Advertisement

Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications

  • Farhana Tasnim Chowdhury
  • Mohammad Riazul Islam
  • Md. Rakibul Islam
  • Haseena KhanEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Plant endophytes ranging from bacteria to fungi produce a diverse class of volatile organic compounds (VOCs) that are important for the development of symbiotic relation under highly competitive environment with the host. Not only that, they also play an important role in intra- and inter-kingdom signalling. Chemically, this gas-phase mixture may contain acids, alcohols, aldehydes, aromatics, esters, heterocycles, ketones, terpenes, thiols, and so forth. Several evidences suggested their potential use for sustainable crop production and industrial applications. Many VOCs have been reported with significant effects for antibiosis and growth promotion. They provide for an alternative to chemicals used to protect plants from pathogens and thus allow for better crop welfare. They also possess food and flavor properties which can be exploited in depth for food industries. Recent studies revealed that endophytes also produce diverse volatile hydrocarbons with fuel properties. They emit mixtures of volatile biofuel molecules comprising of alkanes, alkenes, acids, benzene derivatives, esters, etc. A vast diversity of endophytes are associated with plants for their ecology and fitness, and a systematic exploration of their VOCs will likely uncover novel use for their future utilization. In this chapter we highlight the nature and known or proposed functions of endophytic bacterial and fungal VOCs with a focus on the ones which have potential applications.

Keywords

Endophyte Volatile organic compound (VOC) Infochemicals Biofuel Plant growth promotion Plant-microbe interaction 

References

  1. 1.
    Bitas V, Kim H-S, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26(8):835–843PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant–microbe interactions. Curr Opin Plant Biol 13(4):378–387PubMedCrossRefGoogle Scholar
  3. 3.
    Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  4. 4.
    Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Liarzi O, Bar E, Lewinsohn E, Ezra D (2016a) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS One 11(12):e0168242PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW and White JF, Eds., Microbial Endophytes, Marcel Dekker, Inc., New York, NY, pp 3–29Google Scholar
  8. 8.
    Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92(8):fiw114CrossRefGoogle Scholar
  9. 9.
    Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hijaz F, El-Shesheny I, Killiny N (2013) Herbivory by the insect d iaphorina citri induces greater change in citrus plant volatile profile than does infection by the bacterium, Candidatus Liberibacter asiaticus. Plant Signal Behav 8(10):e25677PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703PubMedCrossRefGoogle Scholar
  12. 12.
    Herrmann A (2010) The chemistry and biology of volatiles. Andreas Herrmann (Ed.) John Wiley & SonsGoogle Scholar
  13. 13.
    Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11(1):15–37CrossRefGoogle Scholar
  14. 14.
    Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2–3):73–83CrossRefGoogle Scholar
  15. 15.
    Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842CrossRefGoogle Scholar
  16. 16.
    Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36(10):1122–1131PubMedCrossRefGoogle Scholar
  17. 17.
    Sánchez-Ortiz B, Sánchez-Fernández R, Duarte G, Lappe-Oliveras P, Macías-Rubalcava M (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120(5):1313–1325PubMedCrossRefGoogle Scholar
  18. 18.
    Hung R, Lee S, Rodriguez-Saona C, Bennett JW (2014) Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 4(1):53PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mburu DM, Ndung’u MW, Maniania NK, Hassanali A (2011) Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellency toward the termite Macrotermes michaelseni. J Exp Biol 214(6):956–962PubMedCrossRefGoogle Scholar
  20. 20.
    Wood WF, Archer CL, Largent DL (2001) 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol 29(5):531–533PubMedCrossRefGoogle Scholar
  21. 21.
    Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148(11):3737–3741CrossRefGoogle Scholar
  22. 22.
    Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39(7):840–859PubMedCrossRefGoogle Scholar
  23. 23.
    Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117(2):418–426PubMedCrossRefGoogle Scholar
  24. 24.
    Chen H-W (2008) Microbial volatile organic compounds: generation pathways and mass spectrometric detection. China Biotechnol 28(1):124–133Google Scholar
  25. 25.
    Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193CrossRefGoogle Scholar
  26. 26.
    Thorn RMS, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6(2):024001PubMedCrossRefGoogle Scholar
  27. 27.
    Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204(2):111–121PubMedCrossRefGoogle Scholar
  28. 28.
    Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80(5):758–771PubMedCrossRefGoogle Scholar
  30. 30.
    Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, Van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li N, Alfiky A, Vaughan MM, Kang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30(3):134–144CrossRefGoogle Scholar
  32. 32.
    Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40:2042–2067PubMedCrossRefGoogle Scholar
  33. 33.
    Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226(4):839PubMedCrossRefGoogle Scholar
  35. 35.
    Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles–an effect of CO2? FEBS Lett 583(21):3473–3477PubMedCrossRefGoogle Scholar
  36. 36.
    Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577PubMedCrossRefGoogle Scholar
  38. 38.
    Farag MA, Zhang H, Ryu C-M (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14(12):660–668PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22(9):2004–2014PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhang H, Murzello C, Sun Y, Kim M-S, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23(8):1097–1104PubMedCrossRefGoogle Scholar
  44. 44.
    Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075PubMedCrossRefGoogle Scholar
  45. 45.
    Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26CrossRefGoogle Scholar
  46. 46.
    Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197(5):723–727PubMedCrossRefGoogle Scholar
  47. 47.
    Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Blom D, Fabbri C, Connor E, Schiestl F, Klauser D, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058PubMedCrossRefGoogle Scholar
  49. 49.
    Jeleń H, Błaszczyk L, Chełkowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13(3):589–600CrossRefGoogle Scholar
  50. 50.
    Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147(11):2943–2950CrossRefGoogle Scholar
  51. 51.
    Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320(2):87–94PubMedCrossRefGoogle Scholar
  52. 52.
    Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31(1):1–8CrossRefGoogle Scholar
  53. 53.
    Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81(3):1147–1156PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lutz MP, Wenger S, Maurhofer M, Défago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48(3):447–455PubMedCrossRefGoogle Scholar
  55. 55.
    Werner S, Polle A, Brinkmann N (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol 100(20):8651–8665PubMedCrossRefGoogle Scholar
  56. 56.
    Pauliuc I, Dorica B (2013) Antibacterial activity of Pleurotus ostreatus gemmotherapic extract. J Hortic For Biotech 17:242–245Google Scholar
  57. 57.
    Schmidt R, Cordovez V, De Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9(11):2329PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tyc O, Zweers H, de Boer W, Garbeva P (2015) Volatiles in inter-specific bacterial interactions. Front Microbiol 6:1412PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012PubMedCrossRefGoogle Scholar
  60. 60.
    Garbeva P, Hol WG, Termorshuizen AJ, Kowalchuk GA, De Boer W (2011) Fungistasis and general soil biostasis–a new synthesis. Soil Biol Biochem 43(3):469–477CrossRefGoogle Scholar
  61. 61.
    Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28(1):57–64CrossRefGoogle Scholar
  62. 62.
    de Boer W, Verheggen P, Gunnewiek PJK, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69(2):835–844PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lazazzara V, Perazzolli M, Pertot I, Biasioli F, Puopolo G, Cappellin L (2017) Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. Microbiol Res 201:52–62PubMedCrossRefGoogle Scholar
  64. 64.
    Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ossowicki A, Jafra S, Garbeva P (2017) The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 12(3):e0174362PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    De Vrieze M, Pandey P, Bucheli TD, Varadarajan AR, Ahrens CH, Weisskopf L, Bailly A (2015) Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol 6:1295PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48(4):460–466PubMedCrossRefGoogle Scholar
  69. 69.
    Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83CrossRefGoogle Scholar
  70. 70.
    Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930PubMedCrossRefGoogle Scholar
  72. 72.
    D'alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37(4):813–826PubMedCrossRefGoogle Scholar
  73. 73.
    Boots A, Smolinska A, van Berkel J, Fijten R, Stobberingh E, Boumans M, Moonen E, Wouters E, Dallinga J, Van Schooten F (2014) Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography–mass spectrometry. J Breath Res 8(2):027106PubMedCrossRefGoogle Scholar
  74. 74.
    Kline D, Allan S, Bernier U, Welch C (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, USA. Med Vet Entomol 21(4):323–331PubMedCrossRefGoogle Scholar
  75. 75.
    Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4(9):e7032PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282CrossRefGoogle Scholar
  77. 77.
    Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2(4):319–330CrossRefGoogle Scholar
  78. 78.
    Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energ Rev 27:77–93CrossRefGoogle Scholar
  79. 79.
    Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182CrossRefGoogle Scholar
  80. 80.
    Schuster BG, Chinn MS (2013) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnergy Res 6(2):416–435CrossRefGoogle Scholar
  81. 81.
    Strobel G (2014a) The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels 5(4):447–455CrossRefGoogle Scholar
  82. 82.
    Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K (2017) Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl Microbiol Biotechnol 101(6):2603–2618PubMedCrossRefGoogle Scholar
  83. 83.
    Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156(12):3814–3829PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154(11):3319–3328PubMedCrossRefGoogle Scholar
  85. 85.
    Strobel G, Tomsheck A, Geary B, Spakowicz D, Strobel S, Mattner S, Mann R (2010) Endophyte strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology 1(3):187–194CrossRefGoogle Scholar
  86. 86.
    Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32(4):363–373PubMedCrossRefGoogle Scholar
  87. 87.
    Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102(20):9718–9722PubMedCrossRefGoogle Scholar
  88. 88.
    Banerjee D, Strobel GA, Booth B, Sears J, Spakowicz D, Busse S (2010) An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere 1(3):241–247Google Scholar
  89. 89.
    Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60(4):903–914PubMedCrossRefGoogle Scholar
  90. 90.
    Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61(4):729–739CrossRefGoogle Scholar
  91. 91.
    Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158(2):465–473CrossRefGoogle Scholar
  92. 92.
    Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae. PLoS One 11(2):e0146983PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99(12):4943–4951PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102(19):9286–9290CrossRefGoogle Scholar
  95. 95.
    Demirbaş A (2002) Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources 24(9):835–841CrossRefGoogle Scholar
  96. 96.
    Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7(1):1CrossRefGoogle Scholar
  97. 97.
    Knothe G, Krahl J and Gerpen J (2010) The biodiesel handbook. Knothe G, Krahl J, Gerpen J. Eds. Academic Press and AOCS Press. ElsevierGoogle Scholar
  98. 98.
    Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35(9):4661–4670CrossRefGoogle Scholar
  99. 99.
    Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205PubMedCrossRefGoogle Scholar
  100. 100.
    Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156(1):270–277CrossRefGoogle Scholar
  101. 101.
    Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink G-JW, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70(2):237–246PubMedCrossRefGoogle Scholar
  102. 102.
    Strobel GA (2015) Bioprospecting—fuels from fungi. Biotechnol Lett 37(5):973–982PubMedCrossRefGoogle Scholar
  103. 103.
    Strobel G (2014b) The story of mycodiesel. Curr Opin Microbiol 19:52–58PubMedCrossRefGoogle Scholar
  104. 104.
    Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Renninger NS, McPhee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. Google PatentsGoogle Scholar
  106. 106.
    Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209Google Scholar
  107. 107.
    Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014CrossRefGoogle Scholar
  108. 108.
    Peng X-W, Chen H-Z (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57(2):239–242CrossRefGoogle Scholar
  109. 109.
    Tao M-H, Yan J, Wei X-Y, Li D-L, Zhang W-M, Tan J-W (2011) A novel sesquiterpene alcohol from Fimetariella rabenhorstii, an endophytic fungus of Aquilaria sinensis. Nat Prod Commun 6(6):763–766PubMedGoogle Scholar
  110. 110.
    Stadler M, Schulz B (2009) High energy biofuel from endophytic fungi? Trends Plant Sci 14(7):353–355PubMedCrossRefGoogle Scholar
  111. 111.
    Abrahão MR, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52(1):367–372CrossRefGoogle Scholar
  112. 112.
    Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44(30):3651–3659CrossRefGoogle Scholar
  113. 113.
    Nisperos-Carriedo MO, Shaw PE (1990) Comparison of volatile flavor components in fresh and processed orange juices. J Agric Food Chem 38(4):1048–1052CrossRefGoogle Scholar
  114. 114.
    Molina G, Pimentel MR, Bertucci TC, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27(6):289–294Google Scholar
  115. 115.
    Strobel G, Ericksen A, Sears J, Xie J, Geary B, Blatt B (2017) Urnula sp., an endophyte of Dicksonia antarctica, making a fragrant mixture of biologically active volatile organic compounds. Microb Ecol 1–10Google Scholar
  116. 116.
    Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405PubMedCrossRefGoogle Scholar
  117. 117.
    Stinson A, Zidack N, Strobel G, Jacobsen B (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87(11):1349–1354PubMedCrossRefGoogle Scholar
  118. 118.
    Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115(3):220–227PubMedCrossRefGoogle Scholar
  119. 119.
    Schalchli H, Tortella G, Rubilar O, Parra L, Hormazabal E, Quiroz A (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36(1):144–152PubMedCrossRefGoogle Scholar
  120. 120.
    Palou L, Marcilla A, Rojas-Argudo C, Alonso M, Jacas J-A, del Río MÁ (2007) Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biol Technol 46(3):252–261CrossRefGoogle Scholar
  121. 121.
    Suwannarach N, Bussaban B, Nuangmek W, Pithakpol W, Jirawattanakul B, Matsui K, Lumyong S (2016) Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J Sci Food Agric 96(1):339–345PubMedCrossRefGoogle Scholar
  122. 122.
    Lee S, Kim H, Choi G, Lee H, Jang K, Choi Y, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106(4):1213–1219PubMedCrossRefGoogle Scholar
  123. 123.
    Wani MA, Sanjana K, Kumar DM, Lal DK (2010) GC–MS analysis reveals production of 2–phenylethanol from Aspergillus niger endophytic in rose. J Basic Microbiol 50(1):110–114PubMedCrossRefGoogle Scholar
  124. 124.
    Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15(11):7961–7970PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Liarzi O, Bucki P, Miyara SB, Ezra D (2016b) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11(12):e0168437PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Riga E, Lacey LA, Guerra N (2008) Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biol Control 45(3):380–385CrossRefGoogle Scholar
  127. 127.
    Freire E, Campos V, Oliveira D, Faria M, Pohlit A, Noberto N, Rezende E, Pfenning L, Silva J (2012) Volatile substances produced by Fusarium oxysporum from coffee rhizosphere and other microbes affect Meloidogyne incognita and Arthrobotrys conoides. J Nematol 44(4):321PubMedPubMedCentralGoogle Scholar
  128. 128.
    Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46(3):199–213CrossRefGoogle Scholar
  129. 129.
    Cortes-Barco A, Goodwin P, Hsiang T (2010) Comparison of induced resistance activated by benzothiadiazole,(2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59(4):643–653CrossRefGoogle Scholar
  130. 130.
    Song GC, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803–9819PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9(3):240–244CrossRefGoogle Scholar
  132. 132.
    Grimme E, Zidack N, Sikora R, Strobel G, Jacobsen B (2007) Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis 91(2):220–225PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Farhana Tasnim Chowdhury
    • 1
  • Mohammad Riazul Islam
    • 1
  • Md. Rakibul Islam
    • 1
  • Haseena Khan
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh

Personalised recommendations