Sambucus nigra Berries and Flowers Health Benefits: From Lab Testing to Human Consumption

  • Ângelo C. Salvador
  • Ricardo J. R. Guilherme
  • Armando J. D. Silvestre
  • Sílvia M. RochaEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


European elder plant, Sambucus nigra L., has been used as an important part of the folk medicine and as multipurpose foods and dietary supplements. The scientific developments in nutrition research, in evaluation of biological activities, and in prospection of bioactive compounds reveal a set of potential health benefits associated with S. nigra berries and flowers. This chapter aims to briefly cover aspects linked to elder plant taxonomic classification, geographic distribution, and typologies of products available in the market. Current challenges regarding in vitro and in vivo assays will be also discussed. Despite in vitro studies are often used to predict the health benefits due to the high amount of generated data and their low cost, the use of in vivo assays is crucial to predict such health benefits, as the real contribution of foods, extracts, or specific bioactive compounds to human health is largely modulated by their bioavailability that cannot be accessed at in vitro level. Thus, the main findings regarding the potential health benefits of S. nigra-based preparations using in vitro and/or in vivo assays, namely, anti-infective, antioxidant, anti-inflammatory, immunomodulatory, anticancer, and antidiabetic, will be critically revisited. Finally, current challenges related to nutrivigilance systems, which are crucial to ensure consumer health and safety, will be presented.


Sambucus nigra L. Elderflowers Elderberries Bioavailability Health benefits Nutrivigilance 



2,2'-Azino-bis(3-ethyl-benzothialzoline-6-sulfonic acid)




Antioxidant activity


Butylated hydroxyanisole


Butylated hydroxytoluene


Maximal plasma concentration








Ferric reducing antioxidant power




Glutathione peroxidase




Nitric oxide synthase


Low-density lipoprotein






Nuclear factor kB


Nitric oxide




Oxygen radical absorption capacity




Phosphatidylinositol 3-kinase


Proliferator-activated receptor


Quinone reductase


Ribosomal-inactivating proteins


Reactive oxygen species




Superoxide dismutase


Trolox equivalents


Tumor necrosis factor α


Total phenolic content



Thanks are due to FCT/MEC for the financial support to the QOPNA research Unit (FCT UID/QUI/00062/2013) and CICECO (FCT UID/CTM/50011/2013), through national funds and where applicable co-financed by the FEDER, within the PT2020 Partnership Agreement. Â. Salvador thanks the grant AgroForWealth: Biorefining of agricultural and forest by-products and wastes – integrated strategic for valorisation of resources toward society wealth and sustainability (CENTRO-01-0145-FEDER-000001), funded by Centro2020, through FEDER and PT2020.


  1. 1.
    Dawidowicz AL, Wianowska D, Gawdzik J, Smolarz DH (2003) Optimization of ASE conditions for the HPLC determination of rutin and isoquercitrin in Sambucus nigra L. J Liq Chromatogr Relat Technol 26:2381–2397CrossRefGoogle Scholar
  2. 2.
    Salvador ÂC, Silvestre AJ, Rocha SM (2017) Unveiling elderflowers (Sambucus nigra L.) volatile terpenic and norisoprenoids profile: effects of different postharvest conditions. Food Chem 229:276–285PubMedCrossRefGoogle Scholar
  3. 3.
    Salvador ÂC, Król E, Lemos VC, Santos SAO, Bento FPMS, Costa CP, Almeida A, Szczepankiewicz D, Krejpcio Z, Silvestre AJD, Rocha SM (2017) Effect of elderberry (Sambucus nigra L.) extract supplementation in STZ-induced diabetic rats fed with a high-fat diet. Int J Mol Sci 18:1–19Google Scholar
  4. 4.
    Salvador ÂC, Rocha SM, Silvestre AJD (2015) Lipophilic phytochemicals from elderberries (Sambucus nigra L.): influence of ripening, cultivar and season. Ind Crop Prod 71:15–23CrossRefGoogle Scholar
  5. 5.
    Salvador ÂC, Rudnitskaya A, Silvestre AJD, Rocha SM (2016) Metabolomic-based strategy for fingerprinting of Sambucus nigra L. berry volatile terpenoids and norisoprenoids: influence of ripening and cultivar. J Agric Food Chem 64:5428–5438PubMedCrossRefGoogle Scholar
  6. 6.
    Sidor A, Gramza-Michałowska A (2014) Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review. J Funct Foods 18:941–958CrossRefGoogle Scholar
  7. 7.
    Vinholes J, Rudnitskaya A, Gonçalves P, Martel F, Coimbra MA, Rocha SM (2014) Hepatoprotection of sesquiterpenoids: a quantitative structure-activity relationship (QSAR) approach. Food Chem 146:78–84PubMedCrossRefGoogle Scholar
  8. 8.
    De Cássia R, Andrade LN, de Sousa DP (2013) A review on anti-inflammatory activity of monoterpenes. Molecules 18:1227–1254CrossRefGoogle Scholar
  9. 9.
    Pollak OJ (1953) Reduction of blood cholesterol in man. Circulation 7:702–706PubMedCrossRefGoogle Scholar
  10. 10.
    Romeo JT (1998) Phytochemicals in human health and plant defense, vol 33. Springer Science+Business Media, LLC, TampaGoogle Scholar
  11. 11.
    Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203CrossRefGoogle Scholar
  12. 12.
    Pieroni A, Giusti ME, Münz H, Lenzarini C, Turković G, Turković A (2003) Ethnobotanical knowledge of the Istro-Romanians of Žejane in Croatia. Fitoterapia 74:710–719PubMedCrossRefGoogle Scholar
  13. 13.
    Kültür Ş (2007) Medicinal plants used in Kırklareli Province (Turkey). J Ethnopharmacol 111:341–364PubMedCrossRefGoogle Scholar
  14. 14.
    Passalacqua NG, Guarrera PM, De Fine G (2007) Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia 78:52–68PubMedCrossRefGoogle Scholar
  15. 15.
    Camejo-Rodrigues J, Ascensão L, Bonet MÀ, Vallès J (2003) An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de São Mamede” (Portugal). J Ethnopharmacol 89:199–209PubMedCrossRefGoogle Scholar
  16. 16.
    Charlebois D, Byers PL, Finn CE, Thomas AL (2010) Elderberry: botany, horticulture, potential. In: Janick J (ed) Horticultural reviews, vol 37. Wiley, Hoboken, pp 213–280Google Scholar
  17. 17.
    Atkinson MD, Atkinson E (2002) Sambucus nigra L. J Ecol 90:895–923CrossRefGoogle Scholar
  18. 18.
    CHMP Committee on Herbal Medicinal Products (2013) Assessment report on Sambucus nigra L. Fructus 44:1–26Google Scholar
  19. 19.
    Charlebois D, Richer C (2005) Le sureau: exigences de la production, cultivars et potentiel de mise en marché. Agri-Réseau 1:1–8Google Scholar
  20. 20.
    Cernusca M, Gold M, Godsey L (2009) Elderberry market research – report based on research performed in 2009. The Center for Agroforestry. University of Missouri, USAGoogle Scholar
  21. 21.
    Zafrilla P, Valero A, García-Viguera C (1998) Stabilization of strawberry jam colour with natural colourants. Food Sci Technol Int 4:99–105CrossRefGoogle Scholar
  22. 22.
    Biesalski H, Dragsted LO, Elmadfa I, Grossklaus R, Muller M, Schrenk D, Walter P, Weber P (2009) Bioactive compounds: definition and assessment of activity. Nutrition 25:1202–1205PubMedCrossRefGoogle Scholar
  23. 23.
    Biesalski H, Dragsted LO, Elmadfa I, Grossklaus R, Muller M, Schrenk D, Walter P, Weber P (2009) Bioactive compounds: safety and efficacy. Nutrition 25:1206–1211PubMedCrossRefGoogle Scholar
  24. 24.
    Finn CE, Thomas AL, Byers PL, Serce S (2008) Evaluation of American (Sambucus canadensis) and European (S. nigra) elderberry genotypes grown in diverse environments and implications for cultivar development. HortSci 43:1385–1391Google Scholar
  25. 25.
    Charlebois D (2007) Elderberry as a medicinal plant. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, AlexandriaGoogle Scholar
  26. 26.
    Donoghue MJ, Bell CD, Winkworth RC (2003) The evolution of reproductive characters in Dipsacales. Int J Plant Sci 164:S453–S464CrossRefGoogle Scholar
  27. 27.
    Janick J, Paull RE (2008) The encyclopedia of fruit & nuts. CABI, OxfordshireCrossRefGoogle Scholar
  28. 28.
    Kaack K (2008) Processing of aroma extracts from elder flower (Sambucus nigra L.) Eur Food Res Technol 227:375–390CrossRefGoogle Scholar
  29. 29.
    Vítová E, Divišová R, Sůkalová K, Matějíček A (2013) Determination and quantification of volatile compounds in fruits of selected elderberry cultivars grown in Czech Republic. J Food Nutr Res 52:1–11Google Scholar
  30. 30.
    Lee J, Finn CE (2007) Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric 87:2665–2675PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jensen K, Christensen LP, Hansen M, Jørgensen U, Kaack K (2001) Olfactory and quantitative analysis of volatiles in elderberry (Sambucus nigra L.) juice processed from seven cultivars. J Sci Food Agric 81:237–244CrossRefGoogle Scholar
  32. 32.
    Veberic R, Jakopic J, Stampar F, Schmitzer V (2009) European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem 114:511–515CrossRefGoogle Scholar
  33. 33.
    Kaack K, Austed T (1998) Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant Foods Hum Nutr 52:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kaack K, Christensen L, Hughes M, Eder R (2006) Relationship between sensory quality and volatile compounds of elderflower (Sambucus nigra L.) extracts. Eur Food Res Technol 223:57–70CrossRefGoogle Scholar
  35. 35.
    Kaack K, Christensen LP (2010) Phenolic acids and flavonoids in tea processed from flowers of black elder (Sambucus nigra L.) stored in different packing materials. Eur J Hortic Sci 75:214–220Google Scholar
  36. 36.
    Neto FC (2007) Sabugueiro – suas potencialidades. DRAP-Norte 1:1–16Google Scholar
  37. 37.
    CHMP Committe on Herbal Medicinal Products (2008) Sambucus nigra L., flos. European Medicines Agency Evaluation of Medicines for Human Use, London, pp 1–24Google Scholar
  38. 38.
    Mohebalian PM, Cernusca MM, Aguilar FX (2012) Discovering Niche Markets for Elderberry Juice in the United States. HortTechnology 22:556–566Google Scholar
  39. 39.
    Bermúdez-Soto MJ, Tomás-Barberán FA (2004) Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 219:133–141CrossRefGoogle Scholar
  40. 40.
    Sanderson H, Prendergast DV (2002) Commercial uses of wild and traditionally managed plants in England and Scotland. Centre for Economic Botany and Royal Botanical Gardens, Kew/Richmond, pp 1–133Google Scholar
  41. 41.
    Mollet B, Rowland I (2002) Functional foods: at the frontier between food and pharma. Curr Opin Biotechnol 13:483–485PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Menrad K (2003) Market and marketing of functional food in Europe. J Food Eng 56:181–188CrossRefGoogle Scholar
  43. 43.
    Roberfroid MB (2000) A European consensus of scientific concepts of functional foods. Nutrition 16:689–691PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zegler J (2016) Food & drink trends 2017. Mintel Group Ltd, London, UKGoogle Scholar
  45. 45.
    Roberfroid MB (2000) Concepts and strategy of functional food science: the European perspective. Am J Clin Nutr 71:1660–1664CrossRefGoogle Scholar
  46. 46.
    Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance – a review. Appetite 51:456–467PubMedCrossRefGoogle Scholar
  47. 47.
    Burdock GA, Carabin IG, Griffiths JC (2006) The importance of GRAS to the functional food and nutraceutical industries. Toxicology 221:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kwak N, Jukes DJ (2001) Functional foods. Part 1: the development of a regulatory concept. Food Control 12:99–107CrossRefGoogle Scholar
  49. 49.
    Roberfroid MB (2002) Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 87:139–143CrossRefGoogle Scholar
  50. 50.
    Uncini Manganelli RE, Zaccaro L, Tomei PE (2005) Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa and Sambucus nigra L. J Ethnopharmacol 98:323–327PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gray AM, Abdel-wahab YHA, Flatt PR, Al GET (2000) Biochemical and molecular action of nutrients the traditional plant treatment, Sambucus nigra (elder), exhibits insulin-like and insulin-releasing actions in vitro. J Nutr 130:15–20PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Roschek B, Fink RC, McMichael MD, Li D, Alberte RS (2009) Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 70:1255–1261PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Zakay-Rones Z, Varsano N, Zlotnik M, Manor O, Regev L, Schlesinger M, Mumcuoglu M (1995) Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. J Altern Complement Med 1:361–369PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Frank J, Kamal-Eldin A, Lundh T, Määttä K, Törrönen R, Vessby B (2002) Effects of dietary anthocyanins on tocopherols and lipids in rats. J Agric Food Chem 50:7226–7230PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Yoon M, Campbell JL, Andersen ME, Clewell HJ (2012) Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results. Crit Rev Toxicol 42:633–652PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Higuera GA, Hendriks JAA, van Dalum J, Wu L, Schotel R, Moreira-Teixeira L, van den Doel M, Leijten JCH, Riesle J, Karperien M, van Blitterswijk CA, Moroni L (2013) In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol (Camb) 5:889–898CrossRefGoogle Scholar
  57. 57.
    Rezaee R, Abdollahi M (2017) The importance of translatability in drug discovery. Expert Opin Drug Discovery 12:237–239CrossRefGoogle Scholar
  58. 58.
    Chen Y, Li C, Long T, Che T, Min J (2014) Bioavailability of cranberry bean hydroalcoholic extract and its inhibitory effect against starch hydrolysis following in vitro gastrointestinal digestion. Food Res Int 64:939–945PubMedCrossRefGoogle Scholar
  59. 59.
    Marhuenda J, Alemán MD, Gironés-vilaplana A, Pérez A, Caravaca G, Figueroa F, Mulero J, Zafrilla P (2016) Phenolic composition, antioxidant activity, and in vitro availability of four different berries. J Chem 2016:1–6CrossRefGoogle Scholar
  60. 60.
    Etienne-mesmin L, Denis S (2012) Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 30:591PubMedCrossRefGoogle Scholar
  61. 61.
    Lake ALB, Tewart DES (2005) Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53:15–17Google Scholar
  62. 62.
    Gil-izquierdo A, Gil I, Ferreres F, Toma FA (2001) In vitro availability of flavonoids and other phenolics in orange juice. J Agric Food Chem 49:1035–1041PubMedCrossRefGoogle Scholar
  63. 63.
    Azzari MAF, Ukumoto LANAF, Azza GIM, Ivrea MAAL, Esoriere LUT, Arco LUDIM (2008) In vitro bioavailability of phenolic compounds from five cultivars of frozen sweet cherries (Prunus avium L.) J Agric Food Chem 56:3561–3568CrossRefGoogle Scholar
  64. 64.
    Pérez-Vicente A, Gil-Izquierdo A, García-Viguera C (2002) In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Food Chem 50:2308–2312CrossRefGoogle Scholar
  65. 65.
    Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23:223–229PubMedCrossRefGoogle Scholar
  66. 66.
    Nair A, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Devillers J, Pandard P, Thybaud E, Merle A (2009) Interspecies correlations for predicting the acute toxicity of xenobiotics. In: Devillers J (ed) Ecotoxicology modeling, vol 2. Springer Science+Business Media, LLC, New York, pp 84–115CrossRefGoogle Scholar
  68. 68.
    Röhrig B, du Prel J-B, Wachtlin D, Blettner M (2009) Types of study in medical research. Dtsch Arztebl Int 106:262–268PubMedPubMedCentralGoogle Scholar
  69. 69.
    Charles C (1995) Epidemiology faces its limits. Science 269:164–169CrossRefGoogle Scholar
  70. 70.
    APhA (1972) Guidelines for biopharmaceutical studies in man. American Pharmaceutical Association Academy of Pharmaceutical Sciences, Washington, DCGoogle Scholar
  71. 71.
    McGhie TK, Ainge GD, Barnett LE, Cooney JM, Jensen DJ (2003) Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J Agric Food Chem 51:4539–4548PubMedCrossRefGoogle Scholar
  72. 72.
    Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584PubMedCrossRefGoogle Scholar
  73. 73.
    Murkovic M, Mulleder U, Adam U, Pfannhauser W (2001) Detection of anthocyanins from elderberry juice in human urine. J Sci Food Agric 81:934–937CrossRefGoogle Scholar
  74. 74.
    Cao GH, Prior RL (1999) Anthocyanins are defected in human plasma after oral administration of an elderberry extract. Clin Chem 45:574–576PubMedGoogle Scholar
  75. 75.
    Wu XL, Cao GH, Prior RL (2002) Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr 132:1865–1871PubMedCrossRefGoogle Scholar
  76. 76.
    Frank T, Janssen M, Netzel G, Christian B, Bitsch I, Netzel M (2007) Absorption and excretion of elderberry (Sambucus nigra L.) anthocyanins in healthy humans. Methods Find Exp Clin Pharmacol 29:525–533PubMedCrossRefGoogle Scholar
  77. 77.
    Milbury PE, Cao G, Prior RL, Blumberg J (2002) Bioavailability of elderberry anthocyanins. Mech Ageing Dev 123:997–1006PubMedCrossRefGoogle Scholar
  78. 78.
    Bitsch R, Netzel M, Sonntag S, Strass G, Frank T, Bitsch I (2004) Urinary excretion of cyanidin glucosides and glucuronides in healthy humans after elderberry juice ingestion. J Biomed Biotechnol 2004:343–345PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bitsch I, Janssen M, Netzel M, Strass G, Frank T (2004) Bioavailability of anthocyanidin-3-glycosides following consumption of elderberry extract and blackcurrant juice. Int J Clin Pharmacol Ther 42:293–300PubMedCrossRefGoogle Scholar
  80. 80.
    Cao G, Muccitelli HU, Sanchez-Moreno C, Prior RL (2001) Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. Am J Clin Nutr 73:920–926PubMedCrossRefGoogle Scholar
  81. 81.
    Frank T, Sonntag S, Strass G, Bitsch I, Bitsch R, Netzel M (2005) Urinary pharmacokinetics of cyanidin glycosides in healthy young men following consumption of elderberry juice. Int J Clin Pharmacol Res 25:47–56PubMedGoogle Scholar
  82. 82.
    Mulleder U, Murkovic M, Pfannhauser W (2002) Urinary excretion of cyanidin glycosides. J Biochem Biophys Methods 53:61–66PubMedCrossRefGoogle Scholar
  83. 83.
    Netzel M, Strass G, Herbst M, Dietrich H, Bitsch R, Bitsch I, Frank T (2005) The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Res Int 38:905–910CrossRefGoogle Scholar
  84. 84.
    Wiseman H (1999) The bioavailability of non-nutrient plant factors: dietary flavonoids and phyto-oestrogens. Proc Nutr Soc 58:139–146PubMedCrossRefGoogle Scholar
  85. 85.
    de Beer D, Joubert E, Gelderblom WCA, Manley M (2002) Phenolic compounds: a review of their possible role as in vivo antioxidants of wine. S Afr J Enol Vitic 23:48–61Google Scholar
  86. 86.
    Milbury PE, Vita JA, Blumberg JB (2010) Anthocyanins are bioavailable in humans following an acute dose of cranberry juice. J Nutr 140:1099–1104PubMedCrossRefGoogle Scholar
  87. 87.
    Yi W, Akoh CC, Fischer J, Krewer G (2006) Absorption of anthocyanins from blueberry extracts by Caco-2 human intestinal cell monolayers. J Agric Food Chem 54:5651–5658PubMedCrossRefGoogle Scholar
  88. 88.
    Kesarwani K, Gupta R (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3:253–266PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Karakaya S (2017) Bioavailability of phenolic compounds bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44:453–464CrossRefGoogle Scholar
  90. 90.
    Koli R, Erlund I, Jula A, Marniemi J, Mattila P, Alfthan G (2010) Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J Agric Food Chem 58:3927–3932PubMedCrossRefGoogle Scholar
  91. 91.
    Hollman P, Katan M (1997) Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51:305–310PubMedCrossRefGoogle Scholar
  92. 92.
    Mena P, Domínguez-Perles R, Gironés-Vilaplana A, Baenas N, García-Viguera C, Villaño D (2014) Flavan-3-ols, anthocyanins, and inflammation. Int Union Biochem Mol Biol 66:745–758Google Scholar
  93. 93.
    Smith RE, Tran K, Richards KM, Ryan S, Luo R, Salvador ÂC, Silvestre AJD, Rocha SM (2014) Elderberry juice composition and health benefits. In: Elder KE (ed) Fruit juices: types, nutritional composition and health benefits – nutrition and diet research progress. Nova Science Publishers, Inc, New York, pp 1–20Google Scholar
  94. 94.
    Cunha S, Meireles D, Machado J, Cunha S, Machado J (2016) Sambucus nigra – a promising natural source for human health. Exp Pathol Heal Sci 8:59–66Google Scholar
  95. 95.
    Salvador ÂC, Silvestre AJD, Rocha SM (2016) Sambucus nigra L.: a potential source of health-promoting components. In: Atta-ur-Rahman F (ed) Frontiers in natural product chemistry, vol 2. Bentham Science Publishers, Ltd., Sharjah, pp 343–392CrossRefGoogle Scholar
  96. 96.
    Krawitz C, Abu Mraheil M, Stein M, Imirzalioglu C, Domann E, Pleschka S, Hain T (2011) Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement Altern Med 11:1–6CrossRefGoogle Scholar
  97. 97.
    Chatterjee A, Yasmin T, Bagchi D, Stohs SJ (2004) Inhibition of Helicobacter pylori in vitro by various berry extracts, with enhanced susceptibility to clarithromycin. Mol Cell Biochem 265:19–26PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Izzo AA, Di Carlo G, Biscardi D, De Fusco R, Mascolo N, Borrelli F, Capasso F (1995) Biological screening of Italian medicinal plants for antibacterial activity. Phytother Res 9:281–286CrossRefGoogle Scholar
  99. 99.
    Porter RS (2017) A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother Res 554:533–554CrossRefGoogle Scholar
  100. 100.
    Zakay-Rones Z, Thom E, Wollan T, Wadstein J (2004) Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J Int Med Res 32:132–140PubMedCrossRefGoogle Scholar
  101. 101.
    Vlachojannis JE, Cameron M, Chrubasik S (2010) A systematic review on the Sambuci fructus effect and efficacy profiles. Phytother Res 24:1–8PubMedCrossRefGoogle Scholar
  102. 102.
    Fink RC, Roschek BJ, Alberte RS (2009) HIV type-1 entry inhibitors with a new mode of action. Antivir Chem Chemother 19:243–255PubMedCrossRefGoogle Scholar
  103. 103.
    Serkedjieva J, Manolova N, Zgórniak-Nowosielska I, Zawilińska B, Grzybek J (1990) Antiviral activity of the infusion (SHS-174) from flowers of Sambucus nigra L., aerial parts of Hypericum perforatum L., and roots of Saponaria officinalis L. against influenza and herpes simplex viruses. Phytother Res 4:97–100CrossRefGoogle Scholar
  104. 104.
    Castillo-maldonado I, Moreno-altamirano MMB, Serrano-gallardo LB (2017) Anti-dengue serotype-2 activity effect of Sambucus nigra leaves-and flowers-derived compounds. Virol Res Rev 1:1–5CrossRefGoogle Scholar
  105. 105.
    Burge B, Mumcuoglu M, Simmons T (1999) The effect of Sambucol on flu-like symptoms in chimpanzees: prophylactic and symptom-dependent treatment. Int Zoo News 46:16–19Google Scholar
  106. 106.
    Kong F (2009) Pilot clinical study on a proprietary elderberry extract: efficacy in addressing influenza symptoms Fan-kun. J Pharmacol 5:32–43Google Scholar
  107. 107.
    Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38SPubMedCrossRefGoogle Scholar
  108. 108.
    Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22SPubMedCrossRefGoogle Scholar
  109. 109.
    Jacobo-Velázquez DA, Cisneros-Zevallos L (2009) Correlations of antioxidant activity against phenolic content revisited: a new approach in data analysis for food and medicinal plants. J Food Sci 74:R107–R113PubMedCrossRefGoogle Scholar
  110. 110.
    Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold A-B, Haffner K, Baugerød H, Andersen LF, Moskaug Ø, Jacobs DR, Blomhoff RA (2002) Systematic screening of total antioxidants in dietary plants. J Nutr 132:461–471PubMedCrossRefGoogle Scholar
  111. 111.
    Haytowitz DB, Bhagwat S (2010) USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2; MarylandGoogle Scholar
  112. 112.
    Lugasi A, Hóvári J (2003) Antioxidant properties of commercial alcoholic and nonalcoholic beverages. Nahrung/Food 47:79–86PubMedCrossRefGoogle Scholar
  113. 113.
    Espín JC, Soler-Rivas C, Wichers HJ, García-Viguera C (2000) Anthocyanin-based natural colorants: a new source of antiradical activity for foodstuff. J Agric Food Chem 48:1588–1592PubMedCrossRefGoogle Scholar
  114. 114.
    Pool-Zobel BL, Bub A, Schröder N, Rechkemmer G (1999) Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur J Nutr 38:227–234PubMedCrossRefGoogle Scholar
  115. 115.
    Dawidowicz AL, Wianowska D, Baraniak B (2006) The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT Food Sci Technol 39:308–315CrossRefGoogle Scholar
  116. 116.
    Harokopakis E, Albzreh MH, Haase EM, Scannapieco FA, Hajishengallis G (2006) Inhibition of proinflammatory activities of major periodontal pathogens by aqueous extracts from elder flower (Sambucus nigra). J Periodontol 77:271–279PubMedCrossRefGoogle Scholar
  117. 117.
    Stoilova I, Wilker M, Stoyanova A, Krastanov A, Stanchev V (2007) Antioxidant activity of extract from elder flower (Sambucus nigra L.) Herba Pol 53:45–54Google Scholar
  118. 118.
    Rieger G, Muller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 56:9080–9086PubMedCrossRefGoogle Scholar
  119. 119.
    Buřičová L, Réblová Z (2008) Czech medicinal plants as possible sources of antioxidants. Czech J Food Sci 26:132–138CrossRefGoogle Scholar
  120. 120.
    Çelik SE, Özyürek M, Güçlü K, Çapanoǧlu E, Apak R (2014) Identification and anti-oxidant capacity determination of phenolics and their glycosides in elderflower by on-line HPLC-CUPRAC method. Phytochem Anal 25:147–154PubMedCrossRefGoogle Scholar
  121. 121.
    Mikulic-Petkovsek M, Samoticha J, Eler K, Stampar F, Veberic R (2015) Traditional elderflower beverages: a rich source of phenolic compounds with high antioxidant activity. J Agric Food Chem 63:1477–1487PubMedCrossRefGoogle Scholar
  122. 122.
    Abuja PM, Murkovic M, Pfannhauser W (1998) Antioxidant and prooxidant activities of elderberry (Sambucus nigra) extract in low-density lipoprotein oxidation. J Agric Food Chem 46:4091–4096CrossRefGoogle Scholar
  123. 123.
    Youdim KA, Martin A, Joseph JA (2000) Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med 29:51–60PubMedCrossRefGoogle Scholar
  124. 124.
    Wu XL, Gu LW, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856PubMedCrossRefGoogle Scholar
  125. 125.
    Nakajima J, Tanaka I, Seo S, Yamazaki M, Saito K (2004) LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J Biomed Biotechnol 2004:241–247PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lichtenthäler R, Marx F (2005) Total oxidant scavenging capacities of common European fruit and vegetable juices. J Agric Food Chem 53:103–110PubMedCrossRefGoogle Scholar
  127. 127.
    Bobek P, Nosal’Ova V, Cerna S (2001) Influence of diet containing extract of black elder (Sambucus nigra) on colitis in rats. Biol (Bratisl) 56:643–648Google Scholar
  128. 128.
    Ciocoiu M, Badescu M, Badulescu O, Badescu L (2017) The beneficial effects on blood pressure, dyslipidemia and oxidative stress of Sambucus nigra extract associated with renin inhibitors. Pharm Biol 54:3063–3067PubMedCrossRefGoogle Scholar
  129. 129.
    Murkovic M, Abuja PM, Bergmann AR, Zirngast A, Adam U, Winklhofer-Roob BM, Toplak H (2004) Effects of elderberry juice on fasting and postprandial serum lipids and low-density lipoprotein oxidation in healthy volunteers: a randomized, double-blind, placebo-controlled study. Eur J Clin Nutr 58:244–249PubMedCrossRefGoogle Scholar
  130. 130.
    Sadowska K, Andrzejewska J, Kl Ł (2017) Influence of freezing, lyophilisation and air-drying on the total monomeric anthocyanins, vitamin C and antioxidant capacity of selected berries. Int J Food Sci Technol 52:1246–1251CrossRefGoogle Scholar
  131. 131.
    Zhou N, Zhu W, Yang F, Kequan Z (2016) In vitro gastrointestinal digestion model to monitor the antioxidant properties and bioavailability of phenolic antioxidants from elderberry. React Oxyg Species 2:421–431Google Scholar
  132. 132.
    Olejnik A, Olkowicz M, Kowalska K, Rychlik J, Dembczyn R, Myszka K, Juzwa W, Białas W, Pat M (2016) Gastrointestinal digested Sambucus nigra L. fruit extract protects in vitro cultured human colon cells against oxidative stress. Food Chem 197:648–657PubMedCrossRefGoogle Scholar
  133. 133.
    Olejnik A, Kowalska K, Olkowicz M, Rychlik J, Juzwa W, Myszka K (2015) Anti-inflammatory effects of gastrointestinal digested Sambucus nigra L. fruit extract analysed in co-cultured intestinal epithelial cells and lipopolysaccharide-stimulated macrophages. J Funct Foods 19:649–660CrossRefGoogle Scholar
  134. 134.
    Debnath T, Kim DH, Lim BO (2013) Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2:7253–7270CrossRefGoogle Scholar
  135. 135.
    Thanh G, Ho T, Wangensteen H, Barsett H (2017) Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW 264.7 macrophages and dendritic cells. Int J Mol Sci 18:584CrossRefGoogle Scholar
  136. 136.
    Gorchakova T, Suprun I, Sobenin I, Orekhov A (2007) Use of natural products in anticytokine therapy. Bull Exp Biol Med 143:316–319PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Yeşilada E, Üstün O, Sezik E, Takaishi Y, Ono Y, Honda G (1997) Inhibitory effects of Turkish folk remedies on inflammatory cytokines: interleukin-1α, interleukin-1β and tumor necrosis factor α. J Ethnopharmacol 58:59–73PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Moresco EMY, Lavine D, Beutler B (2011) Toll-like receptors. Curr Biol 21:R488–R493PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Barak V, Birkenfeld S, Halperin T, Kalickman I (2002) The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Isr Med Assoc J 4:919–922PubMedGoogle Scholar
  140. 140.
    Barak V, Halperin T, Kalickman I (2001) The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur Cytokine Netw 12:290–296PubMedGoogle Scholar
  141. 141.
    Thanh G, Ho T, Zou Y, Aslaksen TH, Wangensteen H, Barsett H (2016) Structural characterization of bioactive pectic polysaccharides from elderflowers (Sambuci flos). Carbohydr Polym 135:128–137CrossRefGoogle Scholar
  142. 142.
    Thanh G, Ho T, Zou Y, Wangensteen H, Barsett H (2016) RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators. Int J Biol Macromol 92:731–738CrossRefGoogle Scholar
  143. 143.
    Mascolo N, Autore G, Capasso F, Menghini A, Fasulo MP (1995) Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother Res 9:281–286CrossRefGoogle Scholar
  144. 144.
    Curtis PJ, Kroon PA, Hollands WJ, Walls R, Jenkins G, Kay CD, Cassidy A (2009) Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in extract rich in anthocyanins for 12 weeks. J Nutr 139:2266–2271PubMedCrossRefGoogle Scholar
  145. 145.
    Chrubasik C, Maier T, Dawid C, Torda T, Schieber A, Hofmann T, Chrubasik S (2008) An observational study and quantification of the actives in a supplement with Sambucus nigra and Asparagus officinalis used for weight reduction. Phytother Res 22:913–918PubMedCrossRefGoogle Scholar
  146. 146.
    Singh A, Holvoet S, Mercenier A (2011) Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 41:1346–1359PubMedCrossRefGoogle Scholar
  147. 147.
    Tanaka T, Kouda K, Kotani M, Takeuchi A, Tabei T (2001) Vegetarian diet ameliorates symptoms of atopic dermatitis through reduction of the number of peripheral eosinophils and of PGE2 synthesis by monocytes. J Physiol Anthropol Appl Hum Sci 20:353–361CrossRefGoogle Scholar
  148. 148.
    Pericleous M, Mandair D, Caplin ME (2013) Diet and supplements and their impact on colorectal cancer. J Gastrointest Oncol 4:409–423PubMedPubMedCentralGoogle Scholar
  149. 149.
    Jing P, Bomser JA, Schwartz SJ, He J, Magnuson BA, Giusti MM (2008) Structure−function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell crowth. J Agric Food Chem 56:9391–9398PubMedCrossRefGoogle Scholar
  150. 150.
    Thole JM, Kraft TFB, Sueiro LA, Kang Y-H, Gills JJ, Cuendet M, Pezzuto JM, Seigler DS, Lila MA (2006) A comparative evaluation of the anticancer properties of European and American elderberry fruits. J Med Food 9:498–504PubMedCrossRefGoogle Scholar
  151. 151.
    Cuendet M, Oteham CP, Moon RC, Pezzuto JM (2006) Quinone reductase induction as a biomarker for cancer chemoprevention. J Nat Prod 69:460–463PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553PubMedCrossRefGoogle Scholar
  153. 153.
    Christensen KB, Petersen RK, Kristiansen K, Christensen LP (2010) Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytother Res 24:S129–S132PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Christensen KB, Minet A, Svenstrup H, Grevsen K, Zhang H, Schrader E, Rimbach G, Wein S, Wolffram S, Kristiansen K, Christensen LP (2009) Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake. Phytother Res 23:1316–1325PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Raafat K, El-Lakany A (2015) Acute and subchronic in-vivo effects of Ferula hermonis L. and Sambucus nigra L. and their potential active isolates in a diabetic mouse model of neuropathic pain. BMC Complement Altern Med 15:1–14CrossRefGoogle Scholar
  156. 156.
    Bhattacharya S, Christensen KB, Olsen LCB, Christensen LP, Grevsen K, Færgeman NJ, Kristiansen K, Young JF, Oksbjerg N (2013) Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans. J Agric Food Chem 61:11033–11040PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Beaux D, Fleurentin J, Mortier F (1999) Effect of extracts of Orthosiphon stamineus benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) spreng. in rats. Phytother Res 13:222–225PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Ciocoiu M, Mirón A, Mares L, Tutunaru D, Pohaci C, Groza M, Badescu M (2009) The effects of Sambucus nigra polyphenols on oxidative stress and metabolic disorders in experimental diabetes mellitus. J Physiol Biochem 65:297–304PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Groza M, Jitaru D, Badescu L, Ciocoiu M, Badescu M, Descu MBĂ (2011) Evaluation of the immune defense in diabetes mellitus using an experimental model. Rom Biotechnol Lett 16:5971–5979Google Scholar
  160. 160.
    Badescu L, Badulescu O, Badescu M, Ciocoiu M (2012) Mechanism by Sambucus nigra extract improves bone mineral density in experimental diabetes. Evid Based Complement Alternat Med 2012:848269PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Ciocoiu M, Badescu L, Badulescu O, Tutunaru D, Badescu M (2012) Protective intervention of Sambucus nigra polyphenols in the diabetic heart. Ann Rom Soc Cell Biol 17:312–317Google Scholar
  162. 162.
    Groza M, Ciocoiu MBL, Oana B, Magda B, Tudent PHDS (2010) The effects of the Sambucus nigra vegetal extracts on the immune system dysfunction in the diabetes mellitus. Ann Rom Soc Cell Biol 15:241–246Google Scholar
  163. 163.
    Ciocoiu M, Tutunaru D, Badescu L, Furnica R, Badescu M (2003) Beneficial effects of various plant polyphenols on diabetic angiopathy. Ann Rom Soc Cell Biol 14:193–198Google Scholar
  164. 164.
    Bembde AS (2012) A study of plasma fibrinogen level in type-2 diabetes mellitus and its relation to glycemic control. Indian J Hematol Blood Transfus 28:105–108PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Badescu M, Badulescu O, Badescu L, Ciocoiu M (2015) Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol 53:533–539PubMedCrossRefGoogle Scholar
  166. 166.
    Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 11:1–11Google Scholar
  167. 167.
    Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L, Nagy A, Decea N, Ludovic M, Adriana G (2017) The effect of Sambucus nigra L. extract and phytosynthesized gold nanoparticles on diabetic rats. Colloids Surf B: Biointerfaces 150:192–200PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Ruhe RC, McDonald RB (2001) Use of antioxidant nutrients in the prevention and treatment of type 2 diabetes. J Am Coll Nutr 20:363S–369SPubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Mohamed KA, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP (1999) The role of oxidative stress and NF-κB activation in late diabetic complications. Biofactors 10:157–167PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Dewanjee S, Maiti A, Sahu R, Dua TK, Mandal V (2011) Effective control of type 2 diabetes through antioxidant defense by edible fruits of Diospyros peregrina. Evid Based Complement Alternat Med 2011:1–7CrossRefGoogle Scholar
  171. 171.
    Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142:375–415PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Lehmann H, Pabst J-Y (2016) La phytovigilance: impératif médical et obligation légale. Ann Pharm Fr 74:49–60PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Maixent J (2015) Opinion paper food supplements: the European regulation and its application in France. Thoughts on safety of food supplements. Cell Mol Biol 58:OL1720–OL1729Google Scholar
  174. 174.
    Jensen S, Nielsen B (1973) Cyanogenic glucosides in Sambucus nigra L. Acta Chem Scand 27:2661–2685PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M (2017) The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. J Sci Food Agric 97:2623–2632PubMedCrossRefGoogle Scholar
  176. 176.
    Williamson E, Driver S, Baxter K (eds) (2009) Stockley’s herbal medicines interactions. Pharmaceutical Press, LondonGoogle Scholar
  177. 177.
    Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M (2016) Processed elderberry (Sambucus nigra L.) products: a beneficial or harmful food alternative? LWT Food Sci Technol 72:182–188CrossRefGoogle Scholar
  178. 178.
    Shahidi-Noghabi S, Van Damme EJM, Smagghe G (2008) Carbohydrate-binding activity of the type-2 ribosome-inactivating protein SNA-I from elderberry (Sambucus nigra) is a determining factor for its insecticidal activity. Phytochemistry 69:2972–2978PubMedCrossRefGoogle Scholar
  179. 179.
    Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601PubMedGoogle Scholar
  180. 180.
    Van Damme EJM, Peumans WJ, Barre A, Rouge P (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692CrossRefGoogle Scholar
  181. 181.
    Förster-Waldl E, Marchetti M, Schöll I, Focke M, Radauer C, Kinaciyan T, Nentwich I, Jäger S, Schmid E, Boltz-Nitulescu G, Scheiner O, Jensen-Jarolim E (2003) Type I allergy to elderberry (Sambucus nigra) is elicited by a 33.2 kDa allergen with significant homology to ribosomal inactivating proteins. Clin Exp Allergy 33:1703–1710PubMedCrossRefGoogle Scholar
  182. 182.
    Gardiner P, Phillips R, Shaughnessy A (2008) Herbal and dietary supplement–drug interactions in patients with chronic illnesses. Am Fam Physician 77:73–78PubMedGoogle Scholar
  183. 183.
    Jakovljevic V, Popovic M, Mímica-Dukic N, Sabo J (2001) Interaction of Sambucus nigra flower and berry decoctions with the actions of centrally acting drugs in rats Pharmaceutical. Pharm Biol 39:142–145CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ângelo C. Salvador
    • 1
    • 2
  • Ricardo J. R. Guilherme
    • 1
  • Armando J. D. Silvestre
    • 2
  • Sílvia M. Rocha
    • 1
    Email author
  1. 1.QOPNA, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.CICECO- Aveiro Institute of Materials, Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations