Endophytes as Pollutant-Degrading Agents: Current Trends and Perspectives

  • Rúbia Carvalho Gomes Corrêa
  • Daiane Iark
  • Andressa de Sousa Idelfonso
  • Thais Marques Uber
  • Adelar Bracht
  • Rosane Marina PeraltaEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Bioremediation is based on biological systems, bacteria, fungi, and plants. They are effective systems to treat a polluted site because they are able to modify the chemical structure of the contaminant into less hazardous end products. Investigations regarding the theme have immensely accelerated during the last years, what originated a great number of articles involving the terms “phytoremediation” and “bioremediation.” Initially the term phytoremediation was defined as being the use of plants for the degradation of polluting hazardous chemicals. However, the discovery that healthy plants could be containing endosymbiotic groups of microorganisms, often bacteria or fungi, led to the notion that these microorganisms could be, partly at least, responsible for the degradation of the pollutants. This review focuses on this proposed partnership in the bioremediation process, taking into account investigations conducted during the last 5 years.


Bioremediation Endophytes Pollutant-degrading agents Phytoremediation Xenobiotics 



The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 404898/2016-5) for funding this study. R.C.G. Corrêa thanks CNPq for financing her postdoctoral research at State University of Maringá (Process number 167378/2017-1). R.M. Peralta (Project number 307944/2015-8) and A. Bracht (Project number 304090/2016-6) are CNPq research grant recipients.


  1. 1.
    Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192CrossRefGoogle Scholar
  2. 2.
    Feng F, Ge J, Li Y, Cheng J, Zhong J, Yu X (2017) Isolation, colonization, and chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum). Agric Food Chem 65:1131–1138CrossRefGoogle Scholar
  3. 3.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  4. 4.
    Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242CrossRefGoogle Scholar
  5. 5.
    Zhu X, Ni X, Liu J, Gao Y (2014) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Clean (Weinh) 42:306–310Google Scholar
  6. 6.
    Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6:00221Google Scholar
  7. 7.
    Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL et al (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478CrossRefGoogle Scholar
  8. 8.
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254CrossRefGoogle Scholar
  9. 9.
    Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefGoogle Scholar
  10. 10.
    Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106CrossRefGoogle Scholar
  11. 11.
    Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25CrossRefGoogle Scholar
  12. 12.
    Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sille W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836CrossRefGoogle Scholar
  13. 13.
    Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18CrossRefGoogle Scholar
  14. 14.
    Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms – promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596CrossRefGoogle Scholar
  15. 15.
    Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Ż, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89:295–311CrossRefGoogle Scholar
  16. 16.
    Feng F, Li Y, Ge J et al (2017) Degradation of chlorpyrifos by an endophytic bacterium of the Sphingomonas genus (strain HJY) isolated from Chinese chives (Allium tuberosum). J Environ Sci Health B 52:736–744CrossRefGoogle Scholar
  17. 17.
    Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefGoogle Scholar
  18. 18.
    Sudha V, Govindaraj R, Baskar K, Al-Dhabi NA, Duraipandiyan V (2016) Biological properties of endophytic fungi. Braz Arch Biol Technol 59:e16150436CrossRefGoogle Scholar
  19. 19.
    Naik BS (2017) Fungal endophytes: nature’s tool for bioremediation of toxic pollutants. Curr Sci 113:537–539CrossRefGoogle Scholar
  20. 20.
    Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida PD1. Environ Sci Technol Lett 48:12221–12228CrossRefGoogle Scholar
  21. 21.
    Sun K, Liu J, Gao Y, Jin L, Gu Y, Wang W (2014) Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4:5462CrossRefGoogle Scholar
  22. 22.
    Gałązka A, Gałązka R (2015) Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant. Pol J Microbiol 64:239–250CrossRefGoogle Scholar
  23. 23.
    Zhang X, Chen L, Liu X, Wang C, Chen X, Xu G, Deng K (2014) Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environ Sci Pollut Res Int 21:8198–8205CrossRefGoogle Scholar
  24. 24.
    Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z (2017) Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. Environ Sci Pollut Res Int 24:19640–19652CrossRefGoogle Scholar
  25. 25.
    Ho Y-N, Hsieh J-L, Huang C-C (2013) Construction of a plant–microbe phytoremediation system: combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresour Technol 145:43–47CrossRefGoogle Scholar
  26. 26.
    Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483CrossRefGoogle Scholar
  27. 27.
    He H, Ye Z, Yang D, Yan J et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965CrossRefGoogle Scholar
  28. 28.
    Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediation 15:51–64CrossRefGoogle Scholar
  29. 29.
    Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  30. 30.
    Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439CrossRefGoogle Scholar
  31. 31.
    Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159CrossRefGoogle Scholar
  32. 32.
    Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166CrossRefGoogle Scholar
  33. 33.
    Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69CrossRefGoogle Scholar
  34. 34.
    Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QM, Afzal M (2016) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150:1261–1270CrossRefGoogle Scholar
  35. 35.
    Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N (2016) Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol 7:1016CrossRefGoogle Scholar
  36. 36.
    Srivastava S, Singh M, Paul AK (2016) Arsenic bioremediation and bioactive potential of endophytic bacterium Bacillus pumilus isolated from Pteris vittata L. Int J Adv Biotechnol Res 7:77–92Google Scholar
  37. 37.
    Xu JY, Han YH, Chen Y, Zhu LJ, Ma LQ (2016) Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere 144:1233–1240CrossRefGoogle Scholar
  38. 38.
    Mesa V, Navazas A, González-Gil R, González A et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411–e03416CrossRefGoogle Scholar
  39. 39.
    Ashraf S, Afzal M, Naveed M, Shahid M, Ahmad Zahir Z (2018) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytoremediation 20:121–128CrossRefGoogle Scholar
  40. 40.
    Wu H, Zhang J, Ngo HH, Guo W, Hu Z et al (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601CrossRefGoogle Scholar
  41. 41.
    Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  42. 42.
    Shi X, Liu Q, Ma J et al (2015) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37:2279–2288CrossRefGoogle Scholar
  43. 43.
    Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6:242CrossRefGoogle Scholar
  44. 44.
    Zhang X, Liu X, Wang Q, Chen X, Li H, Wei J, Xu G (2014) Diesel degradation potential of endophytic bacteria isolated from Scirpus triqueter. Int Biodeterior Biodegrad 87:99–105CrossRefGoogle Scholar
  45. 45.
    Tiwari S, Sarangi BK, Thul ST (2016) Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. J Environ Manag 180:359–365CrossRefGoogle Scholar
  46. 46.
    Zhu X, Ni X, Waigi MG, Liu J, Sun K, Gao Y (2016) Biodegradation of mixed PAHs by PAH-degrading endophytic bacteria. Int J Environ Res Public Health 13:805CrossRefGoogle Scholar
  47. 47.
    Chen Y, Ren CG, Yang B, Peng Y, Dai CC (2013) Priming effects of the endophytic fungus Phomopsis liquidambari on soil mineral N transformations. Microb Ecol 65:161–170CrossRefGoogle Scholar
  48. 48.
    Chen Y, Xie XG, Ren CG, Dai CC (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574CrossRefGoogle Scholar
  49. 49.
    Xie XG, Dai CC (2015) Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari. Bioresour Technol 179:35–42CrossRefGoogle Scholar
  50. 50.
    Xie XG, Dai CC (2015) Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int Biodeterior Biodegrad 104:498–507CrossRefGoogle Scholar
  51. 51.
    Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29CrossRefGoogle Scholar
  52. 52.
    Wang HW, Zhang W, Su CL, Zhu H, Dai CC (2015) Biodegradation of the phytoestrogen luteolin by the endophytic fungus Phomopsis liquidambari. Biodegradation 26:197–210CrossRefGoogle Scholar
  53. 53.
    Li X, Li W, Chu L, White JF Jr, Xiong Z, Li H (2016) Diversity and heavy metal tolerance of endophytic fungi from Dysphania ambrosioides, a hyperaccumulator from Pb–Zn contaminated soils. Arthropod Plant Interact 11:186–192CrossRefGoogle Scholar
  54. 54.
    Xie XG, Huang CY, Fu WQ, Dai CC (2016) Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid. Fungal Biol 120:402–413CrossRefGoogle Scholar
  55. 55.
    Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One 12:e0182556CrossRefGoogle Scholar
  56. 56.
    Tian H, Ma YJ, Li WY, Wang JW (2018) Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environ Sci Pollut Res Int 25:8963–8989CrossRefGoogle Scholar
  57. 57.
    Tong J, Miaowen C, Juhui J, Jinxian L, Baofeng C (2017) Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China. Sci Total Environ 574:881–888CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rúbia Carvalho Gomes Corrêa
    • 1
  • Daiane Iark
    • 1
  • Andressa de Sousa Idelfonso
    • 1
  • Thais Marques Uber
    • 1
  • Adelar Bracht
    • 1
    • 2
  • Rosane Marina Peralta
    • 1
    • 2
    Email author
  1. 1.State University of MaringaMaringáBrazil
  2. 2.Department of Biochemistry, Laboratory of Biochemistry of Microorganisms and Food ScienceState University of MaringaMaringáBrazil

Personalised recommendations