Advertisement

Bioactive Metabolites from Turkish Marine Invertebrates and Associated Fungi

  • Belma KonuklugilEmail author
  • Hajar Heydari
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Nature provides a broad arsenal of structurally diverse and pharmacologically active compounds that serve as highly effective drugs with advanced chemical structures for the development of novel synthetic drugs to combat a multitude of diseases. Marine natural products are considered as promising sources of new secondary metabolites with pharmaceutical potential. Turkey has over 8300 km coastline with different geographical zones or habitats accounting for a great amount of diversity among its species. The largely unexplored Turkish seas with a wide range of biological diversity provide a lot of scope in future. In this section, we have tried to assemble studies of Turkish marine invertebrates and associated fungal species attempted so far.

Keywords

Bioactivity Marine derived fungi Marine invertebrates Marine pharmacy Turkish seas 

Notes

Acknowledgments

A part of this chapter was supported by Scientific and Technological Research Council of Turkey (TÜBİTAK), Project No: BMBF114S916; CNR 113Z837; JÜLICH 104S109.

References

  1. 1.
    Chairman K, Ranjitsingh AJA, Alagumuthu G (2012) Cytotoxic and antioxidant activity of selected marine sponges. Asian Pac J Trop Biomed 2(3):234–238CrossRefGoogle Scholar
  2. 2.
    El-Shitany NA, Shaala LA, Abbas AT, Abdel-dayem UA, Azhar EI, Ali SS, Soest RWMV, Youssef DTA (2015) Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the Red Sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One 10:e0138917CrossRefGoogle Scholar
  3. 3.
    Sagar S, Kaur M, Minneman KP (2010) Antiviral lead compounds from marine sponges. Mar Drug 8(10):2619–2638CrossRefGoogle Scholar
  4. 4.
    Laport MS, Santos OCS, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10:86–105CrossRefGoogle Scholar
  5. 5.
    Puentes C, Carreño K, Santos-Acevedo M, Gómez-León J, García M, Perez M, Stupak M, Blustein G (2014) Anti-fouling paints based on extracts of marine organisim from the Colombian and Caribbean. Ship Sci Technol 8(15):75–90Google Scholar
  6. 6.
    Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzerse RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53CrossRefGoogle Scholar
  7. 7.
    Pereira F, Aires-de-Sousa J (2018) Computational methodologies in the exploration of marine natural product leads. Mar Drug 16:236–266CrossRefGoogle Scholar
  8. 8.
    Jimenez C (2018) Marine natural products in medicinal chemistry. ACS Med Chem Lett 9:959–961CrossRefGoogle Scholar
  9. 9.
    Brinkmann CM, Marker A, Kurtböke A (2017) An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9:40–45CrossRefGoogle Scholar
  10. 10.
    Heydari H, Gozcelioglu B, Konuklugil B (2018) In vitro evaluation of bioactivity of Dictyonella incisa from Turkey. Kafkas Univ Vet Fak Derg 24:479–482Google Scholar
  11. 11.
    Orhan IE, Ozcelik B, Konuklugil B, Putz A, Kaban UG, Proksch P (2012) Bioactivity screening of the selected Turkish marine sponges and three compounds from Agelas oroides. Rec Nat Prod 6:356–367Google Scholar
  12. 12.
    Aktas N, Gözcelioğlu B, Zang Y, Lin W, Konuklugil B (2010) Avarone and Avarol from the marine sponge Dysidea avara Schmidt from Aegean coast of Turkey. FABAD J Pharm Sci 35:119–123Google Scholar
  13. 13.
    Ming TM (2010). Metabolomic profiling of anti-trypanosomal active sponge extracts. Final year research project, University of StrathclydeGoogle Scholar
  14. 14.
    Putz A (2009). Secondary metabolites from marine sponges, with focus on the chemical ecology and biochemical characterisation of the stress-induced biotransformation of Aplysina alkaloids. PhD, Düsseldorf University, DüsseldorfGoogle Scholar
  15. 15.
    Ergene B (2009) Deniz süngerinden sarcotragus spinulosus’un biyoaktif etken maddelerinin izolasyonu ve yapı tayini, Master of science, Ankara University, AnkaraGoogle Scholar
  16. 16.
    Tasdemir D, Topaloglu B, Perozzo R, Brun R, O’Neill R, Carballeira NM, Zhang X, Tonge PJ, Lindeng A, Rüedi P (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem 15:6834–6845CrossRefGoogle Scholar
  17. 17.
    Erdoğan-Orhan I, Sener B, de Rosa S, Perez-Baz J, Lozach O, Leost M, Rakhilin S, Meijer L (2004) Polyprenyl-hydroquinones and -furans from three marine sponges inhibit the cell cycle regulating phosphatase CDC25A. Nat Prod Res 18:1–9CrossRefGoogle Scholar
  18. 18.
    Erdoğan I, Şener B (2001) Two metabolite from the marine sponge Spongia officinalis L. Acta Pharm Sci 43:17–19Google Scholar
  19. 19.
    Erdoğan I, Tanaka J, Higa T, Sener B (2000) Two new hydroquinone derivatives from two new sponge species of Aegean Sea. J Chem Soc Pak 22:200–204Google Scholar
  20. 20.
    Erdoğan I, Tanaka J, Higa T, Sener B (1999) Terpenoids from two sponge species of Aegean Sea. Nat Prod Sci 5:177–180Google Scholar
  21. 21.
    Konuklugil B, Sertdemir M, Heydari H, Koc A (2019) Isolation and bioactivities screening of Turkish Microcosmus. Turk J Fish Aquat Sci 19(8):653–659Google Scholar
  22. 22.
    Korpayev (2015) Isolation and structure elucidation of bioactive secondary metabolites from Cnidaria Paramuricea clavate. Ankara University, AnkaraGoogle Scholar
  23. 23.
    Heydari H, Manzo E, Gozcelioglu B, Konukllugil B (2019) Bioactivity screening and isolation of three fatty acid ethyl esters from Anemonia viridis. UnpublishedGoogle Scholar
  24. 24.
    El-Demerdash A, Tammam MA, Atanasov AG, Hooper JNA, Al-Mourabit A, Kijjoa A (2018) Chemistry and biological activities of the marine sponges of the Genera Mycale (Arenochalina), Biemna and Clathria. Mar Drug 16(6):214–240CrossRefGoogle Scholar
  25. 25.
    Tortorella E, Tedesco P, Esposito FP, January GG, Fani R, Jaspars M, Pascale D (2018) Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar Drug 16:355–371CrossRefGoogle Scholar
  26. 26.
    Doğa Koruma Merkezi (DKM) (2016) Performing a review of the natural resources & biodiversity sector in turkey. https://www.afd.fr/sites/afd/files/2018-02-02-24-04/afd-dkm-turkey-biodiversity-report.pdf. Accessed 24 Jan 2019
  27. 27.
    Aktas N, Gözcelioğlu B, Konuklugil B (2011) Qualitative detection of some secondary metabolites from Turkish marine sponges collected in Kemer. FABAD J Pharm Sci 36:129–136Google Scholar
  28. 28.
    Canakay HM, Yapici BM (2016) Antifungal and antibacterial activities of three marine sponges obtained from the gulf of saros in Turkey. Annu Res Rev Biol 7:1–6Google Scholar
  29. 29.
    Konuklugil B, Heydari H, Genc Y, Ozgen U (2018) Bioactivity screening of some marine species from Turkey’s coasts. Farmacia 66(2):342–346Google Scholar
  30. 30.
    Aktas N, Genc Y, Gözcelioğlu B, Konuklugil B, Harput US (2016) Radical scavenging effect of different marine sponges from mediterranean coasts. Rec Nat Prod 7:96–104Google Scholar
  31. 31.
    Yalçın FN (2007) Biological activities of the marine sponge Axinella, Hacettepe University. J Fac Pharm 27:47–60Google Scholar
  32. 32.
    Ozkaya FCC, Ebrahim W, El-Neketi M, Tanrıkul TT, Kalscheuer R, Müller WEG, Guo Z, Zou K, Liu Z, Proksch P (2018) Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitotrapia 131:9–14CrossRefGoogle Scholar
  33. 33.
    Abdelwahab MF, Fouad MA, Kamel MC, Özkaya FC, Kalscheuera R, Müller WG, Lin W, Liua Z, Ebrahim W, Daletos G, Proksch P (2018) Tanzawaic acid derivatives from freshwater sediment-derived fungus Penicillium sp. Fitoterapia 128:258–264CrossRefGoogle Scholar
  34. 34.
    Ozkaya FC, Ebrahim W, Klopotowskid M, Liu Z, Janiak C, Proksch P (2018) Isolation and X-ray structure analysis of citreohybridonol from marine-derived Penicillium atrovenetum. Nat Prod Res 32(7):840–843CrossRefGoogle Scholar
  35. 35.
    Ahmed E, Ashour M, Özkaya FC, Ebrahim W, Singab AB, Ebada S, Proksch P (2018) Spiroarthrinols A and B, two novel meroterpenoids isolated from the sponge derived fungus Arthrinium sp. Phytochem Lett 20:246–251Google Scholar
  36. 36.
    Meng J, Cheng W, Heydari H, Wang B, Zhu K, Konuklugil B, Lin W (2018) Sorbicillinoid-based metabolites from a sponge-derived fungus Trichoderma saturnisporum. Mar Drug 16(7):226–241CrossRefGoogle Scholar
  37. 37.
    Küppers L, Ebrahim W, El-Neketi W, Özkaya FC, Mándi A, Kurtán T, Orfali RS, Müller WEG, Hartmann R, Lin W, Song W, Liu Z, Proksch P (2017) Lactones from the sponge-derived fungus Talaromyces rugulosus. Mar Drug 15:359–365CrossRefGoogle Scholar
  38. 38.
    Shuai L, Dai H, Konuklugil B, Orfali RS, Lin W, Kalscheuer R, Liu Z, Proksch P (2016) Phenolic bisabolanes from the sponge derived fungus aspergillus sp. Phytochem Lett 18:187–191CrossRefGoogle Scholar
  39. 39.
    Meng LH, Chen HQ, Form I, Proksch P, Wang B (2016) New chromone isocumarin and indol alkaloid derevitives from three sponge derived fungal strains. Nat Prod Commun 11(9):1293–1296PubMedGoogle Scholar
  40. 40.
    Huiqin C, Aktas N, Konuklugil B, Mándi A, Daletosa G, Lin W, Dai H, Kurtán T, Proksch P (2015) A new fusarielin analogue from Penicillium sp. isolated from the Mediterranean sponge Ircinia oros. Tetrahedron Lett 56:5317–5320CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pharmacognosy DepartmentAnkara UniversityAnkaraTurkey

Personalised recommendations