Protective Effect of Omega 3 Fatty Acids EPA and DHA in the Neurodegenerative Disease

  • Edwin E. Martínez Leo
  • Rafael A. Rojas Herrera
  • Maira R. Segura CamposEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Neurodegenerative diseases (ND) are characterized by the death of neurons in different regions of the nervous system, followed by functional deterioration. The most frequent pathologies are the group of dementias such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), which represent an important impact on society and quality of life of people, mainly in the elderly group. Omega 3 is a polyunsaturated fatty acid, whose anti-inflammatory effect has been related to benefits on the neuroinflammatory processes characteristic of ND. Although the clinical evidence is unclear, epidemiological studies report improvement in cognitive performance and provide evidence on its neuroprotective effect in specific regions of the nervous system. The objective of this review is to determine the neuroprotective effects of omega 3 fatty acids on neurodegenerative disease.


Neuroinflammation Neuroregenery Functional nutrition Neuroprotection 


  1. 1.
    Agrawal A, Alharthi A, Vailati-Riboni M, Zhou Z, Loor J (2017) Expression of fatty acid sensing G-protein coupled receptors in peripartal Holstein cows. J Anim Sci Biotechnol 8(20):1–10Google Scholar
  2. 2.
    Allen NJ, Barres BA (2009) Glia – more than just brain glue. Nature 457:675–677CrossRefGoogle Scholar
  3. 3.
    Andrieu S, Guyonnet S, Coley N, Cantet C, Bonnefoy M, Bordes S et al (2017) Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol 16(5):377–389CrossRefGoogle Scholar
  4. 4.
    Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271CrossRefGoogle Scholar
  5. 5.
    Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50:S400–S405CrossRefGoogle Scholar
  6. 6.
    Becher B, Spath S, Goverman J (2016) Cytokine networks in neuroinflammation. Nat Rev Immunol 17:49. Scholar
  7. 7.
    Block ML, Hong JS (2005) Microglia and inflammation mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(77):98Google Scholar
  8. 8.
    Cai L, Wu X, Lv Y, Xu Y, Mi G, Li J (2015) The neuroprotective and antioxidant activities of protein hydrolysates from grass carp (Ctenopharyngodon idella) skin. J Food Sci Technol 52(6):3750–3755PubMedGoogle Scholar
  9. 9.
    Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S et al (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid driven mitochondrial localization. Proc Natl Acad Sci USA 101:9103–9108CrossRefGoogle Scholar
  10. 10.
    Carson M, Doose J, Melchior B, Schmid C, Ploix C (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48–65CrossRefGoogle Scholar
  11. 11.
    Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75(4–5):259–269CrossRefGoogle Scholar
  12. 12.
    Chen W, Zhang X, Huang W (2016) Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep 13:3391–3396CrossRefGoogle Scholar
  13. 13.
    Chen X, Wu S, Chen C, Xie B, Fang Z et al (2017) Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κβ pathway following experimental traumatic brain injury. J Neuroinflammation 14:143, 1–12CrossRefGoogle Scholar
  14. 14.
    Coulombe K, Saint-Pierre M, Cisbani G, St-Amour I, Gibrat C, Giguere-Rancourt A et al (2016) Partial neurorescue effects of DHA following a 6-OHDA lesion of the mouse dopaminergic system. J Nutr Biochem 30:133–142CrossRefGoogle Scholar
  15. 15.
    Cunningham C, Martínez V, Noctor S (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33(10):4216–4233CrossRefGoogle Scholar
  16. 16.
    Finkel L, Arroyo M, Crespo C, Garcés M (2014) Estudio sobre las enfermedades neurodegenerativas en España y su impacto económico y social. Resumen Ejecutivo Alianza Española de Enfermedades Neurodegenerativas, 2–4Google Scholar
  17. 17.
    Flachs P, Rossmeisl M, Kopecky J (2014) The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol Res 63(1):S93–S118PubMedGoogle Scholar
  18. 18.
    Galicia M, Gutiérrez G (2014) Papel del estrés oxidativo en el desarrollo de la enfermedad hepática alcohólica. Rev Gastroenterol Mex 79:135–144Google Scholar
  19. 19.
    Harauma A, Moriguchi T (2011) Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress. Lipids 46(5):409–416CrossRefGoogle Scholar
  20. 20.
    Heng LJ, Qi R, Yang RH, Xu GZ (2015) Docosahexaenoic acid inhibits mechanical allodynia and thermal hyperalgesia in diabetic rats by decreasing the excitability of DRG neurons. Exp Neurol 271:291–300CrossRefGoogle Scholar
  21. 21.
    Hogyes E, Nyakas C, Kiliaan A, Farkas T, Penke B, Luiten PG (2003) Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012CrossRefGoogle Scholar
  22. 22.
    Hong S, Van Kaer L (1999) Immune privilege: keeping an eye on natural killer T cells. J Exp Med 190(9):1197–1200CrossRefGoogle Scholar
  23. 23.
    Hong H, Kim BS, Im H (2016) Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 20(1):S2–S7CrossRefGoogle Scholar
  24. 24.
    Hopperton KE, Trepanier M-O, Giuliano V, Bazinet RP (2016) Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-b 1-40 in mice. J Neuroinflammation 13(1):257CrossRefGoogle Scholar
  25. 25.
    Johnson ME, Bobrovskaya L (2014) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene environment interactions. Neurotoxicology 46:101–116CrossRefGoogle Scholar
  26. 26.
    Langston J, Forno L, Tetrud J, Reeves A, Kaplan J, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605CrossRefGoogle Scholar
  27. 27.
    Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, Salem N Jr (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25:3032–3040CrossRefGoogle Scholar
  28. 28.
    Lobo BW, Lima CK, Teixeira MS, Silva NL, Takiya CM, Ramos MF et al (2016) Fish oil attenuates persistent inflammatory pain in rats through modulation of TNF-alpha and resolvins. Life Sci 152:30–37CrossRefGoogle Scholar
  29. 29.
    Lu Y, Zhao LX, Cao DL, Gao YJ (2013) Spinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord. Neuroscience 241:22–31CrossRefGoogle Scholar
  30. 30.
    Lyman M, Lloyd D, Ji X, Vizcaychipi M, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12CrossRefGoogle Scholar
  31. 31.
    Maccioni RB (2008) Nuevas Avenidas hacia el diagnóstico y tratamiento de los desórdenes cognitivos: enfermedad de Alzheimer. Medwave 8(11).
  32. 32.
    Marinelli C, Di Liddo R, Facci L, Bertalot T, Conconi M, Zusso M, Skaper S, Giusti P (2015) Ligand engagement of toll-like receptors regulates their expression in cortical microglia and astrocytes. J Neuroinflammation 12(244):1–20Google Scholar
  33. 33.
    Martínez E, Acevedo J, Segura M (2016) Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomed Pharmacother 83:816–826CrossRefGoogle Scholar
  34. 34.
    Martínez E, Villavicencio T, Segura M (2017) Functional foods and chemoprevention in cancer. In: Grumezescu A, Holban A (eds) Therapeutic foods, 1st edn. Academic, London. ISBN 9780128115176Google Scholar
  35. 35.
    Mizuno T (2015) Neuron–microglia interactions in neuroinflammation. Clin Exp Neuroimmunol 6:225–231CrossRefGoogle Scholar
  36. 36.
    Morales I, Farías G, Maccioni R (2010) La neuroinflamación como factor detonante del desarrollo de la enfermedad de Alzheimer. Rev Chil Neuropsiquiatr 48(1):49–57Google Scholar
  37. 37.
    Mori M, Delattre A, Carabelli B, Pudell C, Bortolanza M et al (2017) Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 21:1–11Google Scholar
  38. 38.
    Morris MC (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367(1):31–37CrossRefGoogle Scholar
  39. 39.
    Muñoz AM, Rey P, Parga J, Guerra MJ, Labandeira-Garcia JL (2005) Glial over expression of heme oxygenase-1: a histochemical marker for early stages of striatal damage. J Chem Neuroanat 29:113–126CrossRefGoogle Scholar
  40. 40.
    National Institute of Neurological Disorders and Stroke (2017) Neurodegenerative diseasesGoogle Scholar
  41. 41.
    Obeso JA, Lanciego JL (2011) Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat 5:39–47CrossRefGoogle Scholar
  42. 42.
    Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175CrossRefGoogle Scholar
  43. 43.
    Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C et al (2010) Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. J Am Med Assoc 304(17):1903–1911CrossRefGoogle Scholar
  44. 44.
    Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319CrossRefGoogle Scholar
  45. 45.
    Salem N, Vandal M, Calon F (2015) The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot Essent Fat Acids 92:15–22CrossRefGoogle Scholar
  46. 46.
    Shabab T, Khanabdali R, Zorofchian S, Abdul H, Mohan G (2016) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633CrossRefGoogle Scholar
  47. 47.
    Shrestha R, Millington O, Brewer J, Bushell T (2013) Is central nervous system an immune-privileged site? Kathmandu Univ Med J 41(1):102–107CrossRefGoogle Scholar
  48. 48.
    Silva R, Oliveira J, Santos B, Dias F, Martinez A, Lima C, Miranda A (2017) Long-chain Omega-3 fatty acids supplementation accelerates nerve regeneration and prevents neuropathic pain behavior in mice. Front Pharmacol 8:1–12Google Scholar
  49. 49.
    Smith J, Das A, Ray S, Banik N (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20CrossRefGoogle Scholar
  50. 50.
    Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930–941CrossRefGoogle Scholar
  51. 51.
    Tansey M, Goldberg M (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518CrossRefGoogle Scholar
  52. 52.
    Torrell G (2015) Enfermedades neurodegenerativas. Actualización Med Familia 11(7):374–383Google Scholar
  53. 53.
    Trepanier M-O, Hopperton KE, Orr SK, Bazinet RP (2016) N-3 poly-unsaturated fatty acids in animal models with neuroinflammation: an update. Eur J Pharmacol 785:187e206CrossRefGoogle Scholar
  54. 54.
    Twining C, Lawrence P, Winkler D, Flecker A, Brenna J (2017) Conversion efficiency of alpha linolenic acid to omega-3 highly unsaturated fatty acids in aerial insectivore chicks. J Exp Biol 221:jeb165373. Scholar
  55. 55.
    Valenzuela R, Tapia G, González M, Valenzuela A (2011) Omega-3 fatty acids (EPA and DHA) and its application in diverse clinical situations. Rev Chilena Nutr 38(3):356–367CrossRefGoogle Scholar
  56. 56.
    Van Duijn CM, van der Lee SJ, Ikram MA, Hofman A, Hankemeier T, Amin N et al (2016) Metabolites associated with cognitive function in the Rotterdam study and Erasmus Rucphen family study. Alzheimers Dement 12(7):P165CrossRefGoogle Scholar
  57. 57.
    Venneti S, Wiley CA, Kofler J (2009) Imaging microglial activation during neuroinflammation and Alzheimer’s disease. J Neuroimmune Pharmacol 4(2):227–243CrossRefGoogle Scholar
  58. 58.
    Wes P, Sayed F, Bard F, Gan L (2016) Targeting microglia for the treatment of Alzheimer’s disease. Glia 64(6):1–23Google Scholar
  59. 59.
    WHO (2007) Los trastornos neurológicos afectan a millones de personas en todo el mundo. Informe de la OMSGoogle Scholar
  60. 60.
    WHO (2012) Reporte de prevalencias en enfermedades no transmisibles y salud mentalGoogle Scholar
  61. 61.
    WHO (2016) Reporte de enfermedades crónico no transmisiblesGoogle Scholar
  62. 62.
    Witte AV, Kerti L, Hermannstadter HM, Fiebach JB, Schreiber SJ, Schuchardt JP et al (2014) Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cerebral Cortex (New York, N.Y.: 1991) 24(11):3059–3068CrossRefGoogle Scholar
  63. 63.
    Yassine HN, Feng Q, Azizkhanian I, Rawat V, Castor K, Fonteh AN et al (2016) Association of serum docosahexaenoic acid with cerebral amyloidosis. JAMA Neurol 73(10):1208–1216CrossRefGoogle Scholar
  64. 64.
    Yurko-Mauro K, Alexander DD, Van Elswyk ME (2015) Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One 10(3):e0120391CrossRefGoogle Scholar
  65. 65.
    Zhang D, Hu X, Qian L, O’Callaghan J, Hong J (2010a) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241CrossRefGoogle Scholar
  66. 66.
    Zhang W, Hu X, Yang W, Gao Y, Chen J (2010b) Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic–ischemic brain injury through anti-inflammatory actions. Stroke 41:2341–2347CrossRefGoogle Scholar
  67. 67.
    Zimmer L, Delion-Vancassel S, Durand G et al (2000) Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J Lipid Res 41(1):32–40PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Edwin E. Martínez Leo
    • 1
  • Rafael A. Rojas Herrera
    • 1
  • Maira R. Segura Campos
    • 1
    Email author
  1. 1.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMexico

Personalised recommendations