Advertisement

Secondary Metabolites Produced by Endophytic Fungi from Marine Environments

  • Mishra Rashmi
  • J. S. Kushveer
  • V. Venkateswara SarmaEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Endophytes are symptomless organisms thriving within the living host tissues. Some endophytic fungi have been shown to be producing the same compounds produced by their hosts, e.g., taxol produced by Pestalotiopsis microspora isolated from Taxus wallichiana. Hence, there has been lot of interest to screen the secondary metabolites of endophytic fungi. In recent times the focus on endophytic fungi and the secondary metabolites they produce has shifted to marine environments. Unlike terrestrial environments where more research has been conducted on secondary metabolites from living plant substrata, the secondary metabolites produced by endophytic fungi isolated from marine environments are equally from macroalgae (seaweeds) and sponges in addition to mangrove and different shoreline plant substrata. Many promising secondary metabolites that have therapeutic potential including in antimicrobial, antiviral, antimalarial, and anticancer applications have been reported from endophytic fungi isolated from seaweeds, sponges, and plants from maritime environments. For example, the compound 3-O-methylfunicone isolated from Talaromyces sp., in mangrove habitat, has shown antifungal, antitumor, and lipid-lowering properties and required beyond academic research wherein pharmaceutical industry needs to take it further. A Cladosporium L037 species from the brown alga Actinotrichia fragilis, collected off Seragaki Beach at Okinawa Island, Japan, produced two 12-membered macrolides, namely, sporiolides A and B. Both these metabolites exhibited potent cytotoxicity against murine lymphoma L1210 cells with IC50 values of 0.37 and 3.1 um, respectively. A cyclic tetrapeptide compound produced by Petriella sp., an endophyte of the sponge Suberites domuncula, showed cytotoxicity against murine L5178Y lymphoma cells at an ED50 value of <0.1 μg/ml. The present chapter updates and consolidates the information available on the secondary metabolites produced by endophytic fungi isolated from marine environments.

Keywords

Antimicrobial Anticancer Bioactive compounds Macroalgae Marine drugs Natural products Sponges 

References

  1. 1.
    König GM, Wright AD, de Nys R (1999) Halogenated monoterpenes from Plocamium costatum and their biological activity. J Nat Prod 62:383–385PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal S, Adholeya A, Deshmukh SK (2016) The pharmacological potential of non-ribosomal peptides from marine sponge and tunicates. Front Pharmacol 7:333PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Blunt J, Carroll A, Copp B et al (2018) Marine natural products. Nat Prod Rep 35:8–53PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sithranga Boopathy N, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010:214186PubMedCrossRefGoogle Scholar
  5. 5.
    Passaes CP, Sáez-Cirión A (2014) HIV cure research: advances and prospects. Virology 454:340–352PubMedCrossRefGoogle Scholar
  6. 6.
    Deshmukh SK, Prakash V, Ranjan N (2017) Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem Rev 16:883–920CrossRefGoogle Scholar
  7. 7.
    Zhang P, Li X-M, Mao X-X et al (2016) Varioloid A, a new indolyl-6, 10b-dihydro-5aH-[1] benzofuro [2, 3-b] indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Beilstein J Org Chem 12:2012PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wijesekara I, Zhang C, Van Ta Q et al (2014) Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol Res 169:255–261PubMedCrossRefGoogle Scholar
  9. 9.
    König GM, Wright AD (1996) Marine natural products research: current directions and future potential. Planta Med 62:193–211PubMedCrossRefGoogle Scholar
  10. 10.
    Fang W, Lin X, Zhou X et al (2014) Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Medchemcomm 5:701–705CrossRefGoogle Scholar
  11. 11.
    Cui C-M, Li X-M, Meng L et al (2010) 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J Nat Prod 73:1780–1784PubMedCrossRefGoogle Scholar
  12. 12.
    Cui C-M, Li X-M, Li C-S et al (2010) Cytoglobosins A− G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73:729–733PubMedCrossRefGoogle Scholar
  13. 13.
    Wang S, Li X-M, Teuscher F et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625PubMedCrossRefGoogle Scholar
  14. 14.
    de Felício R, Pavão GB, de Oliveira ALL et al (2015) Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev Bras Farmacogn 25:641–650CrossRefGoogle Scholar
  15. 15.
    Sun R, Miao F, Zhang J et al (2013) Three new xanthone derivatives from an algicolous isolate of Aspergillus wentii. Magn Reson Chem 51:65–68PubMedCrossRefGoogle Scholar
  16. 16.
    Gao S, Li X, Zhang Y et al (2011) Conidiogenones H and I, two new diterpenes of Cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem Biodivers 8:1748–1753PubMedCrossRefGoogle Scholar
  17. 17.
    Abdel-Lateff A, Fisch KM, Wright AD, König GM (2003) A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med 69:831–834PubMedCrossRefGoogle Scholar
  18. 18.
    Abdel-Lateff A, Klemke C, König GM, Wright AD (2003) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708PubMedCrossRefGoogle Scholar
  19. 19.
    Cai R, Chen S, Long Y et al (2017) Depsidones from Talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochem Lett 20:196–199CrossRefGoogle Scholar
  20. 20.
    Cui C, Li X, Li C et al (2009) Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv Chim Acta 92:1366–1370CrossRefGoogle Scholar
  21. 21.
    Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400CrossRefGoogle Scholar
  22. 22.
    Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat Sci 68:338–354CrossRefGoogle Scholar
  23. 23.
    Shearer CA, Descals E, Kohlmeyer B et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67CrossRefGoogle Scholar
  24. 24.
    Sridhar K (2004) Mangrove fungi in India. Curr Sci 86:1586–1587Google Scholar
  25. 25.
    Balagurunathan R, Radhakrishnan M (2007) Exploiting the less explored-microbial endophytes. Adv Biotechnol 6:20–23Google Scholar
  26. 26.
    Mishra R, Sarma VV (2017) Mycoremediation of heavy metal and hydrocarbon pollutants by endophytic fungi. In: Mycoremediation and environmental sustainability. Springer, Cham, pp 133–151Google Scholar
  27. 27.
    Yang HB, Tan N, Wu FJ et al (2012) Biosorption of uranium (VI) by a mangrove endophytic fungus Fusarium sp.# ZZF51 from the South China Sea. J Radioanal Nucl Chem 292:1011–1016PubMedCrossRefGoogle Scholar
  28. 28.
    Meng L-H, Wang C-Y, Mándi A et al (2016) Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org Lett 18:5304–5307PubMedCrossRefGoogle Scholar
  29. 29.
    Huang J, Xu J, Wang Z et al (2017) New lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318#. Nat Prod Res 31:326–332PubMedCrossRefGoogle Scholar
  30. 30.
    Liu S, Dai H, Makhloufi G et al (2016) Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus, Pestalotiopsis microspora. J Nat Prod 79:2332–2340PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Moussa M, Ebrahim W, El-Neketi M et al (2016) Tetrahydroanthraquinone derivatives from the mangrove-derived endophytic fungus Stemphylium globuliferum. Tetrahedron Lett 57:4074–4078CrossRefGoogle Scholar
  32. 32.
    Chen S, Liu Z, Liu Y et al (2015) New depsidones and isoindolinones from the mangrove endophytic fungus Meyerozyma guilliermondii (HZ-Y2) isolated from the South China Sea. Beilstein J Org Chem 11:1187PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhou X-M, Zheng C-J, Chen G-Y et al (2014) Bioactive anthraquinone derivatives from the mangrove-derived fungus Stemphylium sp. 33231. J Nat Prod 77:2021–2028PubMedCrossRefGoogle Scholar
  34. 34.
    Yu G, Zhou G, Zhu M et al (2015) Neosartoryadins A and B, fumiquinazoline alkaloids from a mangrove-derived fungus Neosartorya udagawae HDN13-313. Org Lett 18:244–247PubMedCrossRefGoogle Scholar
  35. 35.
    Huang S, Ding W, Li C, Cox DG (2014) Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacogn Mag 10:410PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ravindran C, Naveenan T, Varatharajan GR et al (2012) Antioxidants in mangrove plants and endophytic fungal associations. Bot Mar 55:269–279CrossRefGoogle Scholar
  37. 37.
    Huang X, Huang H, Li H et al (2013) Asperterpenoid A, a new sesterterpenoid as an inhibitor of mycobacterium tuberculosis protein tyrosine phosphatase B from the culture of Aspergillus sp. 16-5c. Org Lett 15:721–723PubMedCrossRefGoogle Scholar
  38. 38.
    Xia G, Li J, Li H et al (2014) Alterporriol-type dimers from the mangrove endophytic fungus, Alternaria sp.(SK11), and their MptpB inhibitions. Mar Drugs 12:2953–2969PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu Z, Liu H, Chen Y, She Z (2017) A new anti-inflammatory meroterpenoid from the fungus Aspergillus terreus H010. Nat Prod Res 1–5.  https://doi.org/10.1080/14786419.2017.1375924PubMedCrossRefGoogle Scholar
  40. 40.
    Almeida C, Hemberger Y, Schmitt SM et al (2012) Marilines A–C: novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem Eur J 18:8827–8834PubMedCrossRefGoogle Scholar
  41. 41.
    Sibero MT, Sabdaningsih A, Cristianawati O et al (2017) Isolation, identification and screening antibacterial activity from marine sponge-associated fungi against multidrug-resistant (MDR) Escherichia coli. IOP Conf Ser: Earth Environ Sci 55:012028.  https://doi.org/10.1088/1755-1315/55/1/012028CrossRefGoogle Scholar
  42. 42.
    Wang J, Wang Z, Ju Z et al (2015) Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med 81:160–166PubMedCrossRefGoogle Scholar
  43. 43.
    Kossuga MH, Romminger S, Xavier C et al (2012) Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Rev Bras Farmacogn 22:257–267CrossRefGoogle Scholar
  44. 44.
    Yu Z, Lang G, Kajahn I et al (2008) Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod 71:1052–1054PubMedCrossRefGoogle Scholar
  45. 45.
    Sun L-L, Shao C-L, Chen J-F et al (2012) New bisabolane sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria. Bioorg Med Chem Lett 22:1326–1329PubMedCrossRefGoogle Scholar
  46. 46.
    Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344PubMedCrossRefGoogle Scholar
  47. 47.
    Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endophytes–a chemical and biological perception. Fungal Divers 61:1–27CrossRefGoogle Scholar
  48. 48.
    Sarasan M, Puthumana J, Job N et al (2017) Marine algicolous endophytic fungi–A promising drug resource of the era. J Microbiol Biotechnol 27:1039–1052Google Scholar
  49. 49.
    Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1CrossRefGoogle Scholar
  50. 50.
    Kjer J, Wray V, Edrada-Ebel R et al (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057CrossRefGoogle Scholar
  51. 51.
    Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479CrossRefGoogle Scholar
  52. 52.
    Wang J, Ding W, Wang R et al (2015) Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar Drugs 13:4492–4504PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liu Y, Wu Y, Zhai R et al (2016) Altenusin derivatives from mangrove endophytic fungus Alternaria sp. SK6YW3L. RSC Adv 6:72127–72132CrossRefGoogle Scholar
  54. 54.
    Zhang P, Li X, Wang BG (2016) Secondary metabolites from the marine algal-derived endophytic fungi: chemical diversity and biological activity. Planta Med 82:832–842PubMedCrossRefGoogle Scholar
  55. 55.
    Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi – ecological and chemical perspectives. Fungal Divers 57:45–83CrossRefGoogle Scholar
  56. 56.
    Liu Y, Stuhldreier F, Kurtán T et al (2017) Daldinone derivatives from the mangrove-derived endophytic fungus Annulohypoxylon sp. RSC Adv 7:5381–5393CrossRefGoogle Scholar
  57. 57.
    Klemke C, Kehraus S, Wright AD, König GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67:1058–1063PubMedCrossRefGoogle Scholar
  58. 58.
    Chen Y, Liu Z, Liu H et al (2018) Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4. Mar Drugs 16:54PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Elissawy AM, El-Shazly M, Ebada SS et al (2015) Bioactive terpenes from marine-derived fungi. Mar Drugs 13:1966–1992PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gomes NGM, Lefranc F, Kijjoa A, Kiss R (2015) Can some marine-derived fungal metabolites become actual anticancer agents? Mar Drugs 13:3950–3991PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    An C-Y, Li X-M, Li C-S et al (2013) Aniquinazolines A–D, four new quinazolinone alkaloids from marine-derived endophytic fungus Aspergillus nidulans. Mar Drugs 11:2682–2694PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Xiao Z, Huang H, Shao C et al (2013) Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungus Aspergillus sp. 085242. Org Lett 15:2522–2525PubMedCrossRefGoogle Scholar
  64. 64.
    Ze’en Xiao SC, Cai R, Shao’e Lin KH, She Z (2016) New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein J Org Chem 12:2077PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li D, Xu Y, Shao C-L et al (2012) Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar Drugs 10:234–241PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ju Z, Qin X, Lin X et al (2016) New phenyl derivatives from endophytic fungus Botryosphaeria sp. SCSIO KcF6 derived of mangrove plant Kandelia candel. Nat Prod Res 30:192–198PubMedCrossRefGoogle Scholar
  67. 67.
    Zhu M, Zhang X, Feng H et al (2016) Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron 72:5679–5683CrossRefGoogle Scholar
  68. 68.
    Shiono Y, Miyazaki N, Murayama T et al (2016) GSK-3β inhibitory activities of novel dichroloresorcinol derivatives from Cosmospora vilior isolated from a mangrove plant. Phytochem Lett 18:122–127CrossRefGoogle Scholar
  69. 69.
    Cui H, Yu J, Chen S et al (2017) Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorg Med Chem Lett 27:803–807PubMedCrossRefGoogle Scholar
  70. 70.
    Calcul L, Waterman C, Ma WS et al (2013) Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs 11:5036–5050PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen Y-X, Xu M-Y, Li H-J et al (2017) Diverse secondary metabolites from the marine-derived fungus Dichotomomyces cejpii F31-1. Mar Drugs 15:339PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Yan H, Li X, Li C, Wang B (2012) Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv Chim Acta 95:163–168CrossRefGoogle Scholar
  73. 73.
    Cui H, Liu Y, Ding M et al (2017) New pyranonaphthazarin and 2-naphthoic acid derivatives from the mangrove endophytic fungus Leptosphaerulina sp. SKS032. Phytochem Lett 20:214–217CrossRefGoogle Scholar
  74. 74.
    Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11:176PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Xu J, Takasaki A, Kobayashi H et al (2006) Four new macrocyclic trichothecenes from two strains of marine-derived fungi of the genus Myrothecium. J Antibiot (Tokyo) 59:451CrossRefGoogle Scholar
  76. 76.
    Gao S-S, Li X-M, Li C-S et al (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21:2894–2897PubMedCrossRefGoogle Scholar
  77. 77.
    Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Imhoff JF (2016) Natural products from marine fungi – still an underrepresented resource. Mar Drugs 14:19PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Huang G-L, Zhou X-M, Bai M et al (2016) Dihydroisocoumarins from the mangrove-derived fungus Penicillium citrinum. Mar Drugs 14:177PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Zhang P, Li X-M, Liu H et al (2015) Two new alkaloids from Penicillium oxalicum EN-201, an endophytic fungus derived from the marine mangrove plant Rhizophora stylosa. Phytochem Lett 13:160–164CrossRefGoogle Scholar
  81. 81.
    Zheng C, Chen Y, Jiang L-L, Shi X-M (2014) Antiproliferative metabolites from the endophytic fungus Penicillium sp. FJ-1 isolated from a mangrove Avicennia marina. Phytochem Lett 10:272–275CrossRefGoogle Scholar
  82. 82.
    Liu F, Cai X-L, Yang H et al (2010) The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med 76:185–189PubMedCrossRefGoogle Scholar
  83. 83.
    Liu H, Chen S, Liu W et al (2016) Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Mar Drugs 14:217PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482PubMedCrossRefGoogle Scholar
  85. 85.
    Lei H, Lin X, Han L et al (2017) Polyketide derivatives from a marine-sponge-associated fungus Pestalotiopsis heterocornis. Phytochemistry 142:51–59PubMedCrossRefGoogle Scholar
  86. 86.
    Wang J, Wei X, Lu X et al (2014) Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.) Druce. Tetrahedron 70:9695–9701CrossRefGoogle Scholar
  87. 87.
    Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449PubMedCrossRefGoogle Scholar
  88. 88.
    Xu L, Meng W, Cao C et al (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drugs 13:3479–3513PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Klaiklay S, Rukachaisirikul V, Tadpetch K et al (2012) Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron 68:2299–2305CrossRefGoogle Scholar
  90. 90.
    Luo Y-F, Zhang M, Dai J-G et al (2016) Cytochalasins from mangrove endophytic fungi Phomopsis spp. xy21 and xy22. Phytochem Lett 17:162–166CrossRefGoogle Scholar
  91. 91.
    Wibowo M, Prachyawarakorn V, Aree T et al (2016) Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Phytochemistry 122:126–138PubMedCrossRefGoogle Scholar
  92. 92.
    Chen S, Liu Y, Liu Z et al (2016) Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess α-glucosidase inhibitory and antibacterial activities. RSC Adv 6:26412–26420CrossRefGoogle Scholar
  93. 93.
    Nicoletti R, Salvatore MM, Andolfi A (2018) Secondary metabolites of mangrove-associated strains of Talaromyces. Mar Drugs 16:12PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Chen S, He L, Chen D et al (2017) Talaramide A, an unusual alkaloid from the mangrove endophytic fungus Talaromyces sp.(HZ-YX1) as an inhibitor of mycobacterial PknG. New J Chem 41:4273–4276CrossRefGoogle Scholar
  95. 95.
    Zhang M, Liu J-M, Zhao J-L et al (2016) Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. Chin Chem Lett 27:957–960CrossRefGoogle Scholar
  96. 96.
    Tarman K, Lindequist U, Wende K et al (2011) Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats. Mar Drugs 9:294–306PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Deshmukh SK, Prakash V, Ranjan N (2017) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536PubMedCrossRefGoogle Scholar
  98. 98.
    Wu Y-Z, Qiao F, Xu G-W et al (2015) Neuroprotective metabolites from the endophytic fungus Penicillium citrinum of the mangrove Bruguiera gymnorrhiza. Phytochem Lett 12:148–152CrossRefGoogle Scholar
  99. 99.
    Li H, Jiang J, Liu Z et al (2014) Peniphenones A–D from the mangrove fungus Penicillium dipodomyicola HN4-3A as inhibitors of mycobacterium tuberculosis phosphatase MptpB. J Nat Prod 77:800–806PubMedCrossRefGoogle Scholar
  100. 100.
    Tasdemir D (2017) Marine fungi in the spotlight: opportunities and challenges for marine fungal natural product discovery and biotechnology Fungal Biology and Biotechnology 20174:5.  https://doi.org/10.1186/s40694-017-0034-1
  101. 101.
    Jones EBG, Mitchell 1L (1996) Biodiversity of marine fungi. In: Biodiversity. International Biodiversity seminar ECCO XIV Meeting (ed. A. Cimerman and N. Gunde-Cimerman). National Institute of Chemistry and Slovenia national Commission for UNESCO, Ljublijana: 31–42Google Scholar
  102. 102.
    Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. Mycol Ser 23:533CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mishra Rashmi
    • 1
  • J. S. Kushveer
    • 1
  • V. Venkateswara Sarma
    • 1
    Email author
  1. 1.Department of Biotechnology, School of Life SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations