Encyclopedia of Social Insects

Living Edition
| Editors: Christopher Starr

Caste Differentiation: Genetic and Epigenetic Factors

  • Graham J. ThompsonEmail author
  • Anna M. Chernyshova
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-90306-4_178-1

The process of caste differentiation is central to understanding insect sociality, because it is task specialization that enables division of labor within eusocial colonies. Selection presumably favors colonies that can adjust their division of labor in response to changing environmental demands, and for many taxa genetic and epigenetic factors are an important part of this equation. In this entry, we provide a framework for understanding genetic and epigenetic effects on caste. From mostly ant, bee, and termite examples discovered so far, we make clear that genotype-caste associations can evolve in different and sometimes complex ways and can involve additive or nonadditive genetic effects that, in turn, may arise directly from focal individuals or indirectly via their social partners. Epigenetic effects, by contrast, provide an interface between environmental experience and gene expression. For the most part, both genetic and epigenetic effects on caste appear to be highly...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Anderson, K. E., Linksvayer, T. A., & Smith, C. R. (2008). The causes and consequences of genetic caste determination in ants (Hymenoptera: Formicidae). Myrmecological News, 11, 119–132.Google Scholar
  2. 2.
    Bewick, A. J., Vogel, K. J., Moore, A. J., & Schmitz, R. J. (2016). Evolution of DNA methylation across insects. Molecular Biology and Evolution, 34, 654–665.PubMedCentralGoogle Scholar
  3. 3.
    Beye, M., Hasselmann, M., Fondrk, M. K., Page, R. E., & Omholt, S. W. (2003). The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell, 114, 419–429.CrossRefGoogle Scholar
  4. 4.
    Bonasio, R., Li, Q., Lian, J., Mutti, N. S., Jin, L., et al. (2012). Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 22, 1755–1764.CrossRefGoogle Scholar
  5. 5.
    Crozier, R. H., & Schluns, H. (2008). Genetic caste determination in termites: Out of the shade but not from Mars. BioEssays, 30, 299–302.CrossRefGoogle Scholar
  6. 6.
    Forêt, S., Kucharski, R., Pellegrini, M., Feng, S. H., Jacobsen, S. E., et al. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 109, 4968–4973.CrossRefGoogle Scholar
  7. 7.
    Fougeyrollas, R., Dolejšová, K., Sillam-Dussès, D., Roy, V., Poteaux, C., et al. (2015). Asexual queen succession in the higher termite Embiratermes neotenicus. Proceedings of the Royal Society B: Biological Sciences, 282, 20150260.CrossRefGoogle Scholar
  8. 8.
    Fournier, D., Estoup, A., Orivel, J., Foucaud, J., Jourdan, H., et al. (2005). Clonal reproduction by males and females in the little fire ant. Nature, 435, 1230.CrossRefGoogle Scholar
  9. 9.
    Glastad, K. M., Gokhale, K., Liebig, J., & Goodisman, M. A. (2016). The caste-and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Scientific Reports, 6, 37110.CrossRefGoogle Scholar
  10. 10.
    Goodisman, M. A. D., & Crozier, R. H. (2003). Association between caste and genotype in the termite Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Australian Journal of Entomology, 42, 1–5.CrossRefGoogle Scholar
  11. 11.
    Hayashi, Y., Lo, N., Miyata, H., & Kitade, O. (2007). Sex-linked genetic influence on caste determination in a termite. Science, 318, 985–987.CrossRefGoogle Scholar
  12. 12.
    He, X. J., Zhang, X. C., Jiang, W. J., Barron, A. B., Zhang, J. H., & Zeng, Z. J. (2016). Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees. Scientific Reports, 6, 22359.CrossRefGoogle Scholar
  13. 13.
    Helms Cahan, S., & Keller, L. (2003). Complex hybrid origin of genetic caste determination in harvester ants. Nature, 424, 306–309.CrossRefGoogle Scholar
  14. 14.
    Helms Cahan, S., & Vinson, S. B. (2003). Reproductive division of labor between hybrid and nonhybrid offspring in a fire ant hybrid zone. Evolution, 57, 1562–1570.CrossRefGoogle Scholar
  15. 15.
    Hughes, W. O. H., Sumner, S., Van Borm, S., & Boomsma, J. J. (2003). Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proceedings of the National Academy of Sciences of the United States of America, 100, 9394–9397.CrossRefGoogle Scholar
  16. 16.
    Jaffe, R., Kronauer, D. J. C., Kraus, F. B., Boomsma, J. J., & Moritz, R. F. A. (2007). Worker caste determination in the army ant Eciton burchellii. Biology Letters, 3, 513–516.CrossRefGoogle Scholar
  17. 17.
    Julian, G. E., Fewell, J. H., Gadau, J., Johnson, R. A., & Larrabee, D. (2002). Genetic determination of the queen caste in an ant hybrid zone. Proceedings of the National Academy of Sciences of the United States of America, 99, 8157–8160.CrossRefGoogle Scholar
  18. 18.
    Kerr, W. E. (1950). Genetic determination of castes in the genus Melipona. Genetics, 35, 143–152.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kucharski, R., Maleszka, J., Forêt, S., & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319, 1827–1830.CrossRefGoogle Scholar
  20. 20.
    Li-Byarlay, H. (2016). The function of DNA methylation marks in social insects. Frontiers in Ecology and Evolution, 4, 57.CrossRefGoogle Scholar
  21. 21.
    Libbrecht, R., Oxley, P. R., Keller, L., & Kronauer, D. J. C. (2016). Robust DNA methylation in the clonal raider ant brain. Current Biology, 26, 391–395.CrossRefGoogle Scholar
  22. 22.
    Linksvayer, T. A. (2006). Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution, 60, 2552–2561.CrossRefGoogle Scholar
  23. 23.
    Linksvayer, T. A., & Wade, M. J. (2005). The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: Maternal effects, sib-social effects, and heterochrony. Quarterly Review of Biology, 80, 317–336.CrossRefGoogle Scholar
  24. 24.
    Lo, N., Hayashi, Y., & Kitade, O. (2009). Should environmental caste determination be assumed for termites? American Naturalist, 173, 848–853.CrossRefGoogle Scholar
  25. 25.
    Lo, N., Li, B., & Ujvari, B. (2012). DNA methylation in the termite Coptotermes lacteus. Insectes Sociaux, 59, 257–261.CrossRefGoogle Scholar
  26. 26.
    Maleszka, R. (2016). Epigenetic code and insect behavioural plasticity. Current Opinion in Insect Science, 15, 45–52.CrossRefGoogle Scholar
  27. 27.
    Page, R. E., Fondrk, M. K., & Robinson, G. E. (1993). Selectable components of sex allocation in colonies of the honeybee (Apis mellifera L.). Behavioral Ecology, 4, 239–245.CrossRefGoogle Scholar
  28. 28.
    Rheindt, F., Strehl, C., & Gadau, J. (2005). A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insectes Sociaux, 52, 163–168.CrossRefGoogle Scholar
  29. 29.
    Schwander, T., & Keller, L. (2008). Genetic compatibility affects queen and worker caste determination. Science, 322, 552.CrossRefGoogle Scholar
  30. 30.
    Schwander, T., Lo, N., Beekman, M., Oldroyd, B. P., & Keller, L. (2010). Nature versus nurture in social insect caste differentiation. Trends in Ecology & Evolution, 25, 275–282.CrossRefGoogle Scholar
  31. 31.
    Smith, C. R., Mutti, N. S., Jasper, W. C., Naidu, A., Smith, C. D., & Gadau, J. (2012). Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination. PLoS One, 7, e42433.CrossRefGoogle Scholar
  32. 32.
    Standage, D. S., Berens, A. J., Glastad, K. M., Severin, A. J., Brendel, V. P., & Toth, A. L. (2016). Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Molecular Ecology, 25, 1769–1784.CrossRefGoogle Scholar
  33. 33.
    Terrapon, N., Li, C., Robertson, H. M., Ji, L., Meng, X., et al. (2014). Molecular traces of alternative social organization in a termite genome. Nature Communications, 5, 3636.CrossRefGoogle Scholar
  34. 34.
    Vargo, E. L. (2019). Diversity of termite breeding systems. Insects, 10, 52.CrossRefGoogle Scholar
  35. 35.
    Volny, V. P., & Gordon, D. M. (2002). Genetic basis for queen-worker dimorphism in a social insect. Proceedings of the National Academy of Sciences of the United States of America, 99, 6108–6111.CrossRefGoogle Scholar
  36. 36.
    Welch, M., & Lister, R. (2014). Epigenomics and the control of fate, form and function in social insects. Current Opinion in Insect Science, 1, 31–38.CrossRefGoogle Scholar
  37. 37.
    Winter, U., & Buschinger, A. (1986). Genetically mediated queen polymorphism and caste determination in the slave-making ant, Harpagoxenus sublaevis (Hymenoptera: Formicidae). Entomologia Generalis, 11, 125–137.CrossRefGoogle Scholar
  38. 38.
    Yamamoto, Y., & Matsuura, K. (2012). Genetic influence on caste determination underlying the asexual queen succession system in a termite. Behavioral Ecology and Sociobiology, 66, 39–46.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Biology DepartmentWestern UniversityLondonCanada