Roots and Tubers as Functional Foods

  • Anoma ChandrasekaraEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Starchy roots and tuber crops are important components in the human diet. There are number of roots and tubers belonging to several species and make an extensive biodiversity even within the same geographical location. From the ancient time of human evolution starchy roots and tubers have been a part of food choices and add variety to the modern diet in addition to offering numerous desirable nutritional and health benefits such as antiobesity, antioxidative, hypoglycemic, hypocholesterolemic, antimicrobial, and immunomodulatory activities, among others. There are a number of bioactive constituents, namely, phenolic compounds, saponins, bioactive proteins, glycoalkaloids, phytic acids, and hydroxycoumarins, reported in tuber crops. Except the common potatoes, sweet potatoes, and cassava, other starchy tuber crops are yet to be explored for their nutritional and health benefits to use as functional foods. Some edible tubers are served for traditional and alternative medicinal sources. Tubers and roots are potential functional foods and nutraceutical ingredients to manage a number of ailments and to ensure general wellness.


Antioxidative Hypoglycemic Hypocholesterolemic Phenolic compounds Saponins 

List of Abbreviations


Adenosine monophosphate-activated protein kinase


Acetyl coenzyme A carboxylase


2,2, diphenyl-1-picrylhydrazyl


Extracellular signal-regulated protein kinase


Food and Agriculture Organization


Gallic acid equivalents




Hepatocellular carcinoma




Microculture tetrazolium treatment assay


Noncommunicable diseases


National Aeronautics and Space Administration


Nitric oxide


Interferon- γ


Oxygen radical absorbance capacity


Oral glucose tolerance test


Sex hormone binding globulin


Superoxide dismutase


Total phenolic content




White skinned sweet potatoes



This research was supported by the Research Grant Scheme of Wayamba University of Sri Lanka through a grant (SRHDC/RP/04/13-09) to AC. The author wishes to thank members of the research team Apeksha Herath, Jayani Wijerathne, Upuli Dahanayake, Thamilini Joshepkumar, and Saman Ranasinghe at Wayamba University of Sri Lanka.


  1. 1.
    FAOSTAT (2014) Agricultural data. Rome, Italy: Food and Agriculture Organization of the United Nations. Available from Accessed on 12 Feb 2017
  2. 2.
    USDA NAL (2015) Accessed on 12 Feb 2016
  3. 3.
    FAO (1990) Roots, tubers, plantains and bananas in human nutrition. Food and nutrition series, no. 24. Food and Agriculture Organization, RomeGoogle Scholar
  4. 4.
    Jacobs DR, Meyer KA, Kushi LH, Folsom AR (1998) Whole grain intake may reduce risk of coronary heart disease death in postmenopausal women: The Iowa Women’s Health Study. Am J Clin Nutr 68:248–257PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Liu S, Stampfer MJ, Hu FB, Giovanucci E, Rimm E, Manson JE, Hennekens CH, Willett WC (1999) Whole grain consumption and risk of coronary heart disease: results from the Nurses’ Health study. Am J Clin Nutr 70:412–419PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Liu S, Manson JE, Stampfer MJ, Hu FB, Giovanucci E, Colditz GA, Hennekens CH, Willett WC (2000) A prospective study of whole grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health 90:1409–1415PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR (2000) Carbohydrates, dietary fiber, incident type 2 diabetes mellitus in older women. Am J Clin Nutr 71:921–930CrossRefGoogle Scholar
  8. 8.
    Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    FAO (1999) Production year book, vol 53. Food and Agriculture Organization, RomeGoogle Scholar
  10. 10.
    Burlingame B, Mouille B, Charrondiere R (2009) Nutrients, bioactive nonnutrients and anti-nutrients in potatoes. J Food Compos Anal 22:494–502CrossRefGoogle Scholar
  11. 11.
    Ezekiel R, Singh B (2007) Changes in contents of sugars, free amino acids and phenols in four varieties of potato tubers stored at five temperatures for 180 days. J Food Sci Technol 44:471–477Google Scholar
  12. 12.
    Scott GJ (1992) Transforming traditional food crops: product development for roots and tubers. Asia Int Potato Center 1:3–20Google Scholar
  13. 13.
    Benjamin A (2007) Sweet potato: a review of its past, present and future role in human nutrition. Adv Food Nutr Res 52:1–59CrossRefGoogle Scholar
  14. 14.
    Odebunmi EO, Oluwaniyi OO, Sanda AM, Kolade BO (2007) Nutritional compositions of selected tubers and root crops used in Nigerian food preparations. Int J Chem 17:37–43Google Scholar
  15. 15.
    Bengtsson A, Namutebib A, Almingera ML, Svanberga U (2008) Effects of various traditional processing methods on the all-trans-b-carotene content of orange-fleshed sweet potato. J Food Compos Anal 21:134–143CrossRefGoogle Scholar
  16. 16.
    Kim JJ, Kim CW, Park DS, Shih SH, Jeon JH, Jang MJ, Ji HJ, Song JG, Lee JS, Kim BY, Choi EK, Joo SS, Hwang SY, Kim YB (2008) Effects of sweet potato fractions on alcoholic hangover and gastric ulcer. Lab Anim Res 24:209–216Google Scholar
  17. 17.
    van Jaarsveld P, Marais D, Harmse E, Nestel P, Amaya D (2006) Retention of beta carotene in boiled, mashed orange fleshed sweet potato. J Food Compos Anal 19:321–329CrossRefGoogle Scholar
  18. 18.
    Tokusoglu O, Yildirim Z, Durucasu I (2005) Nutraceutical phenolics (total polyphenols, chlorogenic [5-O-Caffeoylquinic] acid) in tubers, leaves, stalks and stems of new developed sweetpotato (Ipomea Batatas L.): alterations in tubers during short-term storage. J Food Technol 3:444–448Google Scholar
  19. 19.
    Yildirim Z, Tokusoglu O, Ozturk G (2011) Determination of sweet potato [Ipomoea batatas (L.) Lam] genotypes suitable to the Aegean region of Turkey. Turk J Field Crops 16:48–52Google Scholar
  20. 20.
    Kosambo LM, Carey EE, Misra AK, Wilkes J, Hagenimana V (1998) Influence of age, farming site, and boiling on pro-vitamin A content in sweet potato (Ipomoea batatas (L.) Lam.) storage roots. J Food Compos Anal 11:305–321CrossRefGoogle Scholar
  21. 21.
    Nassar NMA, Hashimoto DYC, Fernandes SDC (2008) Wild Manihot species: botanical aspects, geographic distribution and economic value. Genet Mol Res 7:16–28PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Blagbrough IS, Bayoumi SAL, Rowan MG, Beeching JR (2010) Cassava: an appraisal of its phytochemistry and its biotechnological prospects- review. Phytochemistry 71:1940–1951PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lebot V, Champagne A, Malapa R, Shiley D (2009) NIR determination of major constituents in tropical root and tuber crop flours. J Agric Food Chem 57:10539–10547PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Prawat H, Mahidol C, Ruchirawat S, Prawat U, Tuntiwachwuttikul P, Tooptakong U, Taylor WT, Pakwatchal C, Skeleton BW, White AH (1995) Cyanogenic and non cyanogenic glycosides from Manihot esculenta. Phytochemistry 40:1167–1173PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Okwu DE, Ndu CU (2006) Evaluation of the phytonutrients, mineral and vitamin contents of some varieties of yam (Dioscorea sp). Int J Mol Med Adv Sci 2:199–203Google Scholar
  26. 26.
    Liu YW, Shang HF, Wang CK, Hsu FL, Hou WC (2007) Immunomodulatory activity of dioscorin, the storage protein of yam (Dioscorea alata cv. Tainung No 1) tuber. Food Chem Toxicol 45:2312–2318PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Behera KK, Sahoo S, Prusti A (2010) Biochemical quantification of diosgenin and ascorbic acid from the tubers of different Dioscorea species found in Odisha. Libyan Agric Res Cent J Int 1:123–127Google Scholar
  28. 28.
    Chen YT, Kao WT, Lin KW (2008) Effects of pH on the total phenolic compound, antioxidative ability and the stability of dioscorin of various yam cultivars. Food Chem 107:250–257CrossRefGoogle Scholar
  29. 29.
    Senanayake SA, Ranaweera KKDS, Gunaratne A, Bamunuarachchi A (2013) Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomea batatas (L) Lam) in Sri Lanka. Food Sci Nutr 1(4):284–291PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hermann M, Heller J (1997) Andean roots and tubers: ahipa, arracacha, maca and yacon. Promoting the conservation and use of underutilized and neglected crops, vol 21. Co published by the Institute of Plant Genetics and Crop Plant Research, Gatersleben, and the International Plant Genetic Resources Institute (IPGRI), RomeGoogle Scholar
  31. 31.
    Iwu MM, Okunji CO, Ohiaeri GO, Akah P, Corley D, Tempesta MS (1999) Hypoglycemic activity of dioscoretine from tubers of Dioscorea dumetorum in normal and alloxan diabetic rabbits. Planta Med 56:264–267CrossRefGoogle Scholar
  32. 32.
    Bhandari MR, Kasai T, Kawabata J (2003) Nutritional evaluation of wild edible yam (Dioscorea spp) tubers of Nepal. Food Chem 82:619–623CrossRefGoogle Scholar
  33. 33.
    Kelmanson JE, Jager AK, van Staden J (2000) Zulu medicinal plants with antibacterial activity. J Ethnopharmacol 69:241–246PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chan YC, Hsu CK, Wang MF, Su TY (2004) A diet containing yam reduces the cognitive deterioration and brain lipid peroxidation in mice with senescence accelerated. Int J Food Sci Technol 39:99–107CrossRefGoogle Scholar
  35. 35.
    Chen HL, Wang CH, Chang CT, Wang TC (2003) Effects of Taiwanese Yam (Dioscorea japonica Thunb var. pseudo japonica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice. Nutrition 19:646–651PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shewry PR (2003) Tuber storage proteins. Ann Bot 91:755–769PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yeoh HH, Chew MY (1977) Protein content and acid composition of cassava seed and tuber. Malays Agric J 51:1–6Google Scholar
  38. 38.
    Hou WC, Chen HJ, Lin YH (1999) Dioscorins, the major tuber storage proteins of yam (Dioscorea batatas Decne), with dehydroascorbatereductase and monodehydroascorbatereductase activities. Plant Sci 149:151–156CrossRefGoogle Scholar
  39. 39.
    Hou WC, Chen HJ, Lin YH (2000) Dioscorins from different Dioscorea species all exhibit both carbonic anhydrase and trypsin inhibitor activities. Bot Bull Acad Sin 41:191–196Google Scholar
  40. 40.
    Hou WC, Lee MH, Chen HJ, Liang WL, Han CH, Liu YW, Lin YH (2001) Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J Agric Food Chem 49:4956–4960PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hsu FL, Lin YH, Lee MH, Lin CL, Hou WC (2002) Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No 1) and its peptic hydrosylates exhibited angiotensin converting enzyme inhibitory activities. J Agric Food Chem 50:6109–6113PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lin JY, Lu S, Liou YL, Liou HL (2006) Antioxidant and hypolipidaemic effects of a novel yam-boxthorn noodle in an in vivo murine model. Food Chem 94:377–384CrossRefGoogle Scholar
  43. 43.
    Zhi-Dong X, Peng-Gao L, Tai-Hua M (2009) The differentiation- and proliferation-inhibitory effects of sporamin from sweet potato in 3T3-L1 preadipocytes. Agric Sci China 8:671–677CrossRefGoogle Scholar
  44. 44.
    Senthilkumar R, Yeh KW (2012) Multiple biological functions of sporamin relate to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol Adv 30:1309–1317PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Yeh K, Chen J, Lin M, Chen Y, Lin C (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565–570PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hou WC, Lin YH (1997) Dehydroascorbate reductase and monodehydroascorbate reductase activities of trypsin inhibitors, the major sweet potato (Ipomoea batatas [L] Lam) root storage protein. Plant Sci 128:151–158CrossRefGoogle Scholar
  47. 47.
    Paiva E, Lister RM, Park WD (1983) Induction and accumulation of major tuber proteins of potato stems and petioles. Plant Physiol 71:161–168PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pots AM, Gruppen H, Hessing M, van Boekel MA, Voragen AG (1999) Isolation and characterization of patatin isoforms. J Agric Food Chem 47:4587–4592PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Cogdell RJ, Frank HA (1987) The function of carotenoids in photosynthesis. Biochim Biophys Acta 815:63–79CrossRefGoogle Scholar
  50. 50.
    Paiva SA, Russell RM (1999) Beta-carotene content and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M (2009) Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J Nutr 139:876–883PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ezekiel R, Singh N, Sharma S, Kaur A (2013) Beneficial phytochemicals in potato- a review. Food Res Int 50:487–496CrossRefGoogle Scholar
  53. 53.
    Burgos G, Muñoa L, Sosa P, Bonierbale M, Felde TZ, Díaz C (2013) In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum Nutr 68:385–390PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Eka OU (1998) Root and tubers. In: Osagie AU, Eka OU (eds) Nutritional quality of plant foods. Post Harvest Research Unit University of Benin Nigeria, Benin, pp 1–31Google Scholar
  55. 55.
    Schieber A, Saldaña MDA (2009) Potato peels: a source of nutritionally and pharmacologically interesting compounds – a review. FoodReview 3:23–29Google Scholar
  56. 56.
    Shahidi F (2002) Phytochemicals in oilseeds. In: Phytochemicals in nutrition and health. CRC Press, Boca Raton, pp 139–156Google Scholar
  57. 57.
    Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. CRC press, Boca Raton, pp 1–82Google Scholar
  58. 58.
    Francis G, Kerem Z, Makkar HPS et al (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Vincken JP, Heng L, de Groot A et al (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Huang CH, Cheng JY, Deng MC, Chou CH, Jan TR (2012) Prebiotic effect of diosgenin, an immunoactive steroidal sapogenin of the Chinese yam. Food Chem 132:428–432PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kaneko K, Tanaka MW, Mitsuhashi H (1977) Dormantinol, a possible precursor in solanidine biosynthesis, from budding Veratrum grandiflorum. Phytochemistry 16:1247–1251CrossRefGoogle Scholar
  63. 63.
    Milner SE, Brunton NP, Jones PW, O’Brien NM, Collins SG, Maguire AR (2011) Bioactivities of glycoalkaloids and their aglycones from Solanum species. J Agric Food Chem 59: 3454–3484PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Peksa A, Golubowska G, Rytel E, Lisinska G, Aniolowski K (2002) Influence of harvest date on glycoalkaloid contents of three potato varieties. Food Chem 78:313–317CrossRefGoogle Scholar
  65. 65.
    Craik DJ, Daly LN, Plan RM, Salim AA, Sando L (2002) Structure and function of plant toxins (with emphasis on cystine knot toxins). J Toxicol Toxin Rev 21:229–271CrossRefGoogle Scholar
  66. 66.
    Mweetwa AM, Hunter D, Poe R, Harich KC, Ginzberg I, Veilleux RE, Tokuhisa JG (2012) Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry 75:32–40PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kuo KW, Hsu SH, Li YP, Lin WL, Liu LF, Chang LC, Lin CC, Lin CN, Sheu HM (2000) Anticancer activity evaluation of the solanum glycoalkaloid solamargine. Triggering apoptosis in human hepatoma cells. Biochem Pharmacol 60:1865–1873PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Liu LF, Liang CH, Shiu LY, Lin WL, Lin CC, Kuo KW (2004) Action of solamargine on human lung cancer cells-enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett 577:67–74PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ikeda T, Tsumagari H, Honbu T, Nohara T (2003) Cytotoxic activity of steroidal glycosides from Solanum plants. Biol Pharm Bull 26:1198–1201PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wu WH, Liu LY, Chung CJ, Joe HJ, Wang TA (2005) Estrogenic effect of yam ingestion in healthy postmenopausal women. J Am Coll Nutr 24:235–243PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Chen JH, JSS W, Lin HC, Wu SL, Wang WF, Huang SK, Ho YJ (2008) Dioscorea improves the morphometric and mechanical properties of bone in ovariectomised rats. J Sci Food Agric 88:2700–2706CrossRefGoogle Scholar
  72. 72.
    Hesam F, Balali GR, Tehrani RT (2012) Evaluation of antioxidant activity of three common potato (Solanum tuberosum) cultivars in Iran Avicenna. J Phytomed 2:79–85Google Scholar
  73. 73.
    Malmberg AG, Theander O (1985) Determination of chlorogenic acid in potato tubers. J Agric Food Chem 33:549–551CrossRefGoogle Scholar
  74. 74.
    Chu YH, Chang CL (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–556CrossRefGoogle Scholar
  75. 75.
    Brown CR (2008) Breeding for phytonutrient enhancement of potato. Am J Pot Res 85: 298–307CrossRefGoogle Scholar
  76. 76.
    Penarrieta JM, Salluca T, Tejeda L, Alvarado JA, Bergensta B (2011) Changes in phenolic antioxidants during chuno production (traditional Andean freeze and sun-dried potato). J Food Compos Anal 24:580–587CrossRefGoogle Scholar
  77. 77.
    Han K, Shimado K, Sekikawa M, Fukushima M (2007) Anthocyanin rich potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. Biosci Biotechnol Biochem 71:1356–1359PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ji X, Rivers L, Zielinski Z, Xu M, Macdougall E, Stephen J, Zhang S, Wang Y, Chapman R, Keddy P, Robertson G, Kirby C, Embleton J, Worall K, Murphy A, Koeyer D, Tai H, Yu L, Charter E, Zhang J (2012) Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake and neuroprotectiveactivities. Food Chem 133:1177–1187CrossRefGoogle Scholar
  79. 79.
    Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172CrossRefGoogle Scholar
  80. 80.
    Suzuki T, Tada H, Sato E, Sagae Y (1996) Application of sweet potato fibre to skin wound in rat. Biol Pharmacol Bull 19:977–983CrossRefGoogle Scholar
  81. 81.
    Chimkode R, Patil MB, Jalalpure SS (2009) Wound healing activity of tuberous root extracts of Ipomoea batatas. Adv Pharmacol Toxicol 10:69–72Google Scholar
  82. 82.
    Panda V, Sonkamble M (2011) Anti-ulcer activity of Ipomoea batatas tubers (sweet potato). Funct Foods Health Dis 2:48–61CrossRefGoogle Scholar
  83. 83.
    Dilworth L, Brown K, Wright R, Oliver M, Hall S, Asemota H (2012) Antioxidants, minerals and bioactive compounds in tropical staples. Afr J Food Sci Technol 3:90–98Google Scholar
  84. 84.
    Cornago DF, Rumbaoa RCO, Geronimo IM (2011) Philippine yam (Dioscorea spp) tubers phenolic content and antioxidant capacity. Philipp J Sci 140:145–152Google Scholar
  85. 85.
    Hsu CK, Yeh JY, Wei JH (2011) Protective effects of the ceude extracts from (Dioscorea alata) peel on tert-butylhydroperoxide-induced oxidative stress in mouse liver cells. Food Chem 126:429–434CrossRefGoogle Scholar
  86. 86.
    Chen YT, Lin KW (2007) Effects of heating temperature on the total phenolic compound, antioxidative ability and the stability of dioscorin of various yam cultivars. Food Chem 101:955–963CrossRefGoogle Scholar
  87. 87.
    Chan YC, Chang SC, Liu SY, Yang HL, Hseu YC, Liao JW (2010) Beneficial effects of yam on carbon-tetrachloride- induced hepatic fibrosis in rats. J Sci Food Agric 90:161–167PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Omar NF, Hassan SA, Yusoff UK, Abdullah NAP, Wahab PEM, Sinnaiah UR (2012) Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers. Molecules 17:2378–2387PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Panda V, Sonkamble M (2012) Phytochemical constituents and pharmacological activities of Ipomoea batatas L.(lam)- A review. Int J Res Phytochem Pharmacol 2:25–34Google Scholar
  90. 90.
    Huang D, Lin C, Chen H, Lin Y (2004) Antioxidant and antiproliferative activities of sweet potato (Ipomoea batatas (L.) Lam ‘Tainong 57’) constituents. Bot Bull Acad Sin 45:179–186Google Scholar
  91. 91.
    Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O, Yamaguchi M, Yamada J (1999) Antimutagenicity of sweet potato (Ipomoea batatas) roots. Biosci Biotechnol Biochem 63:537–541PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Thompson MD, Thompson HJ, McGinley JN, Neil ES, Rush DK, Holm DG (2009) Functional food characteristics of potato cultivars (Solanum tuberosum L.): photochemical composition and inhibition of 1-methyl-1-nitrosourea induced breast cancer in rats. J Food Compos Anal 22:571–576CrossRefGoogle Scholar
  93. 93.
    Madiwale PG, Reddivari L, Holm GD, Vanamala J (2011) Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptopic properties of colored flesh potatoes against human colon cancer cell lines. J Agric Food Chem 59:8155–8166PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Auyeung KK, Law P, Ko JK (2009) Astragalus saponins induce apoptosis via an ERK-independent NF-κB signaling pathway in the human hepatocellular HepG2 cell line. Int J Mol Med 23:189–196PubMedPubMedCentralGoogle Scholar
  95. 95.
    Lee K-R, Kozukue N, Han J-S, Park J-H, Chang E-Y, Baek E-J, Chang J-S, Friedman M (2004) Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem 52:2832–2839PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wang TS, Lii CK, Huang YC, Chang JY, Yang FY (2011) Anticlastogenic effect of aquaeous extract from water yam (Dioscorea alata L.) J Med Plants Res 5:6192–6202Google Scholar
  97. 97.
    Kusano S, Abe H (2000) Antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.) in obese Zucker fatty rats. Biol Pharm Bull 23:23–26PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ludvik B, Mahdjoobian K, Waldhaeusl W, Hofer A, Parger R, Willer A, Pacini G (2002) The effect of Ipomoea batatas (Caiapo) on glucose metabolism and serum cholesterol in patients with type 2 diabetes: observations. Diabetes Care 25:239–240PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Maithili V, Dhanabal SP, Mahendran S, Vadivelan R (2011) Antidiabetic activity of ethanolic extract of tubers of Dioscorea alata in alloxan induced diabetic rats. Indian J Pharmacol 43:455–459PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS (2007) Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp), on high-cholesterol fed rats. Biosci Biotechnol Biochem 71:306–3071CrossRefGoogle Scholar
  101. 101.
    Ma HY, Zhao ZT, Wang LJ, Wang Y, Zhou QL, Wang BX (2002) Comparative study on anti-hypercholesterolemia activity of diosgenin and total saponin of Dioscorea panthaica. China J Chin Mater Med 27:528–531Google Scholar
  102. 102.
    Cayen MN, Dvornik D (1979) Effects of diosgenin on lipid metabolism in rats. J Lipid Res 20:162–174PubMedPubMedCentralGoogle Scholar
  103. 103.
    Thewles A, Parslow RA, Coleman R (1993) Effect of diosgenin on bilary cholesterol transport in the rat. Biochem J 291:793–798PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Uchida K, Takse H, Nomura Y, Takeda K, Takeuchi N, Ishikawa Y (1984) Effects of diosgenin and B-sisterol on bile acids. J Lipid Res 25:236–245PubMedPubMedCentralGoogle Scholar
  105. 105.
    Temel RE, Brown JM, Ma Y, Tang W, Rudel LL, Ioannou YA, Davies JP, Yu L (2009) Diosgenin stimulation of fecal cholesterol excretion in mice is not NPC1L1 dependant. J Lipid Res 50:915–923PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lu YL, Chia CY, Liu YW, Hou W (2012) Biological activities and applications of dioscorins, the major tuber storage proteins of yam. J Tradit Complement Med 2:41–46PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Salbe AD, Ravussin E (2000) The determinants of obesity. In: Bouchard C (ed) Physical activity and obesity. Human Kinetics Publishers, Champaign, pp 67–102Google Scholar
  108. 108.
    Hwang Y, Choi J, Han E, Kim H, Wee J, Jung K, Jung K, Kwon K, Jeong T, Chung Y, Jeong H (2011) Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate- activated protein kinase in human Hep G2 cells and obese mice. Nutr Res 31:896–906PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Gonzalez-Gallego J, Garcıa-Mediavilla MV, Sanche S, Tunon MJ (2010) Fruit polyphenols, immunity and inflammation. Br J Nutr 104:S15–S27PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Choi EM, Koo SJ, Hwang J-K (2004) Immune cell stimulating activity of mucopolysaccharide isolated from yam (Dioscorea batatas). J Ethnopharmacol 91:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Su PF, Li CJ, Hsu CC, Benson S, Wang SY, Aravindaram K, Chan SI, Wu SH, Yang FL, Huang WC, Shyur LF, Yang NS (2011) Dioscorea phytocompounds enhance murine splenocyte proliferation ex vivo and improve regeneration of bone marrow cells in vivo. Evid Based Complement Alternat Med 2011:731308. PMCID:PMC3137395PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shang H-F, Cheng H-C, Liang H-J, Liu H-Y, Liu S-Y, Hou W-C (2007) Immunostimulatory activities of yam tuber mucilages. Bot Stud 48:63–70Google Scholar
  113. 113.
    Olayemi JO, Ajaiyeoba EO (2007) Anti-inflammatory studies of yam (Dioscorea esculenta) extract on Wistar rats. Afr J Biotechnol 6:1913–1915CrossRefGoogle Scholar
  114. 114.
    Kaspar KL, Park JS, Brown CR, Mathison B, Naverre DA, Chew BP (2011) Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr 141:108–111PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Tripathi AS, Chitra V, Sheikh NW, Mohale DS, Dewani AP (2010) Immunomodulatory activity of the methanol extract of Amorphophallus campanulatus (Araceae) tuber. Trop J Pharm Res 9:451–454CrossRefGoogle Scholar
  116. 116.
    Sonibare MA, Abegunde RB (2012) In vitro antimicrobial and antioxidant analysis of Dioscorea dumetorum (Kunth) Pax and Dioscorea hirtiflora (Linn.) and their bioactive metabolites from Nigeria. J Appl Biosci 51:3583–3590Google Scholar
  117. 117.
    Sodipo OA, Akiniyi JA, Ogunbamosu JU (2000) Studies on certain characteristics of extracts of bark of pansinystalia macruceras (K schemp) pierre Exbeille. Global J Pure Appl Sci 6:83–87Google Scholar
  118. 118.
    Souci SW, Fachmann W, Krut H (1994) Food composition and nutrition tables, 5th edn. Medpharm Stuttgart Medpharm GmbH, Scientific Publishers/CRC Press, Stuttgart/Boca RatonGoogle Scholar
  119. 119.
    FAO (1972) Food composition tables for use in East Asia. FAO, RomeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Nutrition, Faculty of Livestock Fisheries and NutritionWayamba University of Sri LankaGonawilaSri Lanka

Personalised recommendations