Advertisement

Endophyte-Mediated Host Stress Tolerance as a Means for Crop Improvement

  • Satyabrata Nanda
  • Bijayalaxmi Mohanty
  • Raj Kumar JoshiEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Plants being sessile are continuously exposed to a wide range of biotic and abiotic stresses that exert adverse effect in their growth and development. Various physiological, biochemical, and molecular machineries are employed by the plants to overcome these stresses. Endophytes are mostly the symbiotic fungi and bacteria that reside inside the plant tissue and stimulate plant growth during stress conditions. Endophyte-mediated plant stress tolerance holds significant role in the analysis of plant-microbe interactions. Although still at its infancy, the endophyte-mediated host stress tolerance including drought, salinity, high-temperature stresses, and pathogenic infection has been well described in the recent times. The molecular mechanism governing the endophyte-mediated stress response includes the induction of plant stress genes and regulation of reactive oxygen species. In the present review, we discuss the evidences for bacterial and fungal endophyte-mediated stress tolerance and associated mechanisms. This information from this review will help the scientific community in the development of suitable biotechnological approaches toward usage of endophyte microbes in the improvement of crop yield under multiple stress conditions.

Keywords

Symbiosis Endophyte Biotic stress Abiotic stress Stress-related genes Fungi 

Abbreviations

ABA

Abscisic acid

ACC

1-Aminocyclopropane-1-carboxylate

AHK2

Arabidopsis histidine kinase 2

APX

Ascorbate-dependent peroxidases

CDK

Cyclin-dependent protein kinase

CDPK

Calcium-dependent protein kinase

CRE1

Cytokinin response 1

DHAR

Dehydroascorbate reductases

GR

Glutathione reductases

HR

Hypersensitive responses

IAA

Indole acetic acid

IAA

Indole-3-acetic acid

ISR

Induced systemic resistance

JA

Jasmonic acid

MAPK

Mitogen-activated protein kinase

MDHAR

Monodehydroascorbate reductases

PAMP

Pathogen-associated molecular patterns

PRR

Pattern recognizing receptors

ROS

Reactive oxygen species

SA

Salicylic acid

SAKA

Stress-activated mitotic kinase

SAR

Systemic acquired resistance

SOD

Superoxide dismutase

VOC

Volatile organic compounds

Notes

Acknowledgments

SN is thankful for the award of a Postdoctoral Fellowship (PDF) from the Chinese Academy of Agricultural Sciences, Peoples Republic of China. BM is thankful for the award of institutional Doctoral Fellowship from Siksha O Anusandhan University, Bhubaneswar, India. The authors are thankful to the Head of the Center of Biotechnology, Siksha O Anusandhan University, and the Head of the PG Dept. of Biotechnology, Rama Devi Women’s University, for their guidance and support.

References

  1. 1.
    Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci 7:9CrossRefGoogle Scholar
  2. 2.
    Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  3. 3.
    Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  4. 4.
    Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657CrossRefGoogle Scholar
  5. 5.
    Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS One 8:73192CrossRefGoogle Scholar
  6. 6.
    Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, Kim SH (2018) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb Ecol 75:407–418PubMedCrossRefGoogle Scholar
  7. 7.
    Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefGoogle Scholar
  8. 8.
    Wiewiora B, Zurek G, Panka D (2015) Is the vertical transmission of Neotyphodium lolii in perennial ryegrass the only possible way to the spread of endophytes? PLoS One 10:0117231CrossRefGoogle Scholar
  9. 9.
    Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025PubMedCrossRefGoogle Scholar
  10. 10.
    Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 4:1–16CrossRefGoogle Scholar
  11. 11.
    Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505CrossRefGoogle Scholar
  12. 12.
    Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581CrossRefGoogle Scholar
  13. 13.
    Rozpądek P, Wężowicz K, Nosek M, Wazny R, Tokarz K, Lembicz M, Miszalski Z, Turnau K (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242:1025–1035PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333CrossRefGoogle Scholar
  15. 15.
    Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8CrossRefGoogle Scholar
  16. 16.
    Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–373CrossRefGoogle Scholar
  18. 18.
    Reddy BN, Hindumathi A (2017) Potential of microbial volatile organic compounds for crop protection against phytopathogenic fungi. In: Choudhary D, Sharma A, Agarwal P, Varma A, Tuteja N (eds) Volatiles and food security. Springer, SingaporeGoogle Scholar
  19. 19.
    Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244CrossRefGoogle Scholar
  20. 20.
    Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392Google Scholar
  21. 21.
    Hilleary R, Gilroy S (2018) Systemic signaling in response to wounding and pathogens. Curr Opin Plant Biol 43:57–62PubMedCrossRefGoogle Scholar
  22. 22.
    Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323PubMedCrossRefGoogle Scholar
  23. 23.
    Bittner N, Trauer-Kizilelma U, Hilker M (2017) Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 245:993–1007PubMedCrossRefGoogle Scholar
  24. 24.
    Gulyani V, Kushwaha HR, Kumar P (2018) Role of phytohormones in plant defense: signalling and cross talk. In: Singh A, Singh IK (eds) Molecular aspects of plant-pathogen interaction. Springer Nature, Singapore, pp 159–184Google Scholar
  25. 25.
    Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang L, Du L, Poovaiah BW (2014) Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9:973818CrossRefGoogle Scholar
  27. 27.
    Nanda S, Nayak S, Joshi RK (2014) Molecular cloning and expression analysis of four turmeric MAP kinase genes in response to abiotic stresses and phytohormones. Biol Plant 58:479–490CrossRefGoogle Scholar
  28. 28.
    Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T (2014) CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in Arabidopsis. Plant Cell 26:4149–4170PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nanda S, Rout E, Joshi RK (2016) Curcuma longa mitogen-activated protein kinase 6 (ClMPK6) stimulates the defense response pathway and enhances the resistance to necrotrophic fungal infection. Plant Mol Biol Report 34:886–898CrossRefGoogle Scholar
  30. 30.
    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  31. 31.
    Shiomi HF, Silva HSA, Melo ISD, Nunes FV, Bettiol W (2006) Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Sci Agric 63:32–39CrossRefGoogle Scholar
  32. 32.
    de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 65:1165–1178CrossRefGoogle Scholar
  36. 36.
    Brosi GB, McCulley RL, Bush LP, Nelson JA, Classen AT, Norby RJ (2011) Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189:797–805PubMedCrossRefGoogle Scholar
  37. 37.
    Dearnaley JD (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486PubMedCrossRefGoogle Scholar
  38. 38.
    Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralinlignans. J Biotechnol 122:494–510CrossRefGoogle Scholar
  39. 39.
    Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215CrossRefGoogle Scholar
  40. 40.
    Eaton C, Cox M, Ambrose B, Becker M, Hesse U, Schardl C, Scott B (2010) Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol 153(4):1780–1794PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Eaton CJ, Jourdain I, Foster SJ, Hyams JS, Scott B (2008) Functional analysis of a fungal endophyte stress-activated MAP kinase. Curr Genet 53:163–174PubMedCrossRefGoogle Scholar
  42. 42.
    Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195CrossRefGoogle Scholar
  43. 43.
    Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404CrossRefGoogle Scholar
  44. 44.
    Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biol Met 14:33–42Google Scholar
  45. 45.
    Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384PubMedCrossRefGoogle Scholar
  46. 46.
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:48479CrossRefGoogle Scholar
  47. 47.
    Shahzad R, Waqas M, Khan AL, Al-Hosni K, Kang SM, Seo CW, Lee IJ (2018) Indole acetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol Hung 68:175–186CrossRefGoogle Scholar
  48. 48.
    Jerry B (1994) A role of endophytic fungi in regulating nutrients and energy in plants within a desert ecosystem. In: International symposium and workshop on desertification in developed countriesGoogle Scholar
  49. 49.
    Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475PubMedPubMedCentralGoogle Scholar
  51. 51.
    Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:2702CrossRefGoogle Scholar
  53. 53.
    Ahmad M, Kibret M (2013) Mechanism and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  54. 54.
    Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bent grass brown patch. Curr Microbiol 47:138–143PubMedCrossRefGoogle Scholar
  55. 55.
    Xin G, Zhang G, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soils 45:669–674CrossRefGoogle Scholar
  56. 56.
    Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105CrossRefGoogle Scholar
  57. 57.
    Waqas M, Khan AL, Shahzad R, Ullah I, Khan AR, Lee IJ (2015) Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ Sci B 16:1011–1018PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Passari AK, Mishra VK, Leo VV, Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73PubMedCrossRefGoogle Scholar
  59. 59.
    Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol 7:65PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hamayun M, Khan SA, Khan AL (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102:989–995CrossRefGoogle Scholar
  61. 61.
    Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85CrossRefGoogle Scholar
  62. 62.
    Li W, Ma M, Feng Y, Li H, Ma Y, Li M, An F, Guo H (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell 163:670–683PubMedCrossRefGoogle Scholar
  63. 63.
    Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362PubMedCrossRefGoogle Scholar
  64. 64.
    Forchetti G, Masciarelli O, Izaguirre MJ, Alemano S, Alvarez D, Abdala G (2010) Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Curr Microbiol 61:485–493PubMedCrossRefGoogle Scholar
  65. 65.
    Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383PubMedCrossRefGoogle Scholar
  66. 66.
    Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312CrossRefGoogle Scholar
  67. 67.
    Ryu CM (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292CrossRefGoogle Scholar
  69. 69.
    Doty SL (2011) Nitrogen-fixing endophytic bacteria for improved plant growth. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 183–199CrossRefGoogle Scholar
  70. 70.
    Gallon JR (1992) Reconciling the incompatible – N2 fixation and O2. New Phytol 122:571–609CrossRefGoogle Scholar
  71. 71.
    Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Flores-Encarnación M, Contreras-Zentella M, Soto-Urzua L, Aguilar-Gutiérrez GR, Baca BE, Escamilla-Marván JE (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus Pal 5. J Bacteriol 181:6987–6995PubMedPubMedCentralGoogle Scholar
  73. 73.
    Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  74. 74.
    Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252CrossRefGoogle Scholar
  75. 75.
    Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37PubMedCrossRefGoogle Scholar
  76. 76.
    Caballero-Mellado J, Martinez-Aguilar L, Paredes-Valdez G, Estrada-de los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172PubMedCrossRefGoogle Scholar
  77. 77.
    Montanez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–263CrossRefGoogle Scholar
  78. 78.
    Iniguez L, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085PubMedCrossRefGoogle Scholar
  79. 79.
    Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22(8):1032–1037.  https://doi.org/10.1094/MPMI-22-8-1032CrossRefPubMedGoogle Scholar
  80. 80.
    Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33CrossRefGoogle Scholar
  81. 81.
    Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9:1003332CrossRefGoogle Scholar
  82. 82.
    Mitter B, Petric A, Shin MW, Chain PS, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190CrossRefGoogle Scholar
  84. 84.
    Choudhury DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155CrossRefGoogle Scholar
  85. 85.
    Lata R, Chowdhury S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Naya L, Ladrera R, Ramos J (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123–141CrossRefGoogle Scholar
  89. 89.
    Rodriguez RJ, White JF Jr, Arnold AE, Redman ARA (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefGoogle Scholar
  90. 90.
    Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:14823CrossRefGoogle Scholar
  91. 91.
    Vahid J, Mohamad RB, Islam M, Farrokh D (2015) The effect of endophytic fungi in drought resistance of Lolium perenne in Iran (Isfahan) condition. Adv Stud Biol 7:245–257CrossRefGoogle Scholar
  92. 92.
    Vigani G, Rolli E, Marasco R (2018) Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants. Environ Microbiol.  https://doi.org/10.1111/1462-2920.14272
  93. 93.
    Verma A, Verma S, Sahay N, Butehorn B, Franken P (1998) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744Google Scholar
  94. 94.
    Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391PubMedCrossRefGoogle Scholar
  95. 95.
    Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Azad K, Kaminskyj S (2016) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68:73–78CrossRefGoogle Scholar
  97. 97.
    Lubna SA, Muhammad H, Humaira G, Lee IJ, Anwar H (2018) Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J Plant Interact 13(1):100–111.  https://doi.org/10.1080/17429145.2018.1436199CrossRefGoogle Scholar
  98. 98.
    Sekmen HA, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411PubMedCrossRefGoogle Scholar
  99. 99.
    Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260PubMedCrossRefGoogle Scholar
  100. 100.
    Noctor G, Reichheld JP, Foyer CH (2017) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12PubMedCrossRefGoogle Scholar
  101. 101.
    Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122PubMedCrossRefGoogle Scholar
  103. 103.
    Choo J, Sabri NBM, Tan D, Mujahid A, Müller M (2015) Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Sci J 50: 445–453CrossRefGoogle Scholar
  104. 104.
    Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Khan A, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42(1):23–46CrossRefGoogle Scholar
  107. 107.
    Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumdar AL, Seal A (2018) An endophyteic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8:6979PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar
  109. 109.
    Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343CrossRefGoogle Scholar
  110. 110.
    Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttila AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7(10):e46802.  https://doi.org/10.1371/journal.pone.0046802CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Chanway C (1998) Bacterial endophytes: ecological and practical implications. In: 7th international congress on plant pathology, Edinburgh, 9–16 Aug 1998Google Scholar
  112. 112.
    Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiosis 66:133–140CrossRefGoogle Scholar
  113. 113.
    Blodgett JT, Eyles A, Bonello P (2007) Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiol 27:511–517PubMedCrossRefGoogle Scholar
  114. 114.
    Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351PubMedCrossRefGoogle Scholar
  115. 115.
    Ding L, Maier A, Fiebig HH, Lin WH, Peschel G, Hertweck C (2011) Kandenols A-E, Eudesmenes from an endophytic Streptomyces sp. of the mangrove tree Kandelia candel. J Nat Prod 75:2223–2227CrossRefGoogle Scholar
  116. 116.
    Inahashi Y, Matsumoto A, Omura S, Takahashi Y (2011) Streptosporangium oxazolinicum sp. nov., a novel endophytic ectinomycete producing new antitrypanosomal antibiotics, spoxazomicins. J Antibiot 64:297–302PubMedCrossRefGoogle Scholar
  117. 117.
    Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum H. Fungal Divers 47:97–107CrossRefGoogle Scholar
  119. 119.
    Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100: 15649–15654PubMedCrossRefGoogle Scholar
  120. 120.
    Combès A, Ndoye I, Bance C, Bruzaud J, Djediat C, Dupont J, Nay B, Prado S (2012) Chemical communication between the endophyte fungi Paraconiothyrium variabile and the Phytopathogen Fusarium oxysporum. PLoS One 7:47313CrossRefGoogle Scholar
  121. 121.
    Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Díaz Herrera S, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43PubMedCrossRefGoogle Scholar
  123. 123.
    Rijavec T, Lapanje A, Dermastia M, Rupnik M (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808PubMedCrossRefGoogle Scholar
  124. 124.
    Sobolev VS, Orner VA, Arias RS (2013) Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil 371:367–376CrossRefGoogle Scholar
  125. 125.
    Fürnkranz M, Lukesch B, Muller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428PubMedCrossRefGoogle Scholar
  126. 126.
    Donnarumma F, Capuana M, Vettori C, Petrini G, Giannini R, Indorato C, Mastromei G (2011) Isolation and characterisation of bacterial colonies from seeds and in vitro cultures of Fraxinus spp. from Italian sites. Plant Biol 13:169–176PubMedCrossRefGoogle Scholar
  127. 127.
    de Vries S, von Dahlen JK, Schnake A, Ginschel S, Schulz B, Rose LE (2018) Broad-spectrum inhibition of Phytophthora infestans fungal endophytes. FEMS Microbiol Ecol 94:1–15Google Scholar
  128. 128.
    Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol 211:1065–1076PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686CrossRefGoogle Scholar
  130. 130.
    Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771CrossRefGoogle Scholar
  131. 131.
    Verginer M, Siegmund B, Cardinale M, Muller H, Choi Y, Miguez CB, Leitner E, Berg G (2010) Monitoring the plant epiphyte Methylobacterium extorquens DSM 21961 by real time PCR and its influence on the strawberry flavour. FEMS Microbiol Ecol 74:136–145CrossRefGoogle Scholar
  132. 132.
    Nasopoulou C, Pohjanen J, Koskimaki JJ, Zabetakis I, Pirttila AM (2014) Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavour biosynthesis in strawberry tissue by in situ hybridization. J Plant Physiol 171: 1099–1105PubMedCrossRefGoogle Scholar
  133. 133.
    Koskimaki JJ, Hokkanen J, Jaakola L, Suorsa M, Tolonen A, Mattila S, Pirttila AM (2009) Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur J Plant Pathol 125:629.  https://doi.org/10.1007/s10658-009-9511-6CrossRefGoogle Scholar
  134. 134.
    Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Muthukumar A, Venkatesh A (2017) Exploitation of fungal and endophytic bacteria for the management of leaf blight of ribbon plant. J Plant Pathol Microbiol 4:209Google Scholar
  136. 136.
    Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–73PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9:261.  https://doi.org/10.1023/B:MITI.0000029922.31110.97CrossRefGoogle Scholar
  138. 138.
    Gokhale M, Gupta D, Gupta U, Faraz R, Sandhu SS (2017) Patents on endophytic fungi. Recent Pat Biotechnol 11(2):120–140PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Satyabrata Nanda
    • 1
  • Bijayalaxmi Mohanty
    • 2
  • Raj Kumar Joshi
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
  2. 2.Centre of BiotechnologySiksha O Anusandhan UniversityBhubaneswarIndia
  3. 3.Post Graduate Department of BiotechnologyRama Devi Women’s UniversityBhubaneswarIndia

Personalised recommendations