Edible Insects as Source of Proteins

  • Ewelina ZielińskaEmail author
  • Monika Karaś
  • Anna Jakubczyk
  • Damian Zieliński
  • Barbara Baraniak
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The potential of insects as a source of protein for future food and feed is the object of numerous studies. The nutritional value of edible insects is well established, and other aspects of consumption thereof are investigated. In this chapter, we aim to summarize the main features of insects as food. We briefly describe the history of the usage of insects as food for humans and refer to the current acceptance of insects by Europeans based on conducted surveys. We characterize the most common insect species with the biggest potential to be used as food and feed in the EU according to EFSA. We describe the nutritional value of insects and the possibility of application thereof in the food and feed industry, keeping in mind the safety of consumption. In addition, the ecological aspect of insect breeding is discussed. A review of the growing edible insect market in Europe and the USA is also provided. Moreover, we analyze the current legal status of insect intake in Europe. We aim to make this chapter a current conclusion about the consumption of insects.


Entomophagy Edible insects Protein Environment Nutritive value Functional properties Insect products Bioactive peptides Preferences of consumers 


  1. 1.
    Evans J, Alemu MH, Flore R et al (2015) ‘Entomophagy’: an evolving terminology in need of review. J Insects Food Feed 1(4):293–305CrossRefGoogle Scholar
  2. 2.
    Verbeke W, Spranghers T, De Clercq P, De Smet S, Sas B, Eeckhout M (2015) Insects in animal feed: acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim Feed Sci Technol 204:72–87CrossRefGoogle Scholar
  3. 3.
    Yi L, Lakemond CM, Sagis LM, Eisner-Schadler V, van Huis A, van Boekel MA (2013) Extraction and characterisation of protein fractions from five insect species. Food Chem 141(4):3341–3348PubMedCrossRefGoogle Scholar
  4. 4.
    Bußler S, Rumpold BA, Fröhling A, Jander E, Rawel HM, Schlüter OK (2016) Cold atmospheric pressure plasma processing of insect flour from Tenebrio molitor: impact on microbial load and quality attributes in comparison to dry heat treatment. Innov Food Sci Emerg 36:277–286CrossRefGoogle Scholar
  5. 5.
    Kim HW, Setyabrata D, Lee YJ, Jones OG, Kim YHB (2016) Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov Food Sci Emerg 38:116–123CrossRefGoogle Scholar
  6. 6.
    Raksakantong P, Meeso N, Kubola J, Siriamornpun S (2010) Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res Int 43(1):350–355CrossRefGoogle Scholar
  7. 7.
    Kaya M, Erdogan S, Mol A, Baran T (2015) Comparison of chitin structures isolated from seven Orthoptera species. Int J Biol Macromol 72:797–805PubMedCrossRefGoogle Scholar
  8. 8.
    Ramos-Elorduy J (2009) Anthropo-entomophagy: cultures, evolution and sustainability. Entomol Res 39:271–288CrossRefGoogle Scholar
  9. 9.
    Shelomi M (2015) Why we still don’t eat insects: assessing entomophagy promotion through a diffusion of innovations framework. Trends Food Sci Technol 45(2):311–318CrossRefGoogle Scholar
  10. 10.
    Ramos-Elorduy J, Moreno JMP, Camacho VHM (2012) Could grasshoppers be a nutritive meal? Food Nutr Sci 3:164–175Google Scholar
  11. 11.
    Tzompa-Sosa DA, Yi L, van Valenberg HJ, van Boekel MA, Lakemond CM (2014) Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res Int 62:1087–1094CrossRefGoogle Scholar
  12. 12.
    Zielińska E, Baraniak B, Karaś M (2017) Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Forum Nutr 9(9):970Google Scholar
  13. 13.
    Zielińska E, Karaś M, Jakubczyk A (2017) Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int J Food Sci Technol 52:306–312CrossRefGoogle Scholar
  14. 14.
    Zielińska E, Baraniak B, Karaś M, Rybczyńska K, Jakubczyk A (2015) Selected species of edible insects as a source of nutrient composition. Food Res Int 77:460–466CrossRefGoogle Scholar
  15. 15.
    Finke MD (2012) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285CrossRefGoogle Scholar
  16. 16.
    Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A (2010) An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5(12):e14445PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58:563–583PubMedCrossRefGoogle Scholar
  18. 18.
    van Huis A, van Itterbeeck J, Klunder H et al (2013) Edible insects: future prospects for food and feed security. FAO, RomeGoogle Scholar
  19. 19.
    DeFoliart G (1999) Insects as food: why the Western attitude is important. Annu Rev Entomol 44:21–50PubMedCrossRefGoogle Scholar
  20. 20.
    van Huis A (2003) Insects as food in sub-Saharan Africa. Insect Scis Appl 23:63–85Google Scholar
  21. 21.
    Thompson DW (1907) The history of animals – Aristotle. John Bell, LondonGoogle Scholar
  22. 22.
    Anonymous (2001) The holy bible. English standard version. Crossway Bibles, WheatonGoogle Scholar
  23. 23.
    Bodenheimer FS (1951) Insects as human food; a chapter of the ecology of man. Dr. W. Junk Publishers, HagueCrossRefGoogle Scholar
  24. 24.
    Holt V (1885) Why not eat insects? Pryor Publications, WhitstableGoogle Scholar
  25. 25.
    Gulick CB (1927) Athenaeus: the Deipnosophists, vol 1. Loeb Classical Library, Harvard University Press, UKGoogle Scholar
  26. 26.
    Amar Z (2003) The eating of locusts in Jewish tradition after the Talmudic period. Torah U Madda J 11:186–202Google Scholar
  27. 27.
    El-Mallakh OS, El-Mallakh RS (1994) Insects of the Qur’an (Koran). Am Entomol 40:82–84CrossRefGoogle Scholar
  28. 28.
    Shizhen L (1596) The compendium of Materia Medica. Shunyo-Do Shoten, TokyoGoogle Scholar
  29. 29.
    Seabrooksa L, Hu L (2017) Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B 7(4):409–426CrossRefGoogle Scholar
  30. 30.
    Hu P, Zha LS (2009) Records of edible insects from China. Agr Sci Tech 10:114–118Google Scholar
  31. 31.
    DeFoliart G (1992) Insects as human food: gene DeFoliart discusses some nutritional and economic aspects. Crop Prot 11(95):395–399CrossRefGoogle Scholar
  32. 32.
    Menzel P, D’Aluisio F (1998) Man eating bugs: the art and science of eating insects. Random House, New YorkGoogle Scholar
  33. 33.
    van Huis A, van Gurp H, Dicke M (2014) The insect cookbook: food for a sustainable planet. Columbia University Press, New YorkCrossRefGoogle Scholar
  34. 34.
    Fessler DMT, Navarette CD (2003) Meat is good to taboo: dietary proscriptions as a product of the interaction of psychological mechanisms and social processes. J Cogn Cult 3(1):1–40CrossRefGoogle Scholar
  35. 35.
    Looy H, Dunkel FV, Wood JR (2014) How then shall we eat? Insect-eating attitudes and sustainable foodways. Agr Human Val 31(1):131–141CrossRefGoogle Scholar
  36. 36.
    Schlup Y, Brunner T (2017) Prospects for insects as food in Switzerland: a tobit regression. Food Qual Pref 64:37–46CrossRefGoogle Scholar
  37. 37.
    Marberg A, van Kranenburg H, Korzilius H (2017) The big bug: the legitimation of the edible insect sector in the Netherlands. Food Policy 71:111–123CrossRefGoogle Scholar
  38. 38.
    Lensvelt E, Steenbekkers L (2014) Exploring consumer acceptance of entomophagy: a survey and experiment in Australia and the Netherlands. Ecol Food Nutr 53(5):543–561PubMedCrossRefGoogle Scholar
  39. 39.
    Caparros Megido R, Sablon L, Geuens M et al (2014) Edible insects acceptance by Belgian consumers: promising attitude for entomophagy development. J Sens Stud 29(1):14–20CrossRefGoogle Scholar
  40. 40.
    Halloran A, Muenke C, Vantomme P, van Huis A (2014) Insects in the human food chain: global status and opportunities. Food Chain 4(2):103–119CrossRefGoogle Scholar
  41. 41.
    Verkerk MC, Tramper J, van Trijp JCM, Martens DE (2007) Insect cells for human food. Biotechnol Adv 25(2):198–202PubMedCrossRefGoogle Scholar
  42. 42.
    Schösler H, de Boer J, Boersema JJ (2012) Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution. Appetite 58(1):39–47PubMedCrossRefGoogle Scholar
  43. 43.
    Vanhonacker F, van Loo EJ, Gellynck X, Verbeke W (2013) Flemish consumer attitudes towards more sustainable food choices. Appetite 62:7–16PubMedCrossRefGoogle Scholar
  44. 44.
    Vogel G (2010) For more protein, filet of cricket. Science 327:811PubMedCrossRefGoogle Scholar
  45. 45.
    Verbeke W (2015) Profiling consumers who are ready to adopt insects as a meat substitute in a western society. Food Qual Pref 39:147–155CrossRefGoogle Scholar
  46. 46.
    Hartmann C, Shi J, Giusto A, Siegrist M (2015) The psychology of eating insects: a cross-cultural comparison between Germany and China. Food Qual Pref 44:148–156CrossRefGoogle Scholar
  47. 47.
    Tan HSG, van den Berg E, Stieger M (2016) The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual Pref 52:222–231CrossRefGoogle Scholar
  48. 48.
    Shan H, Tan G, Fischer ARH et al (2015) Insects as food: exploring cultural exposure and individual experience as determinants of acceptance. Food Qual Pref 42:78–89CrossRefGoogle Scholar
  49. 49.
    Sogari G, Menozzi D, Mora C (2017) Exploring young foodies’ knowledge and attitude regarding entomophagy: a qualitative study in Italy. Int J Gastr Food Sci 7:16–19CrossRefGoogle Scholar
  50. 50.
    Gere A, Székely G, Kovács S et al (2017) Readiness to adopt insects in Hungary: a case study. Food Qual Pref 59:81–86CrossRefGoogle Scholar
  51. 51.
    Verneau F, La Barbera F, Kolle S et al (2016) The effect of communication and implicit associations on consuming insects: an experiment in Denmark and Italy. Appetite 106:30–36PubMedCrossRefGoogle Scholar
  52. 52.
    Tan HSG, Tibboel CJ, Stieger M (2017) Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions. Food Qual Pref 60:48–58CrossRefGoogle Scholar
  53. 53.
    Looy H, Wood JR (2006) Attitudes toward invertebrates: are educational “bug banquets” effective? J Environ Educ 37(2):37–48CrossRefGoogle Scholar
  54. 54.
    Hartmann C, Siegrist M (2016) Becoming an insectivore: results of an experiment. Food Qual Pref 51:118e122CrossRefGoogle Scholar
  55. 55.
    Online Etymological Dictionary. Available at Accessed 1 Oct 2017
  56. 56.
    Delong DM (1960) Man in a world of insects. Ohio J Sci 60(4):193–206Google Scholar
  57. 57.
    Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27:1737–1757PubMedCrossRefGoogle Scholar
  58. 58.
    Jongenema Y (2017) List of edible insects of the world. Wageningen University, Wageningen. Accessed Oct 2015
  59. 59.
    DeFoliart GR (2003) Food, insects as. In: Resh VH, Cardi RT (eds) Encyclopedia of insects. Academic, Cambridge, UKGoogle Scholar
  60. 60.
    EFSA Scientific Committee (2015) Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J 13(10):4257CrossRefGoogle Scholar
  61. 61.
    Shockley M, Dossey AT (2014) Insects for human consumption. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms. Academic, Cambridge, UKGoogle Scholar
  62. 62.
    Newton L, Sheppard C, Watson DW, Burtle G (2005) Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. North Carolina State University, North CarolinaGoogle Scholar
  63. 63.
    Józefiak D, Józefiak A, Kierończyk B, Rawski M, Świątkiewicz S, Długosz J, Engberg RM (2016) Insects–a natural nutrient source for poultry–a review. Ann Anim Sci 16(2):297–313CrossRefGoogle Scholar
  64. 64.
    Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H (2017) Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476:79–85CrossRefGoogle Scholar
  65. 65.
    De Marco M, Martínez S, Hernandez F et al (2015) Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 209:211–218CrossRefGoogle Scholar
  66. 66.
    Salomone R, Saija G, Mondello G, Giannetto A, Fasulo S, Savastano D (2017) Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. J Clean Prod 140:890–905CrossRefGoogle Scholar
  67. 67.
    Diener S, Zurbrügg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res 27(6):603–610PubMedCrossRefGoogle Scholar
  68. 68.
    Finke MD (2002) Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol 21:269–285CrossRefGoogle Scholar
  69. 69.
    Li L, Xie B, Dong C, Hu D et al (2015) Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the “Lunar Palace 1” during a 105-day multi-crew closed integrative BLSS experiment. Life Sci Space Res 7:9–14CrossRefGoogle Scholar
  70. 70.
    Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823PubMedCrossRefGoogle Scholar
  71. 71.
  72. 72.
    Jia J, Wu Q, Yan H, Gui Z (2015) Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein. Process Biochem 50(5):876–883CrossRefGoogle Scholar
  73. 73.
    Wang W, Shen S, Chen Q et al (2008) Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides (ACEIP). Curr Pharm Biotechnol 9(4):307–314PubMedCrossRefGoogle Scholar
  74. 74.
    Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23(4):329–344PubMedCrossRefGoogle Scholar
  75. 75.
    Cytryńska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T (2007) Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28(3):533–546PubMedCrossRefGoogle Scholar
  76. 76.
    Ponnuvel KM, Koundinya PR, Sinha RK, Kamble CK (2007) Immune mechanism in Bombyx mori L. against microbial pathogens. Indian Silk 46:9–11Google Scholar
  77. 77.
    Mak P, Zdybicka-Barabas A, Cytryńska M (2010) A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol 34(10):1129–1136PubMedCrossRefGoogle Scholar
  78. 78.
  79. 79.
  80. 80.
    Payne CL, Scarborough P, Rayner M, Nonaka K (2016) A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci Technol 47:69–77CrossRefGoogle Scholar
  81. 81.
    Jonas-Levi A, Martinez JJI (2017) The high level of protein content reported in insects for food and feed is overestimated. J Food Compost Anal 62:184–188CrossRefGoogle Scholar
  82. 82.
    Xiaoming C, Ying F, Hong Z et al (2010) Review of the nuritive value of edible insects. In: Durst PB, Johnson DV, Leslie RL, Shono K (eds) Forest insects as food: humans bite back, proceedings of a workshop on Asia-Pacific resources and their potential for development. FAO, BangkokGoogle Scholar
  83. 83.
    Nowak V, Persijn D, Rittenschober D, Charrondiere UR (2016) Review of food composition data for edible insects. Food Chem 193:39–46PubMedCrossRefGoogle Scholar
  84. 84.
    Rothman JM, Raubenheimer D, Bryer MA, Takahashi M, Gilbert CC (2014) Nutritional contributions of insects to primate diets: implications for primate evolution. J Hum Evol 71:59–69PubMedCrossRefGoogle Scholar
  85. 85.
    Anankware PJ, Fening KO, Osekre E, Obeng-Ofori D (2015) Insects as food and feed: a review. Int J Agric Res Rev 3(1):143–151Google Scholar
  86. 86.
    Finke MD, Oonincx DGAB (2014) Insects as food for insectivores. In: Morales-Ramos J, Rojas G, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, New YorkGoogle Scholar
  87. 87.
    Ramos-Elorduy J, Moreno JMP, Prado EE et al (1997) Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compost Anal 10:142–157CrossRefGoogle Scholar
  88. 88.
    Ramos-Elorduy J, Pino MJM, Correa SC (1998) Edible insects of the state of Mexico and determination of their nutritive values. An Inst Biol Univ Nac Auton Mex Ser Zool 69:65–104Google Scholar
  89. 89.
    Williams JP, Williams JR, Kirabo A et al (2016) Nutrient content and health benefits of insects. In: Dossey AT, Morales-Ramos JA, Guadalupe Rojas M (eds) Insects as sustainable food ingredients: production, processing and food applications. Academic, Cambridge, UKGoogle Scholar
  90. 90.
    van Broekhoven S, Oonincx DGAB, van Huis A, van Loon JJ (2015) Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol 73:1–10PubMedCrossRefGoogle Scholar
  91. 91.
    Bednářová M, Borkovcová M, Mlček J, Rop O, Zeman L (2013) Edible insects-species suitable for entomophagy under condition of Czech Republic. Acta Univ Agric Silvic Mendel Brun 61(3):587–593CrossRefGoogle Scholar
  92. 92.
    Adámková A, Kouřimská L, Borkovcová M et al (2016) Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo 10(1):663–671CrossRefGoogle Scholar
  93. 93.
    USDA National Nutrient Database. Accessed 5 Oct 2017
  94. 94.
    Ofuya ZM, Akhidue V (2005) The role of pulses in human nutrition: a review. J Appl Sci Environ Manag 9(3):99–104Google Scholar
  95. 95.
    Adámková A, Mlček J, Kouřimská L et al (2017) Nutritional potential of selected insect species reared on the island of sumatra. Int J Environ Res Public Health 14(5):521PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Mota C, Santos M, Mauro R et al (2016) Protein content and amino acids profile of pseudocereals. Food Chem 193:55–61PubMedCrossRefGoogle Scholar
  97. 97.
    Finke MD, Defoliart G, Benevenga NJ (1989) Use of a four parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J Nutr 119:864–871PubMedCrossRefGoogle Scholar
  98. 98.
    Day L (2013) Proteins from land plants–potential resources for human nutrition and food security. Trends Food Sci Tech 32(1):25–42CrossRefGoogle Scholar
  99. 99.
    Jansen GR (1968) Amino-acid supple mentation and the world food problem. In evaluation of novel protein products. In: Bender AE, Kihlberg R, Löfkvist B, Munck L (eds) Evaluation of novel protein products. Pergamon Press, StockholmGoogle Scholar
  100. 100.
    Kamau EH, Serrem CA, Wamunga FW (2017) Rat bioassay for evaluation of protein quality of soy-fortified complementary foods. J Food Res 6(6):35CrossRefGoogle Scholar
  101. 101.
    Bednářová M, Borkovcová M, Komprda T (2014) Purine derivate content and amino acid profile in larval stages of three edible insects. J Sci Food Agr 94(1):71–76CrossRefGoogle Scholar
  102. 102.
    Ghosh S, Lee SM, Jung C, Meyer-Rochow VB (2017) Nutritional composition of five commercial edible insects in South Korea. J Asia Pac Entomol 20(2):686–694CrossRefGoogle Scholar
  103. 103.
    Mba ARF, Kansci G, Viau M, Hafnaoui N, Meynier A, Demmano G, Genot C (2017) Lipid and amino acid profiles support the potential of Rhynchophorus phoenicis larvae for human nutrition. J Food Compos Anal 60:64–73CrossRefGoogle Scholar
  104. 104.
    Bukkens GF (2005) Insects in the human diet: nutritional aspects. In: Paoletti MG (ed) Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Taylor & Francis, OxfordGoogle Scholar
  105. 105.
    Kouřimská L, Adámková A (2016) Nutritional and sensory quality of edible insects. NFS J 4:22–26CrossRefGoogle Scholar
  106. 106.
  107. 107.
    De Foliart GR (1991) Insect fatty acids: similar to those or poultry and fish in their degree of unsaturation but higher in the polyunsaturates. Food Insects Newsl 4:1–4Google Scholar
  108. 108.
    Komprda T, Zorníková G, Rozíková V, Borkovcová M, Przywarová A (2013) The effect of dietary Salvia hispanica seed on the content of n-3 long-chain polyunsaturated fatty acids in tissues of selected animal species, including edible insects. J Food Compos Anal 32(1):36–43CrossRefGoogle Scholar
  109. 109.
    Paul D, Dey S (2014) Essential amino acids, lipid profile and fat-soluble vitamins of the edible silkworm Bombyx mori (Lepidoptera: Bombycidae). Int J Trop Insect Sci 34:239–247CrossRefGoogle Scholar
  110. 110.
    Ravzanaadii N, Kim SH, Choi WH et al (2012) Nutritional value of mealworm, Tenebrio molitor as food source. Int J Indust Entomol 25(1):93–98CrossRefGoogle Scholar
  111. 111.
    Finke MD (2007) Estimate of chitin in raw whole insects. Zoo Biol 26(2):105–115PubMedCrossRefGoogle Scholar
  112. 112.
    Lease HM, Wolf BO (2010) Exoskeletal chitin scales isometrically with body size in terrestrial insects. J Morphol 271(6):759–768PubMedGoogle Scholar
  113. 113.
    Finke MD (2015) Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol 34(6):554–564PubMedCrossRefGoogle Scholar
  114. 114.
    Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25(10):1067–1080CrossRefGoogle Scholar
  115. 115.
    Paoletti MG, Norberto L, Damini R, Musumeci S (2007) Human gastric juice contains chitinase that can degrade chitin. Ann Nutr Metab 51:244–251PubMedCrossRefGoogle Scholar
  116. 116.
    Mlcek J, Borkovcova M, Rop O, Bednarova M (2014) Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine. J Cent Eur Agric 15(4):225–237CrossRefGoogle Scholar
  117. 117.
    Chen X, Feng Y, Chen Z (2009) Common edible insects and their utilization in China. Entomol Res 39:299–303CrossRefGoogle Scholar
  118. 118.
    Goodman WG (1989) Chitin: a magic bullet? Food Insects Newsl 3:6–7Google Scholar
  119. 119.
    Belluco S, Losasso C, Maggioletti M (2013) Edible insects in a food safety and nutritional perspective: a critical review. Compr Rev Food Sci Food Saf 12:296–313CrossRefGoogle Scholar
  120. 120.
    Bauserman M, Lokangaka A, Gado J (2015) A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia. Public Health Nutr 18:1785–1792PubMedCrossRefGoogle Scholar
  121. 121.
    Christensen DL, Orech FO, Mungai MN et al (2006) Entomophagy among the Luo of Kenya: a potential mineral source? Int J Food Sci Nutr 57:198–203PubMedCrossRefGoogle Scholar
  122. 122.
    van Huis A (2017) New sources of animal proteins: edible insects. In: Purslow PP (ed) New aspects of meat quality: from genes to ethics. Woodhead Publishing, Cambridge, UKGoogle Scholar
  123. 123.
    La’Toya VL, Toddes BD, Wyre NR (2017) Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae). Am J Vet Res 78(2):178–185CrossRefGoogle Scholar
  124. 124.
    Oonincx DGAB, Dierenfeld ES (2012) An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol 31(1):40–54PubMedCrossRefGoogle Scholar
  125. 125.
    Ramos-Elorduy J (2005) Insects: a hopeful food source. In: Paoletti MG (ed) Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Taylor & Francis, OxfordGoogle Scholar
  126. 126.
    Wakayama EJ, Dillwith JW, Howard RW et al (1984) Vitamin B12 levels in selected insects. Insect Biochem 14(2):175–179CrossRefGoogle Scholar
  127. 127.
    Oonincx DGAB, van der Poel AFB (2011) Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol 30(1):9–16PubMedGoogle Scholar
  128. 128.
    Tong L, Yu X, Liu H (2011) Insect food for astronauts: gas exchange in silkworms fed on mulberry and lettuce and the nutritional value of these insects for human consumption during deep space flights. Bull Entomol Res 101:613–622PubMedCrossRefGoogle Scholar
  129. 129.
    Ratcliffe N, Azambuja P, Mello CB (2014) Recent advances in developing insect natural products as potential modern day medicines. J Evid Based Complement Altern Med 2014:904958Google Scholar
  130. 130.
    Musundire R, Zvidzai JC, Chidewe C (2014) Bio-active compounds composition in edible stinkbugs consumed in south-eastern districts of Zimbabwe. Int J Biol 6(3):36–45CrossRefGoogle Scholar
  131. 131.
    Nongonierma AB, FitzGerald RJ (2017) Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innov Food Sci Emerg Technol 43:239–252CrossRefGoogle Scholar
  132. 132.
    Vercruysse L, Smagghe G, Beckers T, van Camp J (2009) Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodopter littoralis. Food Chem 114:38–43CrossRefGoogle Scholar
  133. 133.
    Vercruysse L, Smagghe G, Herregods G, van Camp J (2005) ACE inhibitory activity in enzymatic hydrolysates of insect protein. J Agr Food Chem 53:5207–5211CrossRefGoogle Scholar
  134. 134.
    Vercruysse L, Smagghe G, Matsui T, van Camp J (2008) Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis. Process Biochem 43:900–904CrossRefGoogle Scholar
  135. 135.
    Dai C, Ma H, Luo L, Yin X (2013) Angiotensin I-converting enzyme (ACE) inhibitor peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur Food Res Tech 236:681–689CrossRefGoogle Scholar
  136. 136.
    Wang W, Wang N, Zhang Y (2014) Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein. Food Nutr Sci 5:1202–1211Google Scholar
  137. 137.
    Wang W, Wang N, Liu C et al (2017) Effect of silkworm pupae peptide on the fermentation and quality of yogurt. J Food Proc Preserv 41:e12893CrossRefGoogle Scholar
  138. 138.
    Wang W, Wang N, Zhou Y et al (2011) Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme. Eur Food Res Technol 232:29–38CrossRefGoogle Scholar
  139. 139.
    Li X, Li Y, Huang X et al (2014) Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa. Food Sci Biotech 23:1017–1023CrossRefGoogle Scholar
  140. 140.
    Jia J, Wu Q, Yan H, Gui Z (2015) Purification and molecular docking study of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide from alcalase hydrolysate of ultrasonic-pretreated silkworm pupa (Bombyx mori) protein. Process Biochem 50:876–883CrossRefGoogle Scholar
  141. 141.
    Tao M, Wang C, Liao D et al (2017) Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem 54:172–179CrossRefGoogle Scholar
  142. 142.
    Wu QY, Jia JQ, Tan GX, Xu JL, Gui ZZ (2011) Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities. Afr J Biotech 10(32):6145–6153Google Scholar
  143. 143.
    Zhang Y, Wang N, Wang W, Wang J, Zhu Z, Li X (2016) Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase. Peptides 76:45–50PubMedCrossRefGoogle Scholar
  144. 144.
    Faruck MO, Yusof F, Chowdhury S (2016) An overview of antifungal peptides derived from insect. Peptides 80:80–88PubMedCrossRefGoogle Scholar
  145. 145.
    Hou L, Shi Y, Zhai P et al (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111(2):227–231PubMedCrossRefGoogle Scholar
  146. 146.
    Chae J, Kurokawa K, So Y et al (2011) Purification and characterization of tenecin 4, a new anti- Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol 36:540–546PubMedCrossRefGoogle Scholar
  147. 147.
    Tang JJ, Fang P, Xia HL et al (2015) Constituents from the edible Chinese black ants (Polyrhachis dives) showing protective effect on rat mesangial cells and anti-inflammatory activity. Food Res Int 67:163–168CrossRefGoogle Scholar
  148. 148.
    Wang Y, Zhao Y, Lei C, Zhu F (2012) Antiviral and antitumor activities of the protein fractions from the larvae of the housefly, Musca domestica. Afr J Biotechnol 11(39):9468–9474Google Scholar
  149. 149.
    Elpidina EN, Goptar IA (2007) Digestive peptidases in Tenebrio molitor and possibility of use to treat celiac disease. Entomol Res 37:139–147CrossRefGoogle Scholar
  150. 150.
    Tan HSG, Fischer AR, van Trijp HC, Stieger M (2016) Tasty but nasty? Exploring the role of sensory-liking and food appropriateness in the willingness to eat unusual novel foods like insects. Food Qual Pref 48:293–302CrossRefGoogle Scholar
  151. 151.
    Dossey AT, Tatum JT, McGill WL (2016) Modern insect-based food industry: current status, insect processing technology, and recommendations moving forward. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients: production, processing and food applications, 1st edn. Academic, Cambridge, UKGoogle Scholar
  152. 152.
    Hall FG, Jones OG, O’Haire ME, Liceaga AM (2017) Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem 224:414–422PubMedCrossRefGoogle Scholar
  153. 153.
    Omotoso OT (2006) Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirina forda (Westwood) (Lepidoptera: Saturniidae). J Zhejiang Univ Sci B 7(1):51–55PubMedCrossRefGoogle Scholar
  154. 154. Accessed 18 Oct 2017
  155. 155. Accessed 18 Oct 2017
  156. 156.
    Paul A, Frederich M, Megido RC, Alabi T, Malik P, Uyttenbroeck R, Francis F, Blecker C, Haubruge E, Lognay G, Danthine S (2017) Insect fatty acids: a comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J Asia Pac Entomol 20(2):337–340CrossRefGoogle Scholar
  157. 157.
    Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31Google Scholar
  158. 158.
    Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 9(9):1510–1533PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Zhao X, Vázquez-Gutiérrez JL, Johansson DP, Landberg R, Langton M (2016) Yellow mealworm protein for food purposes-extraction and functional properties. PLoS One 11(2):e0147791PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    WHO. Food safety Fact sheet Reviewed October 2017. Accessed 25 Sept 2017
  162. 162.
    Aiking H (2011) Future protein supply. Trends Food Sci Technol 22:112–120CrossRefGoogle Scholar
  163. 163.
    Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper. FAO, RomeGoogle Scholar
  164. 164.
    Marberg A, van Kranenburg H, Korzilius H (2017) The big bug: the legitimation of the edible insect sector in the Netherlands. Food Pol 71:111–123CrossRefGoogle Scholar
  165. 165.
    Vellinga P, Herb N (1999) Industrial transformation science plan. IHDP, BonnGoogle Scholar
  166. 166.
    Aiking H, De Boer J, Vereijken JM (2006) Sustainable protein production and consumption: pigs or peas? Springer, DordrechtCrossRefGoogle Scholar
  167. 167.
    Pimentel D, Pimentel M (2003) Sustainability of meat-based and plant-based diets and the environment. Am J Clin Nutr 78:660S–663SPubMedCrossRefGoogle Scholar
  168. 168.
    Msangi S, Rosegrant M (2009) World agriculture in a dynamically- changing environment: IFPRI’s long-term outlook for food and agriculture under additional demand and constraints. FAO, Rome. Accessed 23 Sept 2017
  169. 169.
    Mekonnen MM, Hoekstra AY (2010) The green, blue and grey water footprint of farm animals and animal products. UNESCO-IHE, DelftGoogle Scholar
  170. 170.
    van Huis A (2010) Opinion: bugs can solve food crisis. The Scientist. http://www.the-scientistcom/?articlesview/articleNo/29292/title/Opinion-Bugs-can-solve-food-crisis/. Accessed 24 Sept 2017
  171. 171.
    Collavo A, Glew RH, Huang YS, Chuang LT, Bosse R, Paoletti MG (2005) House cricket small-scale farming. In: Paoletti MG (ed) Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Taylor & Francis, OxfordGoogle Scholar
  172. 172.
    Oonincx DGAB, de Boer IJM (2012) Environmental impact of the production of mealworms as a protein source for humans – a life cycle assessment. PLoS One 7:e51145PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Oonincx DGAB, van Broekhoven S, van Huis A, van Loon JJA (2015) Feed conversion, survival and development, and composition of four insect species on diets composed of food by- products. PLoS One 10(12):e0144601PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow; environmental issues and options. FAO, RomeGoogle Scholar
  175. 175.
    Aarnink AJA, Keen A, Metz JHM, Speelman L, Verstegen MWA (1995) Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors. J Agr Econ Res 62:105–116Google Scholar
  176. 176.
    Greenlee KJ, Harrison JF (2004) Development of respiratory function in the American locust Schistocerca americana I. Across-instar effects. J Exp Biol 207:497–508PubMedCrossRefGoogle Scholar
  177. 177.
    Emekci M, Navarro S, Donahaye E, Rindner M, Azrieli A (2002) Respiration of Tribolium castaneum (Herbst) at reduced oxygen concentrations. J Stored Prod Res 38:413–425CrossRefGoogle Scholar
  178. 178.
    Gouveia SM, Simpson SJ, Raubenheimer D, Zanotto FP (2000) Patterns of respiration in Locusta migratoria nymphs when feeding. Physiol Entomol 25:88–93CrossRefGoogle Scholar
  179. 179.
    Emekci M, Navarro S, Donahaye E, Rindner M, Azrieli A (2004) Respiration of Rhyzopertha dominica (F.) at reduced oxygen concentrations. J Stored Prod Res 40:27–38CrossRefGoogle Scholar
  180. 180.
    Koerkamp PW, Metz JHM, Uenk GH et al (1998) Concentrations and emissions of ammonia in livestock buildings in northern Europe. J Agr Econ Res 70:79–95Google Scholar
  181. 181.
    Nicks B, Laitat M, Vandenheede M et al (2003) Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on straw-based and sawdust-based deep litters. Anim Res 52:299–308CrossRefGoogle Scholar
  182. 182.
    Cabaraux JF, Philippe FX, Laitat M et al (2009) Gaseous emissions from weaned pigs raised on different floor systems. Agric Ecosyst Environ 130:86–92CrossRefGoogle Scholar
  183. 183.
    Harper LA, Flesch TK, Powell JM et al (2009) Ammonia emissions from dairy production in Wisconsin. J Dairy Sci 92:2326–2337PubMedCrossRefGoogle Scholar
  184. 184.
    Demmers TGM, Burgess LR, Short JL et al (1999) Ammonia emissions from two mechanically ventilated UK livestock buildings. Atmos Environ 33:217–227CrossRefGoogle Scholar
  185. 185.
    Makkar HPS, Tran G, Heuzé V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33CrossRefGoogle Scholar
  186. 186.
    Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342PubMedCrossRefGoogle Scholar
  187. 187.
    Pastor B, Velasquez Y, Gobbi P, Rojo S (2015) Conversion of organic wastes into fly larval biomass: bottlenecks and challenges. J Insects Food Feed 1:179–193CrossRefGoogle Scholar
  188. 188.
    Srinroch C, Srisomsap C, Chokchaichamnankit D et al (2015) Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem 184:160–166PubMedCrossRefGoogle Scholar
  189. 189.
    Nishimune T, Watanabe Y, Okazaki H, Akai H (2000) Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria. J Nutr 130:1625–1628PubMedCrossRefGoogle Scholar
  190. 190.
    Liu Z, Xia L, Wu Y et al (2009) Identification and characterization of an arginine kinase as a major allergen from silkworm (Bombyx mori) larvae. Int Arch Allergy Immunol 150:8–14PubMedCrossRefGoogle Scholar
  191. 191.
    Yu CJ, Lin YF, Chiang BL, Chow LP (2003) Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 170:445–453PubMedCrossRefGoogle Scholar
  192. 192.
    García-Orozco KD, Aispuro-Hernández E, Yepiz-Plascencia G et al (2007) Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. Int Arch Allergy Immunol 144:23–28PubMedCrossRefGoogle Scholar
  193. 193.
    Yadzir ZHM, Misnan R, Abdullah N et al (2012) Identification of the major allergen of Macrobrachium rosenbergii (giant freshwater prawn). Asian Pac J Trop Biomed 2(1):50–54PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Khanaruksombat S, Srisomsap C, Chokchaichamnankit D et al (2014) Identification of novel allergen from muscle and various organs in banana shrimp (Fenneropenaeus merguiensis). Ann Allergy Asthma Immunol 113:301–306PubMedCrossRefGoogle Scholar
  195. 195.
    Binder M, Mahler V, Hayek B et al (2001) Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate panallergen. J Immunol 167:5470–5477PubMedCrossRefGoogle Scholar
  196. 196.
    Sookrung N, Chaicumpa W, Tungtrongchitr A et al (2006) Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect 114:875–880PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Chuang JG, Su SN, Chiang BL et al (2010) Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 10:3854–3867PubMedCrossRefGoogle Scholar
  198. 198.
    Li M, Wang XY, Bai JG (2006) Purification and characterization of arginine kinase from locust. Protein Pept Lett 13(4):405–410PubMedCrossRefGoogle Scholar
  199. 199.
    Bragg J, Rajkovic A, Anderson C et al (2012) Identification and characterization of a putative arginine kinase homolog from Myxococcus xanthus required for fruiting body formation and cell differentiation. J Bacteriol 194(10):2668–2676PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Shanti KN, Martin BM, Nagpal S et al (1993) Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 151:5354–5363PubMedGoogle Scholar
  201. 201.
    Leung PS, Chen YC, Mykles DL et al (1998) Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen. Mol Mar Biol Biotechnol 7:12–20PubMedGoogle Scholar
  202. 202.
    Daul CB, Slattery M, Reese G, Lehrer SB (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol 105:49–55PubMedCrossRefGoogle Scholar
  203. 203.
    Liu GM, Huang YY, Cai QF et al (2011) Comparative study of in vitro digestibility of major allergen, tropomyosin and other proteins between Grass prawn (Penaeus monodon) and Pacific white shrimp (Litopenaeus vannamei). J Sci Food Agric 91:163–170PubMedCrossRefGoogle Scholar
  204. 204.
    Rahman AMA, Kamath S, Lopata L et al (2010) Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. Rapid Commun Mass Spectrom 24:2462–2470PubMedCrossRefGoogle Scholar
  205. 205.
    Yadzir ZHM, Misnan R, Bakhtiar F et al (2015) Tropomyosin and actin identified as major allergens of the carpet clam (Paphia textile) and the effect of cooking on their allergenicity. Biomed Res Int 2015:254152Google Scholar
  206. 206.
    Jeong KY, Lee J, Lee IY et al (2003) Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy 58(10):1059–1063PubMedCrossRefGoogle Scholar
  207. 207.
    Asturias JA, Gómez-Bayón N, Arilla MC et al (1999) Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162(7):4342–4348PubMedGoogle Scholar
  208. 208.
    Barletta B, Di Felice G, Pini C (2007) Biochemical and molecular biological aspects of silverfish allergens. Protein Pept Lett 14(10):970–974PubMedCrossRefGoogle Scholar
  209. 209.
    van der Ventel ML, Nieuwenhuizen NE, Kirstein F et al (2011) Differential responses to natural and recombinant allergens in a murine model of fish allergy. Mol Immunol 48:637–646PubMedCrossRefGoogle Scholar
  210. 210.
    Piboonpocanun S, Jirapongsananuruk O, Tipayanon T et al (2011) Identification of hemocyanin as a novel non cross-reactive allergen from the giant freshwater shrimp Macrobrachium rosenbergii. Mol Nutr Food Res 55:1492–1498PubMedCrossRefGoogle Scholar
  211. 211.
    Pick C, Hagner-Holler S, Burmester T (2008) Molecular characterization of hemocyanin and hexamerin from the firebrat Thermobia domestica (Zygentoma). Insect Biochem Mol Biol 38:977–983PubMedCrossRefGoogle Scholar
  212. 212.
    Schabel HG (2010) Forest insects as food: a global review. In: Durst PB, Johnson DV, Leslie RN, Shono K (eds) Forest insects as food: humans bite back. FAO, BangkokGoogle Scholar
  213. 213.
    van der Spiegel M (2016) Safety of foods based on insects. In: Prakash V, Martin-Belloso O, Keener L et al (eds) Regulating safety of traditional and ethnic foods. Academic, WhaltamGoogle Scholar
  214. 214.
    Opara MN, Sanyigha FT, Ogbuewu IP, Okoli IC (2012) Studies on the production trend and quality characteristics of palm grubs in the tropical rainforest zone of Nigeria. Int J Agr Tech 8:851–860Google Scholar
  215. 215.
    Finke MD, Rojo S, Roos N et al (2015) The European food safety authority scientific opinion on a risk profile related to production and consumption of insects as food and feed. J Insects Food Feed 1(4):245–247CrossRefGoogle Scholar
  216. 216.
    Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001Google Scholar
  217. 217. Accessed 5 Oct 2017
  218. 218.
    Cortes Ortiz JA, Ruiz AT, Morales-Ramos JA et al (2016) Insect mass production technologies. In: Dossey AT, Morales-Ramos JA, Rojas MG (eds) Insects as sustainable food ingredients: production, processing and food applications, 1st edn. Academic, Cambridge, UKGoogle Scholar
  219. 219.
  220. 220. Accessed 5 Oct 2017
  221. 221.
  222. 222. Accessed 5 Oct 2017
  223. 223.
  224. 224. Accessed 5 Oct 2017
  225. 225.
  226. 226. Accessed 5 Oct 2017
  227. 227. Accessed 5 Oct 2017
  228. 228. Accessed 5 Oct 2017
  229. 229.
  230. 230. Accessed 5 Oct 2017
  231. 231. Accessed 5 Oct 2017
  232. 232. Accessed 5 Oct 2017
  233. 233. Accessed 5 Oct 2017
  234. 234. Accessed 5 Oct 2017
  235. 235.
  236. 236. Accessed 5 Oct 2017
  237. 237. Accessed 5 Oct 2017
  238. 238.
  239. 239.
    Hossain SM, Blair R (2007) Chitin utilisation by broilers and its effect on body composition and blood metabolites. Brit Poultry Sci 48:33–38CrossRefGoogle Scholar
  240. 240.
    Barrows FT, Bellis D, Krogdahl A et al (2008) Report of plant products in aquafeeds strategic planning workshop: an integrated interdisciplinary roadmap for increasing utilization of plant feedstuffs in diets for carnivorous fish. Rev Fish Sci 16:449–455CrossRefGoogle Scholar
  241. 241.
    Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27CrossRefGoogle Scholar
  242. 242.
    FEFAC (2012) Statistics 2012. European Feed Manufacturers’ Federation, Brussels. Accessed 29 Oct 2017
  243. 243.
    Spring P (2013) The challenge of cost effective poultry and animal nutrition: optimizing existing and applying novel concepts. Lohmann Inf 48(1):38–46Google Scholar
  244. 244.
    EUFETEC (2013) Vision & SRIA document 2030 feed for food producing animals. EUFETEC (European Feed Technology Center), BrusselsGoogle Scholar
  245. 245.
    Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22CrossRefGoogle Scholar
  246. 246.
    Bondari K, Sheppard DC (1987) Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquacult Fish Manag 18:209–220Google Scholar
  247. 247.
    Hem S, Toure S, Sagbla C, Legendre M (2008) Bioconversion of palm kernel meal for aquaculture: experiences from the forest region (Republic of Guinea). Afr J Biotechnol 7:1192–1198Google Scholar
  248. 248.
    Newton L, Sheppard C, Watson DW et al (2005) Using the black soldier fly, Hermetia illucens, as a value added tool for the management of swine manure. Animal and Poultry Waste Management Center. North Carolina State University, RaleighGoogle Scholar
  249. 249.
    Stamer A (2015) Insect proteins – a new source for animal feed. EMBO Rep 16(6):676–680PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Raubenheimer D, Rothman JM (2012) Nutritional ecology of entomophagy in humans and other primates. Annu Rev Entomol 58:141–160PubMedCrossRefGoogle Scholar
  251. 251.
    de Marco M, Martínez S, Hernandez F et al (2015) Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 209:211e218CrossRefGoogle Scholar
  252. 252.
    Ramaswamy SB (2015) Setting the table for a hotter, flatter, more crowded earth: insects on the menu? J Insects Food Feed 1(3):171–178CrossRefGoogle Scholar
  253. 253.
    Veldkamp T, Bosch G (2015) Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front 5(2):45–50Google Scholar
  254. 254.
    Bovera F, Loponte R, Marono S et al (2015) Use of Tenebrio molitor larvae meal as protein source in broiler diet: effect on growth performance, nutrient digestibility, and carcass and meat traits. J Anim Sci 94:639–647CrossRefGoogle Scholar
  255. 255.
    Premalatha M, Abbasi T, Abbasi T, Abbasi SA (2011) Energy-efficient food production to reduce global warming and ecodegradation: the use of edible insects. Renew Sust Energ Rev 15(9):4357–4360CrossRefGoogle Scholar
  256. 256.
    van Huis A, Dicke M, van Loon JJA (2015) Insects to feed the world. J Insects Food Feed 1(1):3–5CrossRefGoogle Scholar
  257. 257.
    Veldkamp T, van Duinkerken G, van Huis A et al (2012) Insects as a sustainable feed ingredientin pig and poultry diets – a feasibility study. Wageningen UR Livestock Research, WageningenGoogle Scholar
  258. 258.
    Smith R, Pryor R (2013) Mapping exercise report with regard to current legislation & regulation: Europe and Africa & China (PROteINSECT Deliverable 5.1). Minerva HCC, AndoverGoogle Scholar
  259. 259.
    AllAboutFeed (2014) Why are insects not allowed in animal feed? White Paper. Reed Business Media, Doetinchem. Accessed 29 Oct 2017
  260. 260.
    Kenis M, Hien K (2014) Prospects and constraints for the use of insects as human food and animal feed in West Africa. Book of Abstracts of conference on insects to feed the world, The Netherlands, 14–17 May 2014Google Scholar
  261. 261.
    Čičková H, Newton GL, Lacy RC, Kozánek M (2015) The use of fly larvae for organic waste treatment. Waste Manag 35:68–80PubMedCrossRefGoogle Scholar
  262. 262.
    Collavo A, Glew RH, Huang YS et al (2005) House cricket small-scale farming. In: Paoletti MG (ed) Ecological implications of Minilivestock: potential of insects, rodents, frogs and snails. Science Publishers, EnfieldGoogle Scholar
  263. 263.
    Lundy ME, Parrella MP (2015) Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS One 10:e0118785PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Smetana S, Mathys A, Knoch A, Heinz V (2015) Meat alternatives: life cycle assessment of most known meat substitutes. Int J Life Cycle Assess 20:1254–1267CrossRefGoogle Scholar
  265. 265.
    Newton GL, Booram CV, Barker RW, Hale OM (1977) Dried Hermetia illucens larvae meal as a supplement for swine. J Anim Sci 44:395–399CrossRefGoogle Scholar
  266. 266.
    Myers HM, Tomberlin JK, Lambert BD, Kattes D (2008) Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ Entomol 37:11–15PubMedCrossRefGoogle Scholar
  267. 267.
    Banks IJ, Gibson WT, Cameron MM (2014) Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Tropical Med Int Health 19(1):14–22CrossRefGoogle Scholar
  268. 268.
    Barroso FG, Sánchez-Muros MJ, Segura M et al (2017) Insects as food: enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J Food Comp Anal 62:8–13CrossRefGoogle Scholar
  269. 269.
    Zheng L, Hou Y, Li W et al (2012) Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 47:225–229CrossRefGoogle Scholar
  270. 270.
    Halloran A, Hanboonsong Y, Roos N, Bruun S (2017) Life cycle assessment of cricket farming in north-eastern Thailand. J Clean Prod 156:83–94CrossRefGoogle Scholar
  271. 271.
    Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp App 104:15–25CrossRefGoogle Scholar
  272. 272.
    Yu SJ, Hsu EL (1993) Induction of detoxification enzymes in phytophagous insects: roles of insecticide synergists, larval age, and species. Arch Insect Biochem 24:21–32CrossRefGoogle Scholar
  273. 273.
    Chaubey MK (2008) Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). J Oleo Sci 57:171–179PubMedCrossRefGoogle Scholar
  274. 274.
    Wheeler D, Isman MB (2001) Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomol Exp Appl 98:9–16CrossRefGoogle Scholar
  275. 275.
    Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49(20):12080–12086PubMedCrossRefGoogle Scholar
  276. 276.
    Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49(20):12087–12093PubMedCrossRefGoogle Scholar
  277. 277.
    Sonmez E, Gulel A (2008) Effects of different temperatures on the total carbohydrate, lipid and protein amounts of the bean beetle, Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Pak J Biol Sci 11(14):1803PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ewelina Zielińska
    • 1
    Email author
  • Monika Karaś
    • 1
  • Anna Jakubczyk
    • 1
  • Damian Zieliński
    • 2
  • Barbara Baraniak
    • 1
  1. 1.Department of Biochemistry and Food ChemistryUniversity of Life Sciences in LublinLublinPoland
  2. 2.Department of Ethology and Animal WelfareUniversity of Life Sciences in LublinLublinPoland

Personalised recommendations