. 62.
    Bajpai V (2014) Antimicrobial secondary metabolites from marine fungi: a mini review. Indian J Geo-Mar Sci 45(9):1067–1075Google Scholar
  63. 63.
    Bingham J, Mitsunaga E, Bergeron Z (2010) Drugs from slugs- past, present and future perspectives of omega-conotoxin research. Chem Biol Interact 183(1):1–18PubMedCrossRefGoogle Scholar
  64. 64.
    Bruel BM, Burton AW (2016) Intrathecal therapy for cancer-related pain. Pain Med 17(12):2404–2421PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kurita G, Benthien K, Nordly M, Mercadante S, Klepstad P, Sjøgren P, On behalf of the European Palliative Care Research Collaborative (EPCRC) (2015) The evidence of neuraxial administration of analgesics for cancer-related pain: a systematic review. Acta Anaesthesiol Scand 59(9):1103–1115PubMedCrossRefGoogle Scholar
  66. 66.
    Mayer A, Glaser K, Cuevas C, Jacobs R, Kem W, Little R, … Shuster D (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6): 255–265PubMedCrossRefGoogle Scholar
  67. 67.
    Dyshlovoy SA, Honecker F (2018) Marine compounds and cancer: 2017 updates. Mar Drugs 16(41):1–3Google Scholar
  68. 68.
    Chanda S, Dave R, Kaneria M, Nagani K (2010) Seaweeds: a novel, untapped source of drugs from sea to combat infectious diseases. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. pp 473–480. Formatex Research Center - Badajoz, SpainGoogle Scholar
  69. 69.
    Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168(6):311–332PubMedCrossRefGoogle Scholar
  70. 70.
    Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Debbab A, Aly A, Lin W, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Samuel P, Prince L, Prabakaran P (2011) Antibacterial activity of marine derived fungi collected from South East Coast of Tamilnadu, India. J Microbiol Biotechnol Res 1(4):86–94Google Scholar
  73. 73.
    Pimentel MR, Molina G, Dionísio AP, Roberto M, Junior M, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:11CrossRefGoogle Scholar
  74. 74.
    Oliverira ALL, Felicio R, Debonsi M (2012) Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi. J Pharmacogn 22(4):906–920Google Scholar
  75. 75.
    Jiang C-S, Zhou Z-F, Yang X-H, Lan L-F, Gu Y-C, Ye B-P, Guo Y-W (2018) Antibacterial sorbicillin and diketopiperazines from the endogenous fungus Penicillium sp. GD6 associated Chinese mangrove Bruguiera gymnorrhiza. Chin J Nat Med 16(5):358–365PubMedGoogle Scholar
  76. 76.
    He K-Y, Zhang C, Duan Y-R, Huang G-L, Yang C-Y, Lu X-R, … Chen G-Y (2017) New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. J Antibiot 70:823–827PubMedCrossRefGoogle Scholar
  77. 77.
    Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  78. 78.
    Swathi J, Narendra K, Sowjanya KM, Satya AK (2013) Marine fungal metabolites as a rich source of bioactive compounds. Afr J Biochem Res 7(10):184–196CrossRefGoogle Scholar
  79. 79.
    Indarmawan T, Mustopa AZ, Budiarto BR, Tarman K (2016) Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylaria psidii KT30 against Gram-positive bacteria. HAYATI J Biosci 23(2):73–78CrossRefGoogle Scholar
  80. 80.
    Hulikere MM, Joshi CG, Danagoudar A, Poyya J, Kudva AK, Dhananjaya B (2017) Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem 63:137–144CrossRefGoogle Scholar
  81. 81.
    Yue Y, Yu H, Li R, Xing R, Liu S, Li P (2015) Exploring the antibacterial and antifungal potential of jellyfish-associated marine fungi by cultivation-dependent approaches. PLoS One 10(12):e0144394PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Abad M, Bedoya L, Bermejo P (2011) Marine compounds and their antimicrobial activities. In: Science against microbial pathogens: communicating current research and technological advance. Formatex Research Center, BadajozGoogle Scholar
  83. 83.
    De Felício R, Pavão GB, de Oliveira ALL, Erbert C, Conti R, Pupo MT, Debonsi HM (2015) Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev Bras Farmacognosia 25(6): 641–650CrossRefGoogle Scholar
  84. 84.
    Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11(4):1–19CrossRefGoogle Scholar
  85. 85.
    Liu H, Chen Z, Zhu G, Wang L, Du Y, Wang Y, Zhu W (2017) Phenolic polyketides from the marine alga-derived Streptomyces sp. OUCMDZ-3434. Tetrahedron 73(36):5451–5455CrossRefGoogle Scholar
  86. 86.
    Yadav JP, Dhankhar S, Kumar S, Dhankhar S (2012) Antioxidant activity of fungal endophytes isolated from Salvadora oleoides decne. Int J Pharm Pharm Sci 4(2):380–385Google Scholar
  87. 87.
    Bhagobaty RK, Joshi SR (2012) Antimicrobial and antioxidant activity of endophytic fungi isolated from ethnomedicinal plants of the “Sacred forests” of Meghalaya, India. Mykolog Lekarska 19(1):5–11Google Scholar
  88. 88.
    Abdel-Lateff AA-AM (2004) Secondary metabolites of marine-derived fungi: natural product chemistry and biological activity. Dissertation, University of BonnGoogle Scholar
  89. 89.
    Mayer A, Rodríguez A, Taglialatela-Scafati O, Fusetani N (2013) Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 11(7):2510–2573PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pan JH, Jones EBG, She ZG, Pang J, Lin Y (2008) Review of bioactive compounds from fungi in the South China Sea. Bot Mar 51:179–190CrossRefGoogle Scholar
  91. 91.
    Venkatchalam G, Venkatchalam A, Suryanarayanan TS, Doble M (2011) Isolation and characterization of new antioxidant and antibacterial compounds from algicolous marine fungus Curvularia tuberculata. In: International conference on bioscience, biochemistry and bioinformatics, vol 5, pp 302–304Google Scholar
  92. 92.
    Wang S, Li X, Teuscher F, Li D, Diesel A, Ebel R, … Wang B (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69(11):1622–1625PubMedCrossRefGoogle Scholar
  93. 93.
    Toledo TR, Dejani NN, Monnazzi LGS, Kossuga MH, Berlinck RGS, Sette LD, Medeiros AI (2014) Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived fungus Penicillium paxilli Ma(G)K. Mediators Inflamm 2014:11CrossRefGoogle Scholar
  94. 94.
    Liu Z, Qiu P, Li J, Chen G, Chen Y, Liu H, She Z (2018) Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Tetrahedron 74(7):746–751CrossRefGoogle Scholar
  95. 95.
    Bhatnagar I, Kim S (2010) Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 8:2702–2720PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Klemke C, Kehraus S, Wright AD, Konig GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67(6):1058–1063PubMedCrossRefGoogle Scholar
  97. 97.
    Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8:2340–2368PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rajivgandhi G, Muneeswaran T, Maruthpandy M, Ramakritinan CM, Saravanan K, Ravikumar V, Manoharan N (2018) Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microb Pathog 125:325–335PubMedCrossRefGoogle Scholar
  99. 99.
    Lu Z, Zhu H, Fu P, Wang Y, Zhang Z, Lin H, … Zhu W (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73(5):911–914PubMedCrossRefGoogle Scholar
  100. 100.
    Huang Z, Yang J, She Z, Lin Y (2010) Isoflavones from the mangrove endophytic fungus Fusarium sp. (ZZF41). Nat Prod Commun 5(11):1771–1773PubMedGoogle Scholar
  101. 101.
    Cui H, Yu J, Chen S, Ding M, Huang X, Yuan J, She Z (2017) Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorg Med Chem Lett 27(4):803–807PubMedCrossRefGoogle Scholar
  102. 102.
    Mohamed I, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, … König G (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11(21):5014–5017PubMedCrossRefGoogle Scholar
  103. 103.
    Mohamed IE, Kehraus S, Krick A, König GM, Kelter G, Maier A, … Gross H (2010) Mode of action of epoxyphomalins A and B and characterization of related metabolites from the marine-derived fungus Paraconiothyrium sp. J Nat Prod 73:2053–2056PubMedCrossRefGoogle Scholar
  104. 104.
    Elsebai MF, Kehraus S, Lindequist U, Sasse F, Shaaban S, Gütschow M, König GM (2011) Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem 9:802–808PubMedCrossRefGoogle Scholar
  105. 105.
    Teiten M, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M (2013) Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-kappaB activity. Bioorg Med Chem 21:3850–3858CrossRefGoogle Scholar
  106. 106.
    Huang C-H, Pan J-H, Chen B, Yu M, Huang H, Zhu X, … Lin Y-C (2011) Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar Drugs 9:832–843PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cui H, Liu Y, Li T, Zhang Z, Ding M, Long Y, She Z (2018) 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025. Fitoterapia 124:177–181PubMedCrossRefGoogle Scholar
  108. 108.
    Bhadury P, Balsam TM, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337PubMedCrossRefGoogle Scholar
  109. 109.
    Hawas UW, El-Beih AA, El-Halawany AM (2012) Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch Pharm Res 35(10):1746–1756CrossRefGoogle Scholar
  110. 110.
    Overy DP, Bayman P, Kerr RG, Bills GF (2014) An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi. J Mycol 5(3):145–167CrossRefGoogle Scholar
  111. 111.
    Idris A, Al-Tahir I, Idris E (2013) Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigelia africana. Egypt Acad J Biol Sci 5(1):1–9Google Scholar
  112. 112.
    Mayer AMS, Rodriguez AD, Berlinck RGS, Fusetani N (2011) Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol 153(2):191–222Google Scholar
  113. 113.
    Flewelling AJ, Ellsworth KT, Sanford J, Forward E, Johnson JA, Gray CA (2013) Macroalgal endophytes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms 1:175–187PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rajesh Jeewon
    • 1
    Email author
  • Amiirah Bibi Luckhun
    • 1
  • Vishwakalyan Bhoyroo
    • 2
  • Nabeelah B. Sadeer
    • 1
  • Mohamad Fawzi Mahomoodally
    • 1
  • Sillma Rampadarath
    • 2
  • Daneshwar Puchooa
    • 2
  • V. Venkateswara Sarma
    • 3
  • Siva Sundara Kumar Durairajan
    • 4
  • Kevin D. Hyde
    • 5
  1. 1.Department of Health Sciences, Faculty of ScienceUniversity of MauritiusMokaMauritius
  2. 2.Faculty of AgricultureUniversity of MauritiusRéduitMauritius
  3. 3.Department of Biotechnology, School of Life SciencesPondicherry UniversityPondicherryIndia
  4. 4.Department of Microbiology, School of Life SciencesCentral University of Tamil NaduThiruvarurIndia
  5. 5.Center of Excellence in Fungal Research, Mae Fah Luang UniversityChiang RaiThailand

Personalised recommendations