Advertisement

Antidiabetic and Antioxidant Activities of Bioactive Compounds from Endophytes

  • Rosa Martha Perez GutierrezEmail author
  • Adriana Neira González
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The aim of the present chapter is to appraise the phytochemical and pharmacological potential of the endophytes. This chapter will further highlight the future research prospects of the study of endophytes with antioxidant and antidiabetic activities. Informations on endophytes were obtained from related publications using electronic scientific databases. Based on previous reports, it could be said that the endophytes have emerged as excellent source of compounds which could be used for the treatment of skin diseases and microbial infections and as anticancer and anti-inflammatory agents. The studies provide new knowledge on the isolation and characterization of novel bioactives especially in the discovery of novel therapeutic drugs with antioxidant and antidiabetic properties. however, current research on the pharmacological properties of all the endophyte species including bioassay-guided isolation of phytoconstituents and their mechanism of action, pharmacokinetics, bioavailability, efficacy, and safety should be carried out in the future to add more value to this study.

Keywords

Endophytes Medicinal plants Marine plants Antioxidants Antidiabetic 

Abbreviations

ABTS

2,2-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid)

AGEs

Advanced glycation end products

AgNPs

Silver nanoparticles

ALP

Alkaline phosphatase

ALT

Alanine aminotransferase

AMPK

AMP-activated protein kinase

AST

Aspartate aminotransferase

CAT

Catalase

CE6

Not identified

CE9

Not identified

CEC12

Cochliobolus sp.

CED3

Diaporthe sp.

CED4

Diaporthe sp.

CED7

Diaporthe sp.

CEDp11

Diaporthe phaseolorum

CEDp2

Diaporthe phaseolorum

CEP1

Phomopsis sp.

CEP10

Phomopsis sp.

CEP4

Phomopsis sp.

CES13

Sordariomycetes sp.

CES8

Sordariomycetes sp.

CVD

Cardiovascular diseases

DAPG

2,4-Diacetylphloroglucinol

DPPH

1,1-Diphenyl-2-picrylhydrazyl

EtOAc

Ethyl acetate

FRAP

Ferric reducing ability of plasma

FTIR

Fourier-transform infrared spectroscopy

GC-MS

Gas chromatography mass spectrometry

GPx

Glutathione peroxidase

ITS

Internal transcribed spacer

MDA

Malondialdehyde

NCB

Gene sequencing

PMS-NADH

Phenazine methosulfate-nicotinamide adenine dinucleotide

ROS

Reactive oxygen species

SOD

Superoxide dismutase

T2D

Type 2 diabetes mellitus

TEM

Transmission electron microscopy

UV-Vis

Ultraviolet-visible spectroscopy

VOLF4

Aspergillus sp.

VOLF5

Peniophora sp.

VOR5

Fusarium nematophilum

XRD

X-ray diffraction

References

  1. 1.
    Sell DR, Monnier VM (2012) Molecular basis of arterial stiffening: role of glycation – a mini-review. Gerontology 58(3):227–237.  https://doi.org/10.1159/000334668CrossRefPubMedGoogle Scholar
  2. 2.
    Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149.  https://doi.org/10.1016/j.diabres.2013.11.002CrossRefPubMedGoogle Scholar
  3. 3.
    Klonoff DC, Schwartz DM (2000) An economic analysis of interventions for diabetes. Diabetes Care 23:390–404CrossRefGoogle Scholar
  4. 4.
    Fatmah A, Siti B, Zariyantey A, Nasar A, Jamaludin M (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 12:5–18CrossRefGoogle Scholar
  5. 5.
    Perez RM, Flores LB, Neira AM (2012) Evaluation of the antioxidant and anti-glication effects of the hexane extract from piper auritum leaves in Vitro and beneficial activity on oxidative stress and advanced glycation end-product-mediated renal injury in streptozotocin-treated diabetic rats. Molecules 17, 11897–11919.  https://doi.org/10.3390/molecules171011897CrossRefGoogle Scholar
  6. 6.
    Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19(3):257–267CrossRefGoogle Scholar
  7. 7.
    Yavuz O, Cam M, Bukan N, Guven A, Silan F (2003) Protective effect of melatonin on beta-cell damage in streptozotocin induced diabetes in rats. Acta Histochem 105:261–266CrossRefGoogle Scholar
  8. 8.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160:1–40.  https://doi.org/10.1016/j.cbi.2005.12.009CrossRefPubMedGoogle Scholar
  9. 9.
    Saxena AK, Srivastava P, Kale RK, Baquer NZ (1993) Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol 45(3):539–542CrossRefGoogle Scholar
  10. 10.
    Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38.  https://doi.org/10.1002/jbt.10058.CrossRefPubMedGoogle Scholar
  11. 11.
    Pocernich CB, Cardin AL, Racine CL, Lauderback CM, Butterfield DA (2001) Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 39:141–149CrossRefGoogle Scholar
  12. 12.
    Kaysen GA, Dubin JA, Müller HG, Mitch WE, Rosales LM, Levin NW (2002) Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients. Kidney Int 61:2240–2249.  https://doi.org/10.1046/j.1523-1755.2002.00076.xCrossRefPubMedGoogle Scholar
  13. 13.
    Andrade-Cetto A, Heinrich M (2005) Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 99:325–348.  https://doi.org/10.1016/j.jep.2005.04.019CrossRefPubMedGoogle Scholar
  14. 14.
    Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100.  https://doi.org/10.1016/j.jep.2005.04.019CrossRefPubMedGoogle Scholar
  15. 15.
    Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 12:60–64.  https://doi.org/10.1186/s12986-015-0057-7CrossRefGoogle Scholar
  16. 16.
    Nagalingam A, Arbiser JL, Bonner MY, Saxena NK, Sharma D (2012) Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogénesis. Breast Cancer Res 14(1):R35.  https://doi.org/10.1186/bcr3128CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253.  https://doi.org/10.2147/DMSO.S43731CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson GM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081CrossRefGoogle Scholar
  19. 19.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174.  https://doi.org/10.1172/JCI13505CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Debbab A, Aly AH, Edrada-Ebel R, Wray V, Müller WE, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MH, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72(4):626–631.  https://doi.org/10.1021/np8004997CrossRefPubMedGoogle Scholar
  21. 21.
    Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur J Org Chem 19:3976–3980.  https://doi.org/10.1016/j.phytochem.2015.11.016CrossRefGoogle Scholar
  22. 22.
    Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334.  https://doi.org/10.1007/s10529-015-1814-4CrossRefPubMedGoogle Scholar
  23. 23.
    Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395.  https://doi.org/10.1038/ja.2012.27CrossRefPubMedGoogle Scholar
  24. 24.
    Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62.  https://doi.org/10.3923/jm.2011.54.62CrossRefGoogle Scholar
  25. 25.
    González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in Central Spain. Fungal Divers 47:29–42.  https://doi.org/10.1128/AEM.07655-11CrossRefGoogle Scholar
  26. 26.
    Araújo WL, Saridakis HO, Barroso PAV, Aguilar-Vildoso CI, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236CrossRefGoogle Scholar
  27. 27.
    Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333.  https://doi.org/10.1080/07388550290789531CrossRefPubMedGoogle Scholar
  28. 28.
    Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268.  https://doi.org/10.1021/np030397vCrossRefGoogle Scholar
  29. 29.
    Katoch M, Salgotra A, Singh G (2014) Endophytic fungi found in association with Bacopa monnieri as resourceful producers of industrial enzymes and antimicrobial bioactive natural products. Braz Arch Biol Technol 57:714–722.  https://doi.org/10.1590/S1516-8913201402502CrossRefGoogle Scholar
  30. 30.
    Katoch M, Singh G, Sharma S, Gupta N, Sangwan PL, Saxena AK (2014) Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae). BMC Complement Altern Med 14:52–58.  https://doi.org/10.1186/1472-68821452CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-ulHasan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the western Himalayas. Springerplus 2:8.  https://doi.org/10.1186/2193-1801-2-8CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bhatnagar I, Kim SK (2010) Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 8:2702–2720.  https://doi.org/10.3390/md8102702CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. Elsvier, London, UK, p 704Google Scholar
  34. 34.
    Blackwell M (2011) The Fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438.  https://doi.org/10.3732/ajb.1000298CrossRefGoogle Scholar
  35. 35.
    Wilson D, Barr ME, Faeth SH (1997) Ecology and description of a new species of Ophiognomonia endophytic in the leaves of Quercus emoryi. Mycologia 89:537–546.  https://doi.org/10.2307/3760988CrossRefGoogle Scholar
  36. 36.
    Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z (2010) SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br J Pharmacol 159:689–697.  https://doi.org/10.1111/j.1476-5381.2009.00577.xCrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ramos S (2008) Effect of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18:427–442.  https://doi.org/10.1016/j.jnutbio.2006.11.004CrossRefGoogle Scholar
  38. 38.
    World Health Organization (2014) Global status on noncommunicable diseases 2014. WHO Press, GenevaGoogle Scholar
  39. 39.
    Shahidi SF, Ambigaipalan P (2015) Phenolics and polyphenolics in food beverages and spices: antioxidants activity and health effects-review. J Funct Food 18:820–897CrossRefGoogle Scholar
  40. 40.
    Xanthis A, Hatzitolios A, Koliakos G, Tatola V (2007) Advanced glycosylation end products and nutrition-A possible relation with diabetic aterosclerosis and how to prevent it. J Food Sci 72:R125–R129.  https://doi.org/10.1111/j.1750-3841.2007.00508.xCrossRefPubMedGoogle Scholar
  41. 41.
    Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P (2017) The endophytic symbiont – Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front Microbiol 8:1897–1905.  https://doi.org/10.3389/fmicb.2017.01897CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mani VM, Parimala AJ, Soundari G, Karthiyaini D, Preethi K (2015) Bioprospecting endophytic fungi and their metabolites from medicinal tree Aegle marmelos in Western Ghats. India Mycobiol 43(3):303–310.  https://doi.org/10.5941/MYCO.2015.43.3.303. Published online 2015 Sep 30CrossRefGoogle Scholar
  43. 43.
    Khan AL, Gilani SA, Waqas M, Al-hosni K, Al-khiziri S, Kim Y, Ali L, Kang S, Asaf S, Shahzad R, Hussain J, Lee I, Al-harrasi A (2017) Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J Zhejiang Univ-Sci B (Biomed Biotechnol) 18:125–137.  https://doi.org/10.1631/jzus.B1500271CrossRefGoogle Scholar
  44. 44.
    Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 6:132.  https://doi.org/10.1007/s13205-016-0433-7CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ascêncio PGM, Ascêncio SD, Aguiar AA, Fiorini A, Pimenta RZ (2014) Chemical assessment and antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Costus spiralis (Jacq.) Roscoe (Costaceae). Evid Based Complement Alternat Med 2014:190543.  https://doi.org/10.1155/2014/190543. 10 pagesCrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nath A, Raghunatha P, Joshi SR (2012) Diversity and biological activities of endophytic fungi of Emblica officinalis, an ethnomedicinal plant of India. Mycobiology 40(1):8–13.  https://doi.org/10.5941/MYCO.2012.40.1.008CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yadav M, Yadav A, Kumar S, Yadav JP (2016) Spatial and seasonal influences on culturable endophytic mycobiota associated with different tissues of Eugenia jambolana Lam. and their antibacterial activity against MDR strains. BMC Microbiol 16:44.  https://doi.org/10.1186/s12866-016-0664-0CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pan F, Su T, Cai S, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep.  https://doi.org/10.1038/srep42008
  49. 49.
    Srinivasan K, Jagadish LK, Shenbhagaraman R, Muthumary J (2010) Antioxidant activity of endophytic fungus Phyllosticta sp. isolated from Guazuma tomentosa. J Phytology 2:37–41Google Scholar
  50. 50.
    Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JR, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696.  https://doi.org/10.2147/IJN.S112857CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186.  https://doi.org/10.1021/np800733yCrossRefPubMedGoogle Scholar
  52. 52.
    Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077.  https://doi.org/10.1021/jo00127a001CrossRefGoogle Scholar
  53. 53.
    Elfita M, Munawar R (2012) Isolation of antioxidant compound from endophytic fungi Acremonium sp. from the Twigs of Kandis Gajah. Makara J Sci 16:46–50.  https://doi.org/10.7454/mss.v16i1.1280CrossRefGoogle Scholar
  54. 54.
    Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67:321–331.  https://doi.org/10.1007/s13213-017-1263-5CrossRefGoogle Scholar
  55. 55.
    Wang L, Qiu P, Long XF, Zhang S, Zeng ZG, Tian YQ (2016) Comparative analysis of chemical constituents, antimicrobial and antioxidant activities of ethylacetate extracts of Polygonum cuspidatum and its endophytic actinomycete, Streptomyces sp. A0916. Chin J Nat Med 14:117–123.  https://doi.org/10.1016/S1875-5364(16)60004-3CrossRefPubMedGoogle Scholar
  56. 56.
    Cui J-L, Guo T-T, Ren Z-X, Zhang N-S, Wang M-L (2015) Diversity and antioxidant activity of culturable endophytic fungi from Alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One 10:e0118204.  https://doi.org/10.1371/journal.pone.0118204CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Surveswaran S, Cai YZ, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953.  https://doi.org/10.1016/j.foodchem.2006.06.033CrossRefGoogle Scholar
  58. 58.
    Panossiana A, Hammb R, Wikmana G, Efferth T (2014) Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine 21:1325–1348.  https://doi.org/10.1016/j.phymed.2014.07.008CrossRefGoogle Scholar
  59. 59.
    Sadananda TS, Nirupama R, Chaithra K, Govindappa M, Chandrappa CP, Vinay Raghavendra B (2011) Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J Med Plants Res 5:3643–3652Google Scholar
  60. 60.
    Li Y, Xin X, Chang Z, Shi R, Miao Z, Ding J, Hao G (2015) The endophytes fungi from Salvia miltiorrhiza Bge.f. alba are a potential source of natural antioxidants. Bot Stud 565:1–7.  https://doi.org/10.1186/S40529-015-0086-6CrossRefGoogle Scholar
  61. 61.
    Zeng PY, Wu JG, Liao LM, Chen TQ, Wu JZ, Wong K-H (2011) In vitro antioxidant activities of endophytic fungi isolated from the liverwort Scapania verrucosa. Genet Mol Res 10:3169–3179.  https://doi.org/10.4238/2011.December.20.1CrossRefPubMedGoogle Scholar
  62. 62.
    Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75Google Scholar
  63. 63.
    Khiralla A, Mohamed I, Thomas J, Mignard B, Spina R, Yagi S, Laurain-Mattar D (2015) A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac J Trop Med 8:701–704.  https://doi.org/10.3923/ajps.2016.8.15CrossRefPubMedGoogle Scholar
  64. 64.
    Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chaud RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183CrossRefGoogle Scholar
  65. 65.
    Song YC, Huang WY, Sun C, Wang EW, Tan RX (2005) Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosparium sp1FB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol Pharm Bull 28:506–509CrossRefGoogle Scholar
  66. 66.
    Artanti N, Tachibana S, Kardono LB, Sukiman H (2012) Isolation of alpha-glucosidase inhibitors produced by an endophytic fungus, Colletotrichum sp. TSC13 from Taxus sumatrana. Pak J Biol Sci 15(14):673–679.  https://doi.org/10.3923/pjbs.2012.673.679CrossRefPubMedGoogle Scholar
  67. 67.
    Artanti N, Tachibana S, Kardono LB (2014) Effect of media compositions on α-glucosidase inhibitory activity, growth and fatty acid content in mycelium extracts of Colletotrichum sp. TSC13 from Taxus Sumatrana (Miq.) de Laub. Pak J Biol Sci 17:884–890.  https://doi.org/10.3923/pjbs.2014.884.890CrossRefPubMedGoogle Scholar
  68. 68.
    Artanti N, Tachibana S, Kardono LB, Sukiman H (2011) Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pak J Biol Sci 14(22):1019–1023.  https://doi.org/10.3923/pjbs.2011.1019.1023CrossRefPubMedGoogle Scholar
  69. 69.
    Singh B, Sharma P, Kumar A, Chadha P, Kaur R, Kaur A (2016) Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. J Ethnopharmacol 194:450–456.  https://doi.org/10.1016/j.jep.2016.10.018CrossRefPubMedGoogle Scholar
  70. 70.
    Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 13(6):e0197359.  https://doi.org/10.1371/journal.pone.0197359CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang W (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146.  https://doi.org/10.1016/j.fitote.2014.05.001CrossRefPubMedGoogle Scholar
  72. 72.
    Wang J, Cox DG, Ding W, Huang G, Lin Y, Li C (2014) Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp. Mar Drugs 12:2840–2850.  https://doi.org/10.3390/md12052840CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Choe E, Min DB (2009) Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf 8:345–358.  https://doi.org/10.1111/j.1541-4337.2009.00085.xCrossRefGoogle Scholar
  74. 74.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956CrossRefGoogle Scholar
  75. 75.
    Rodríguez J, Olea-Azar C, Cavieres C, Norambuena E, Delgado-Castro T, Soto-Delgado J, Araya-Maturana R (2007) Antioxidant properties and free radical-scavenging reactivity of a family of hydroxynaphthalenones and dihydroxyanthracenones. Bioorg Med Chem 15:7058–7065.  https://doi.org/10.1016/j.bmc.2007.07.013CrossRefPubMedGoogle Scholar
  76. 76.
    Dong-Li L, Li X, Wang B (2009) Natural anthraquinone derivatives from a marine mangrove plant derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19:675–680.  https://doi.org/10.4014/jmb.0805.342CrossRefGoogle Scholar
  77. 77.
    Singh B, Kaur A (2015) Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J Appl Microbiol 120:301–311.  https://doi.org/10.1111/jam.12998CrossRefGoogle Scholar
  78. 78.
    Ushasri R, Anusha R (2015) In vitro anti-diabetic activity of ethanolic and acetone extracts of endophytic fungi Syncephalastrum racemosum isolated from the seaweed Gracilaria corticata by alpha-amylase inhibition assay method. Int J Curr Microbiol Appl Sci 4:254–259Google Scholar
  79. 79.
    Mishra PD, Verekar SA, Kulkarni-Almeida A, Roy SK, Jain S, Balakrishnan A, Vishwakarma R, Deshmuk SK (2013) Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees) S. Hughes Indian J Chem 52B:565–556Google Scholar
  80. 80.
    Huang R, Jiang BG, Li XN, Wang YT, Liu SS, Zheng KX, He J, Wu SH (2018) Polyoxygenated cyclohexenoids with promising α-glycosidase inhibitory activity produced by Phomopsis sp. YE3250, an endophytic fungus derived from Paeonia delavayi. J Agric Food Chem 66:1140–1146.  https://doi.org/10.1021/acs.jafc.7b04998CrossRefPubMedGoogle Scholar
  81. 81.
    Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R, Wrobel K, Barona-Gómez F, Flores-Cotera LB (2017) Phylogenomics and inhibitory activity upon the formation of advanced glycation end-products of 2, 4-diacetylphloroglucinol-producing Pseudomonas endophytes from Piper auritum. J Nat Prod 80:1955–1963.  https://doi.org/10.1021/acs/natprod.6b00823CrossRefPubMedGoogle Scholar
  82. 82.
    Dhankhar S, Yadav JP (2013) Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem 9:624–632CrossRefGoogle Scholar
  83. 83.
    Kumar KM, Chandrappa CP, Channabasava R, Ramachandra YL, Padmalatha RS, Ravishankar RV, Govindappa M (2017) Anti-diabetic activity of endophytic fungi, Penicillium species of Tabebuia argentea; in silico and experimental analysis. Res J Phytochem 11:90–110CrossRefGoogle Scholar
  84. 84.
    Govindappa M, Channabasava R, Sunil Kumar KR, Pushpalatha KC (2013) Antioxidant activity and phytochemical screening of crude endophytes extracts of Tabebuia argentea Bur. & K. Sch. Am J Plant Sci 4:1641–1652.  https://doi.org/10.4236/ajps.2013.48198CrossRefGoogle Scholar
  85. 85.
    Katoch M, Paul A, Singh G, Sridhar SNC (2017) Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med 17:385.  https://doi.org/10.1186/s12906-017-1893-yCrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Govindappa M, Sadananda TS, Channabasava, Ramachandra YL, Chandrappa CP, Padmalatha RS, Prasad SK (2015) In vitro and in vivo antidiabetic activity of lectin (N-acetylgalactosamine, 64 kDa) isolated from endophytic fungi, Alternaria species from Viscum album on alloxan induced diabetic rats. Integr Obesity Diabetes 1:11–19Google Scholar
  87. 87.
    Song Y, Wang J, Huang H, Ma L, Wang J, Gu Y, Liu L, Lin Y (2012) Four eremophilane sesquiterpenes from the mangrove endophytic fungus Xylaria sp. BL321. Mar Drugs 10:340–348.  https://doi.org/10.3390/md10020340CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Zhang L, Niaz SI, Khan D, Wang Z, Zhu Y, Zhou H, Lin Y, Li J, Liu L (2017) Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Mar Drugs 15:35.  https://doi.org/10.3390/md1502003CrossRefPubMedCentralGoogle Scholar
  89. 89.
    Cui H, Liu Y, Nie Y, Liu Z, Chen S, Zhang Z, Lu Y, He L, Huang X, She Z (2016) polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Mar Drugs 14:86–95.  https://doi.org/10.3390/md1405008CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rosa Martha Perez Gutierrez
    • 1
    Email author
  • Adriana Neira González
    • 2
  1. 1.Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingenieria Quimica e Industrias ExtractivasInstituto Politecnico Nacional (IPN) Unidad Profesional Adolfo Lopez Mateos S/N Av, Instituto Politécnico Nacional Ciudad de MexicoMexico CityMexico
  2. 2.Laboratorio de Productos NaturalesInstituto de Química, Universidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico

Personalised recommendations