Advertisement

The Cardiorenal Cross Talk

The Autonomic Pathway Regulating the Cardiocirculatory Balance
  • Edoardo GrondaEmail author
  • Emilio Vanoli
Living reference work entry

Abstract

The autonomic nervous system (ANS) controls essential physiologic functions, including heart rate, blood pressure, and body fluid volume regulation [1]. It is now well understood that the ANS is specifically designed to maintain body homeostasis eliciting organ-specific responses in the face of external challenges [2]. This complex task is accomplished by continuous and instantaneous interactions of its two limbs: the sympathetic and parasympathetic ones. As a matter of fact, the so-called sympatho-vagal interaction is the key mechanism able to warrant all needed adjustments to any aspect of the physiological activity of the entire body. Any alteration or maladaptive response of the ANS to physiological or pathological events (from simple position changes to compensatory responses to acute myocardial ischemia, for instance) results in disease development or progression. Specific to the cardio-renal axis is the fact that congestion due to intravascular overload is the most potent driver of sympathetic nervous system activation that increases arterial vascular resistance and organ hypoperfusion. In this context, kidneys are severely blood supply deprived and react to the higher intra-parenchimal vascular resistance by increasing the sympathetic response and the neuro-hormonal activation, with major consequence in fluid retention. The overall effect worsens heart function and target organs damage contributing to maintain and to aggravate heart failure progression.

Keywords

Cardio-renal axis Heart failure Autonomic nervous system 

References

  1. 1.
    May CN, Frithiof R, Hood SG, McAllen RM, McKinley MJ, Ramchandra R. Specific control of sympathetic nerve activity to the mammalian heart and kidney. Exp Physiol. 2009;95:34–40.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol. 2001;281:R683–98.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Watson AM, Mogulkoc R, McAllen RM, May CN. Stimulation of cardiac sympathetic nerve activity by central angiotensinergic mechanisms in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2004;286:R1051–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Frithiof R, Ramchandra R, Hood SG, May CN, Rundgren M. The hypothalamic paraventricular nucleus mediates sodium induced changes in cardiovascular and renal function in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2009;397:R185–93.CrossRefGoogle Scholar
  5. 5.
    Ramchandra R, Hood SG, Watson AM, May CN. Responses of cardiac sympathetic nerve activity to changes in circulating volume differ in normal and heart failure sheep. Am J Physiol Regul Integr Comp Physiol. 2008;295:R719–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sobotka PA, Krum H, Böhm M, Francis DP, Schlaich MP. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep. 2012;14:285–92.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058–66.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Macefield V, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol Lond. 1994;481:799–809.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lambert E, Straznicky N, Schlaich MP, et al. Differing patterns of sympathoexcitation in normal weight and obesity-related hypertension. Hypertension. 2007;50:862–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lambert G. The assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11:3–20.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Friberg P, Meredith I, Jennings G, Lambert G, Fazio V, Esler M. Evidence of increased renal noradrenaline spillover rate during sodium restriction in man. Hypertension. 1990;16:121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hasking G, Esler M, Jennings G, Burton D, Johns J, Korner P. Norepinephrine spillover to plasma in congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–86.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol Heart Circ Physiol. 1991;261:H1231–45.CrossRefGoogle Scholar
  15. 15.
    Van de Borne P, Rahnama M, Mezzetti S, et al. Contrasting effects of phentolamine and nitroprusside on neural and cardiovascular variability. Am J Physiol Heart Circ Physiol. 2001;281:H559–65.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, Ferrari R, Franchini M, Gnemmi M, Opasich C, Riccardi PG, Traversi E, Cobelli F. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107(4):565–70.. PMID: 12566367PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Parati G, Mancia G, Di Rienzo M, Castiglioni P, Taylor JA, Studinger P. Point: counterpoint cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:676–82.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18:7–19.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Parati G, di Rienzo M, Bertinieri G, et al. Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension. 1988;12:214–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pagani M, Somers V, Furlan R, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–10.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Robbe HW, Mulder LJ, Ruddel H, et al. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 1987;10:538–43.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Grassi M, Esler M. How to assess sympathetic activity in humans. J Hypertension. 1999;17:719–34.CrossRefGoogle Scholar
  23. 23.
    Tripsodiakis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure: physiology, pathophysiology and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.CrossRefGoogle Scholar
  24. 24.
    Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29:1147–59.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Tamaki S, Yamada T, Okuyama Y, et al. Cardiac iodine-123metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426–35.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol. 2009;16:113–21.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–97.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    DiBona GF. Neural control of the kidney: past, present, and future. Hypertension. 2003;41:621–4.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bell-Reuss E, Trevino DL, Gottschalk CW. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976;57:1104–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zanchetti AS. Neural regulation of renin release: experimental evidence and clinical implications in arterial hypertension. Circulation. 1977;56:691–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kirchheim H, Ehmke H, Persson P. Sympathetic modulation of renal hemodynamics, renin release and sodium excretion. Klin Wochenschr. 1989;67:858–64.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shlipak MG, Massie BM. The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Katholi RE, Hageman GR, Whitlow PL, et al. Hemodynamic and afferent renal nerve responses to intrarenal adenosine in the dog. Hypertension. 1983;5:I149–54.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Schlaich M, Krum H, Walton T, Lambert G, Sobotka P, Esler M. A novel catheter based approach to denervate the human kidney reduces blood pressure and muscle sympathetic nerve activity in a patient with end stage renal disease and hypertension. J Hypertension. 2009;27(Suppl 4):s437.Google Scholar
  37. 37.
    Zucker IH. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension. 2006;48:1005–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B. Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26:906–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldsmith SR, Sobotka PA, Bart BA. The sympathorenal axis in hypertension and heart failure. J Cardiac Fail. 2010;16:369–73.CrossRefGoogle Scholar
  41. 41.
    Cohn JN, Pfeffer MA, Rouleau J, et al. Adverse mortality effect of central sympathetic inhibition with sustained release moxonidine in patients with heart failure (MOXCON). Eur Journal Heart Fail. 2003;5:659–67.CrossRefGoogle Scholar
  42. 42.
    Beta-Blocker Evaluation of Survival Trial Investigators, Eichhorn EJ, Domanski MJ, Krause-Steinrauf H, Bristow MR, Lavori PW. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22):1659–67.CrossRefGoogle Scholar
  43. 43.
    Nozawa T, Igawa A, Fujii N, et al. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessel. 2002;16:51–6.CrossRefGoogle Scholar
  44. 44.
    Francis GS, Siegel RM, Goldsmith SR, et al. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann Intern Med. 1985;103:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: are natriuresis, sodium, and diuretics really the good, the bad and the ugly? Eur J Heart Fail. 2014;16:133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gibson DG, Marshall JC, Lockey E. Assessment of proximal tubular sodium reabsorption during water diuresis in patients with heart disease. Br Heart J. 1970;32:399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lewy JE, Windhager EE. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Phys. 1968;214:943–54.CrossRefGoogle Scholar
  48. 48.
    Grandchamp A, Boulpaep EL. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J Clin Invest. 1974;54:69–82.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gottschalk CW, Mylle M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Phys. 1956;185:430–9.CrossRefGoogle Scholar
  50. 50.
    Burnett JCJ, Knox FG. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Phys. 1980;238:F279–82.Google Scholar
  51. 51.
    Haddy FJ, Scott J, Fleishman M, Emanuel D. Effect of change in renal venous pressure upon renal vascular resistance, urine and lymph flow rates. Am J Phys. 1958;195:97–110.CrossRefGoogle Scholar
  52. 52.
    Lebrie SJ, Mayerson HS. Influence of elevated venous pressure on flow and composition of renal lymph. Am J Phys. 1960;198:1037–40.CrossRefGoogle Scholar
  53. 53.
    Ott CE, Haas JA, Cuche JL, Knox FG. Effect of increased peritubule protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J Clin Invest. 1975;55:612–20.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lote CJ, Snape BM. Collecting duct flow rate as a determinant of equilibration between urine and renal papilla in the rat in the presence of a maximal antidiuretic hormone concentration. J Physiol. 1977;270:533–44.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Allen GG, Barratt LJ. Effect of aldosterone on the transepithelial potential difference of the rat distal tubule. Kidney Int. 1981;19:678–86.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Woodhall PB, Tisher CC. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J Clin Invest. 1973;52:3095–108.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Schrier RW. Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol. 2010;6:61.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Tang WH, Vagelos RH, Yee YG, Benedict CR, Willson K, Liss CL, Fowler MB. Neurohormonal and clinical responses to high- versus low-dose enalapril therapy in chronic heart failure. J Am Coll Cardiol. 2002;39:70–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol. 2004;24:595–605.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62:485–9559.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dept Medicina e Specialità Mediche – Nephrology SectionIRCCS Cà Granda Policlinico di MilanoMilanItaly
  2. 2.Department of Molecular MedicineUniversity of PaviaPaviaItaly
  3. 3.Cardiovascular Department IRCCS MultiMedicaSesto San GiovanniItaly

Section editors and affiliations

  • Alessia Pascale
    • 1
  • Emilia d’Elia
    • 2
  1. 1.Department of Drug Sciences, Section of PharmacologyUniversity of PaviaPaviaItaly
  2. 2.Dipartimento CardiovascolareAzienda Ospedaliera Papa Giovanni XXIIIBergamoItaly

Personalised recommendations