Nutraceutical Potential of Apiaceae

  • Milica G. AćimovićEmail author
Reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Apiaceae family is large, with over 3.000 species worldwide cultivated for many purposes. Some plants in this family such as carrots, parsley, parsnip and celery are common vegetable crops, while other members like anise, caraway, coriander, cumin, fennel, lovage, angelica and dill are famous for their medicinal and aromatic properties. Usage of these plants is very popular in everyday diet because of their documented health benefits. Apiaceae are a very important source of phytochemicals – chemicals with biological activity. However, phytochemicals are non-nutritive plant chemicals, also called nutraceuticals. They are widely used for prevention, treatment or cure of conditions or diseases. Bioactive compounds with nutraceutical potential are polyphenolic compounds, polyacetylenes and terpenoids. The aim of this review is to represent selected plants of Apiaceae family currently used as nutraceuticals and describe their nutritional benefits.


Vegetable Spices Biological activity Food Nutrition Phenolics Polyacetylenes Terpenoids 



Caffeic acid equivalent


Catechine equivalent


Dry weight


Fresh weight


Gallic acid equivalents


Quercetin equivalent


Total flavanoids content


Total phenolic contents


  1. 1.
    Tunçtürk M, Özgökçe F (2015) Chemical composition of some Apiaceae plants commonly used in herby cheese in eastern Anatolia. Turk J Agric For 39:55–62CrossRefGoogle Scholar
  2. 2.
    Aćimović M, Milić N (2017) Perspectives of the Apiaceae hepatoprotective effects – a review. Nat Prod Commun 12:309–317PubMedPubMedCentralGoogle Scholar
  3. 3.
    Huang WY, Cai YZ, Zhang Y (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Siró I, Kápolna E, Kápolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance – a review. Appetite 51:456–467PubMedCrossRefGoogle Scholar
  5. 5.
    Jain N, Ramawat K (2013) Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Mérillon JM (eds) Natural products, Phytochemistry, botany and metabolism of alkaloids, Phenolics and terpenes. Springer, Berlin/HeidelbergGoogle Scholar
  6. 6.
    Wang J, Guleria S, Koffas M, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cornelli U (2009) Antioxidant use in nutraceuticals. Clin Dermatol 27:175–194PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099CrossRefGoogle Scholar
  9. 9.
    Dillard C, German B (2000) Review phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756CrossRefGoogle Scholar
  10. 10.
    Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278CrossRefGoogle Scholar
  11. 11.
    Ghanem M, Radwan H, Mahdy ES, Elkholy Y, Hassanein H, Shahat A (2012) Phenolic compounds from Foeniculum vulgare (Subsp. piperitum) (Apiaceae) herb and evaluation of hepatoprotective antioxidant activity. Pharm Res 4:104–108Google Scholar
  12. 12.
    Martins N, Barros L, Santos-Buelgac C, Ferreira I (2016) Antioxidant potential of two Apiaceae plant extracts: a comparative study focused on the phenolic composition. Ind Crop Prod 79:188–194CrossRefGoogle Scholar
  13. 13.
    Ereifej KI, Feng H, Rababah TM, Tashtoush SH, Al-U’datt MH, Gammoh S, Al-Rabadi GJ (2016) Effect of extractant and temperature on phenolic compounds and antioxidant activity of selected spices. Food Nutr Sci 7:362–370Google Scholar
  14. 14.
    Saleem F, Sarkar D, Ankolekar C, Shetty K (2017) Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae Family targeting for type 2 diabetes relevant nutraceuticals. Ind Crop Prod. Scholar
  15. 15.
    Bystrická J, Kavalcová P, Musilová J, Vollmannová A, Tóth T, Lenková M (2015) Carrot (Daucus carota L. ssp. sativus (Hoffm.) Arcang.) as source of antioxidants. Acta Agri Slovenica 105:303–311CrossRefGoogle Scholar
  16. 16.
    Nagy M, Tofană M, Socaci SA, Pop AV, Bors MD, Farcas A, Moldovan O (2014) Total phenolic, flavonoids and antioxidant capacity of some medicinal and aromatic plants. Bull UASVM Food Sci Technol 71:209–210Google Scholar
  17. 17.
    Świeca M, Gawlik-Dziki U (2008) Influence of thermal processing on phenolics compounds level and antiradical activity of dill (Anethum graveolens L.) Herba Polonica 54:59–69Google Scholar
  18. 18.
    Isbilir SS, Sagiroglu A (2011) Antioxidant potential of different dill (Anethum graveolens L.) leaf extracts. Int J Food Prop 14:894–902CrossRefGoogle Scholar
  19. 19.
    Molnar M, Jerković I, Suknović D, Bilić-Rajs B, Aladić K, Šubarić D, Jokić S (2017) Screening of six medicinal plant extracts obtained by two conventional methods and supercritical CO2 extraction targeted on coumarin content, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity and total phenols content. Molecules 22:348. Scholar
  20. 20.
    Harmala P, Vuorela H (1990) Optimization of the high-performance liquid chromatography of coumarins in Angelica archangelica with reference to molecular structure. J Chromatogr 507:367–380CrossRefGoogle Scholar
  21. 21.
    Kumar D, Bhat ZA, Kumar V, Shah MY (2013) Coumarins from Angelica archangelica Linn. And their effects on anxiety-like behavior. Prog Neuro-Psychopharmacol Biol Psychiatry 40:180–186CrossRefGoogle Scholar
  22. 22.
    Dellal A, Benali FT, Hamel A, Dif MM, Bouazza S, Douaoui A, Rahmani H (2016) Optimization of the extraction conditions of phenolic compounds from (Apium graveolens) seeds by response surface methodology. Adv Environ Biol 10:155–163Google Scholar
  23. 23.
    Yao Y, Sang W, Zhou M, Ren G (2010) Phenolic composition and antioxidant activities of 11 celery cultivars. J Food Sci 75:C9–13PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Vallverdú-Queralt A, Regueiro J, Alvarenga JFR, Martinez-Huelamo M, Leal LN, Lamuela-Raventos RM (2015) Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: caraway, turmeric, dill, marjoram and nutmeg. Food Sci Technol Campinas 35:189–195CrossRefGoogle Scholar
  25. 25.
    Kunzemann J, Herrmann K (1977) Isolation and identification of flavon(ol)-O-glycosides in caraway (Carum carvi L.), fennel (Foeniculum vulgare mill.), anise (Pimpinella anisum L.), and coriander (Coriandrum sativum L.), and of flavon-C-glycosides in anise. I. Phenolics of spices. Z Lebensm Unters Forsch 164:194–200PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Al-Juhaimi F, Ghafoor K (2011) Total phenols and antioxidant activities of leaf and stem extracts from coriander, mint and parsley grown in Saudi Arabia. Pak J Bot 43:2235–2237Google Scholar
  27. 27.
    Nambiar VS, Daniel M, Guin P (2010) Characterization of polyphenols from coriander leaves (Coriandrum sativum), red amaranthus (A. paniculatus) and green amaranthus (A. frumentaceus) using paper chromatography: and their health implications. J Herb Med Toxicol 4:173–177Google Scholar
  28. 28.
    Barros L, Dueñas M, Dias MI, Sousa MJ, Santos-Buelga C, ICFR F (2012) Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem 132:841–848CrossRefGoogle Scholar
  29. 29.
    Farah H, Elbadrawy E, Al-Atoom AA (2015) Evaluation of antioxidant and antimicrobial activities of ethanolic extracts of parsley (Petroselinum crispum) and coriander (Coriandrum sativum) plants grown in Saudi Arabia. Int J Adv Res 3:1244–1255Google Scholar
  30. 30.
    Rajeshwari U, Andallu B (2011) Isolation and simultaneous detection of flavonoids in the methanolic and ethanolic extracts of Coriandrum sativum L. seeds by RP-HPLC. Pak J Food Sci 21:13–21Google Scholar
  31. 31.
    Bettaieb-Rebey I, Bourgou S, Debez IBS, Jabri-Karoui I, Sellami IH, Msaada K, Limam F, Marzouk B (2012) Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol 5:2827–2836CrossRefGoogle Scholar
  32. 32.
    Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B (2010) Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.) J Agric Food Chem 58:10410–10418PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Leja M, Kamińska I, Kramer M, Maksylewicz-Kaul A, Kammerer D, Carle R, Baranski R (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum Nutr 68:163–170PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Faisal NA, Chatha SAS, Hussain AI, Ikram M, Bukhari SA (2016) Liaison of phenolic acids and biological activity of escalating cultivars of Daucus carota. Int J Food Prop. Scholar
  35. 35.
    Dua A, Garg G, Mahajan R (2013) Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare miller). Eur J Exp Biol 3:203–208Google Scholar
  36. 36.
    Tomsone L, Kruma Z, Talou T, Zhao TM (2015) Natural antioxidants of horseradish and lovage extracted by accelerated solvent extraction. J Hyg Eng Desig 10:16–24Google Scholar
  37. 37.
    Kaushik P, Andújar I, Vilanova S, Plazas M, Gramazio P, Herraiz FJ, Brar NS, Prohens J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ekiert H, Gomółka E (2000) Furanocoumarins in Pastinaca Sativa L. in vitro culture. Pharmazie 55:618–620PubMedPubMedCentralGoogle Scholar
  39. 39.
    Trifunschi S, Ardelean D (2012) Quantification of phenolics and flavonoids from Petroselinum crispum extracts. J Med Ar 15:83–86Google Scholar
  40. 40.
    Chaves D, Frattani F, Assafim M, de Almeida AP, Zingali R, Costa S (2011) Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Nat Prod Comm 6:961–964Google Scholar
  41. 41.
    Christova-Bagdassarian VL, Bagdassarian KS, Atanassova MS (2013) Phenolic compounds and antioxidant capacity in Bulgarian plans (dry seeds). Int J Adv Res 1:186–197Google Scholar
  42. 42.
    Garrod B, Lewis BG, Coxon DT (1978) Cis-heptadeca-1,9-diene-4,6-diyne-3,8-diol, an antifungal polyacetylene from carrot root tissue. Physiol Plant Pathol 13:241–246CrossRefGoogle Scholar
  43. 43.
    Schinkovitz A, Stavri M, Gibbons S, Bucar F (2008) Antimycobacterial polyacetylenes from Levisticum officinale. Phytother Res 22:681–684PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Metzger B, Waksmonski J, Thompson A, Barnes D (2013) Supercritical fluid extraction (SFE) of anti-inflammatory polyacetylenes from celeriac (Apium graveolens L.) FASEB J 27:1079.34Google Scholar
  45. 45.
    Dembitsky V, Levitsky D (2006) Acetylenic terrestrial anticancer agents. Nat Prod Commun 1:405–429Google Scholar
  46. 46.
    Zaini RG, Brandt K, Clench MR, Le Maitre CL (2012) Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anti Cancer Agents Med Chem 12:640–652CrossRefGoogle Scholar
  47. 47.
    El-Houri RB, Kotowska D, Christensen KB, Bhattacharya S, Oksbjerg N, Wolber G, Kristiansen K, Christensen LP (2015) Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. Food Funct 6:2135–2144PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Choi YE, Ahn H, Ryu JH (2000) Polyacetylenes from Angelica gigas and their inhibitory activity on nitric oxide synthesis in activated macrophages. Biol Pharm Bull 23:884–886PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zidorn C, Jöhrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Christensen LP (2011) Aliphatic C(17)-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae Family. Recent Pat Food Nutr Agric 3:64–77PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Chen Y, Peng S, Luo Q, Zhang J, Guo Q, Zhang Y, Chai X (2015) Chemical and pharmacological progress on polyacetylenes isolated from the family Apiaceae. Chem Biodivers 12:474–502PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae Family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kreutzmann S, Christensen L, Edelenbos M (2008) Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT 41:193–205CrossRefGoogle Scholar
  54. 54.
    Schulz-Witte J, Nothnagel T, Schulz H (2010) Comparison of different clean-up methods for simultaneous HPLC determination of carotenoids and polyacetylenes in carrot root. J Appl Bot Food Qual 83:123–127Google Scholar
  55. 55.
    Roman M, Baranski R, Baranska M (2011) Nondestructive Raman analysis of polyacetylenes in Apiaceae vegetables. J Agric Food Chem 59:7647–7653PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kramer M, Bufler G, Nothnagel T, Carle R, Kammerer DR (2012) Effects of cultivation conditions and cold storage on the polyacetylene contents of carrot (Daucus carota L.) and parsnip (Pastinaca sativa L.) J Hortic Sci Biotechnol 87:101–106CrossRefGoogle Scholar
  57. 57.
    Rawson A, Hossain M, Patras A, Tuohy M, Brunton N (2013) Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb. Food Res Int 50:513–518CrossRefGoogle Scholar
  58. 58.
    Petrache P, Rodino S, Butu M, Pribac G, Pentea M, Butnariu M (2014) Polyacetylene and carotenes from Petroselinum sativum root. Dig J Nanomater Biostruct 9:1523–1527Google Scholar
  59. 59.
    Dawid C, Dunemann F, Schwab W, Nothnagel T, Hofmann T (2015) Bioactive C17-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives. J Agric Food Chem 63:9211–9222PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Nakano Y, Matsunaga H, Saita T, Mori M, Katano M, Okabe H (1998) Antiproliferative constituents in Umbelliferae plants II. Screening for polyacetylenes in some Umbelliferae plants, and isolation of panaxynol and falcarindiol from the root of Heracleum moellendorffii. Biol Pharm Bull 21:257–261PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Min BS (2006) Coumarins and a polyacetylene from the roots of Angelica purpuraefolia. Nat Prod Sci 12:129–133Google Scholar
  62. 62.
    Matsuda H, Kageura T, Ninomiya K, Toguchida I, Nishida N, Yoshikawa M (1998) Hepatoprotective and nitric oxide production inhibitory activities of coumarin and polyacetylene constituents from the roots of Angelica furcijuga. Bioorg Med Chem Lett 8:2191–2196PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Nurcahyanti A, Nasser I, Sporer F, Graf J, Bermawie N, Reichling J, Wink M (2016) Chemical composition of the essential oil from aerial parts of Javanian Pimpinella pruatjan Molk. And its molecular phylogeny. Diversity 8:15. Scholar
  64. 64.
    El Sohaimy SA (2012) Functional foods and nutraceuticals-modern approach to food science. World Appl Sci J 20:691–708Google Scholar
  65. 65.
    Aćimović M, Korać J, Jaćimović G, Oljača S, Đukanović L, Vuga-Janjatov V (2014a) Influence of ecological conditions on seeds traits and essential oil contents in anise (Pimpinella anisum L.) Not Bot Horti Agrobot Cluj Napoca 42:232–238Google Scholar
  66. 66.
    Aćimović M, Oljača S, Tešević V, Todosijević M, Đisalov J (2014b) Evaluation of caraway essential oil from different production areas of Serbia. Hort Sci (Prague) 41:122–130CrossRefGoogle Scholar
  67. 67.
    Aćimović M, Stanković J, Cvetković M, Ignjatov M, Lj N (2016b) Chemical characterization of essential oil from seeds of wild and cultivated carrots from Serbia. Bot Serb 40:55–60Google Scholar
  68. 68.
    Tongnuanchan P, Benjakul S (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 79:1231–1249CrossRefGoogle Scholar
  69. 69.
    Aćimović M, Lj K, Popović S, Dojčinović N (2015a) Apiaceae seeds as functional food. J Agric Sci (Belgrade) 60:237–246Google Scholar
  70. 70.
    Saleh MA, Clark S, Woodard B, Deolu-Sobogun SA (2010) Antioxidant and free radical scavenging activities of essential oils. Ethn Dis 20:78–82Google Scholar
  71. 71.
    Kosalec I, Pepeljnjak S, Kuštrak D (2005) Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta Pharma 55:377–385Google Scholar
  72. 72.
    Fraternale D, Flamini G, Ricci D (2014) Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J Med Food 17:1043–1047PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bailer J, Aichinger T, Hackl G, de Hueber K, Dachler M (2001) Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind Crop Prod 14:229–239CrossRefGoogle Scholar
  74. 74.
    Rana VS, Blazquez AM (2014) Chemical composition of the essential oil of Anethum graveolens aerial parts. J Essent Oil Bear Pl 17:1219–1223CrossRefGoogle Scholar
  75. 75.
    Aćimović M, Pavlović S, Varga A, Filipović V, Cvetković M, Stanković J, Čabarkapa I (2017a) Chemical composition and antibacterial activity of Angelica archangelica root essential oil. Nat Prod Commun 12:205–206PubMedPubMedCentralGoogle Scholar
  76. 76.
    Aćimović M, Cvetković M, Stanković J, Filipović V, Nikolić L, Dojčinović N (2017b) Analysis of volatile compounds from Angelica seeds obtained by headspace method. AJMAP 3:10–17Google Scholar
  77. 77.
    Sowbhagya HB (2014) Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr 54:389–398PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Meshkatalsadat MH, Salahvarzi S, Aminiradpoor R, Abdollahi A (2012) Identification of essential oil constituents of caraway (Carum carvi) using ultrasonic assist with headspace solid phase microextraction (UA-HS-SPME). Dig J Nanomater Biostruct 7:637–640Google Scholar
  79. 79.
    Seidler-Łożykowska K, Kędzia B, Karpińska E, Bocianowski J (2013) Microbiological activity of caraway (Carum carvi L.) essential oil obtained from different origin. Acta Sci Agron 35:495–500CrossRefGoogle Scholar
  80. 80.
    Aćimović M, Oljača S, Jaćimović G, Dražić S, Tasić S (2011) Benefits of environmental conditions for growing coriander in Banat region, Serbia. Nat Prod Commun 6:1465–1468PubMedPubMedCentralGoogle Scholar
  81. 81.
    Aćimović M, Stanković J, Cvetković M (2016) Effect of weather conditions, location and fertilization on coriander fruit essential oil quality. J Essent Oil Bear Plant 19:1208–1215CrossRefGoogle Scholar
  82. 82.
    Aćimović M, Grahovac M, Stanković J, Cvetković M, Maširević S (2016) Essential oil composition of different coriander (Coriandrum sativum L.) accessions and their influence on mycelial growth of Colletotrichum ssp. Acta Scientiarum Polonorum Hortorum Cultus 15:35–44Google Scholar
  83. 83.
    Mandal S, Mandal M (2015) Coriander (Coriandrum sativum L.) essential oil: chemistry and biological activity. Asian Pac J Trop Biomed 5:421–428CrossRefGoogle Scholar
  84. 84.
    Aliniana S, Razmjooa J, Zeinali H (2016) Flavonoids, anthocyanins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind Crop Prod 81:49–55CrossRefGoogle Scholar
  85. 85.
    Ma M, Mu T, Sun H, Zhang M, Chen J, Yan Z (2015) Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.) Food Chem 179:270–277PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Topal U, Sasaki M, Goto M, Otles S (2008) Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int J Food Sci Nutr 59:619–634PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wanner J, Bail S, Jirovetz L, Buchbauer G, Schmidt E, Gochev V, Girova T, Atanasova T, Stoyanova A (2010) Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Nat Prod Commun 5:1355–1358PubMedPubMedCentralGoogle Scholar
  88. 88.
    Zatla AT, Dib MEA, Djabou N, Tabti B, Meliani N, Costa J, Muselli A (2017) Chemical variability of essential oil of Daucus carota subsp. sativus from Algeria. J Herbs Spices Med Plant 23:216–230CrossRefGoogle Scholar
  89. 89.
    Aćimović M, Tešević V, Todosijević M, Đisalov J, Oljača S (2015c) Compositional characteristics of the essential oil of Pimpinella anisum and Foeniculum vulgare grown in Serbia. Bot Serb 39:9–14Google Scholar
  90. 90.
    Aćimović M, Lj K, Stanković J, Cvetković M, Filipović V (2015) Essential oil composition from sweet and bitter fennel fruits from Serbia. Med Raw Mat 35:121–129Google Scholar
  91. 91.
    Aćimović M, Cvetković M, Stanković J, Malenčić Đ, Kostadinović L (2015b) Compound analysis of essential oils from lovage and celery fruits obtained by headspace extraction. Ann Agron (Novi Sad) 39:44–51Google Scholar
  92. 92.
    Nikolić M, Markovic T, Ćirić A, Glamočlija J, Marković D, Soković M (2015) Susceptibility of oral Candida spp. reference strains and clinical isolates to selected essential oils of Apiaceae species. Med Raw Mat 35:151–162Google Scholar
  93. 93.
    Matejić J, Džamić A, Mihajilov-Krstev T, Ranđelović V, Krivošej Z, Marin P (2014) Antimicrobial potential of essential oil from Pastinaca sativa L. Biologica Nyssana 5:31–35Google Scholar
  94. 94.
    Linde GA, Gazim ZC, Cardoso BK, Jorge LF, Tešević V, Glamoćlija J, Soković M, Colauto NB (2016) Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet Mol Res 15(3).
  95. 95.
    Borges IB, Cardoso BK, Silva ES, de Oliveira JS, da Silva RF, de Rezende CM, Gonçalves JE, Junior RP, de Souza SGH, Gazim ZC (2016) Evaluation of performance and chemical composition of Petroselinum Crispum essential oil under different conditions of water deficit. Afr J Agric Res 11:480–486CrossRefGoogle Scholar
  96. 96.
    Gende LB, Maggi MD, Fritz R, Eguaras MJ, Bailac PN, Ponzi MI (2009) Antimicrobial activity of Pimpinella anisum and Foeniculum vulgare essential oils against Paenibacillus larvae. J Essent Oil Res 21:91–93CrossRefGoogle Scholar
  97. 97.
    Jana S, Shekhawat GS (2010) Anethum graveolens: an Indian traditional medicinal herb and spice. Pharmacogn Rev 4:179–184PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Aćimović M, Milić N (2015) Dill in traditional medicine and modern phytotherapy. Med Raw Mat 35:23–35Google Scholar
  99. 99.
    El Mansouri L, Bousta D, Balouiri M, Ouedrhiri W, Elyoubi-El HA (2015) Antioxidant activity of aqueous seed extract of Anethum graveolens L. Int J Pharm Sci Res 7:1219–1223Google Scholar
  100. 100.
    Mansouri M, Nayebi N, Keshtkar A, Hasani-Ranjbar S, Taheri E, Larijani B (2012) The effect of 12 weeks Anethum graveolens (dill) on metabolic markers in patients with metabolic syndrome; a randomized double blind controlled trial. Daru 20:47. Scholar
  101. 101.
    Mishra N (2013) Haematological and hypoglycemic potential Anethum graveolens seeds extract in normal and diabetic Swiss albino mice. Vet World 6:502–507CrossRefGoogle Scholar
  102. 102.
    Goodarzi MT, Khodadadi I, Tavilani H, Oshaghi EA (2016) The role of Anethum graveolens L. (dill) in the management of diabetes. J Trop Med 2016:1098916. Scholar
  103. 103.
    Mobasseri M, Payahoo L, Ostadrahimi A, Bishak YK, Jafarabadi MA, Mahluji S (2014) Anethum graveolens supplementation improves insulin sensitivity and lipid abnormality in type 2 diabetic patients. Pharm sci 20:40–45Google Scholar
  104. 104.
    Yazdanparast R, Bahramikia S (2008) Evaluation of the effect of Anethum graveolens L. crude extracts on serum lipids and lipoproteins profiles in hypercholesterolaemic rats. Daru 16:88–94Google Scholar
  105. 105.
    Bano F, Ikram H, Akhtar N (2013) Aqueous extract of Anethum graveolens L. seeds decrease LDL-C:HDL-C ratio in over weight rats. Pak J Biochem Mol Biol 46:26–29Google Scholar
  106. 106.
    Mirhosseini M, Baradaran A, Rafieian-Kopaei M (2014) Anethum graveolens and hyperlipidemia: a randomized clinical trial. J Res Med Sci 19:758–761PubMedPubMedCentralGoogle Scholar
  107. 107.
    Yazdanparast R, Alavi M (2001) Antihyperlipidaemic and antihypercholesterolaemic effects of Anethum graveolens leaves after removal of furocoumarins. Cytobios 105:185–191PubMedPubMedCentralGoogle Scholar
  108. 108.
    Tamilarasi R, Sivanesan D, Kanimozhi P (2012) Hepatoprotective and antioxidant efficacy of Anethum graveolens Linn in carbon tetrachloride induced hepatotoxicity in albino rats. J Chem Pharm Res 4:1885–1888Google Scholar
  109. 109.
    Thuppia A, Jitvaropas R, Saenthaweesuk S, Somparn N, Kaulpiboon J (2011) Hepatoprotective effect of the ethanolic extract of Anethum graveolens L. on paracetamol-induced hepatic damage in rats. Planta Med 77:PF18CrossRefGoogle Scholar
  110. 110.
    Ali WSH (2013) Hypolipidemic and antioxidant activities of Anethum graveolens against acetaminophen induced liver damage in rats. WJMS 8:387–392Google Scholar
  111. 111.
    Rabeh NM, Aboraya AO (2014) Hepatoprotective effect of dill (Anethum graveolens L.) and fennel (Foeniculum vulgare) oil on hepatotoxic rats. PJN 13:303–309CrossRefGoogle Scholar
  112. 112.
    Oshaghi EA, Khodadadi I, Tavilani H, Goodarzi MT (2016) Effect of dill tablet (Anethum graveolens L) on antioxidant status and biochemical factors on carbon tetrachloride-induced liver damage on rat. Int J App Basic Med Res 6:111–114CrossRefGoogle Scholar
  113. 113.
    Peerakam N, Wattanathorn J, Punjaisee S, Buamongkol S, Sirisa P, Chansakaow S (2014) Chemical profiling of essential oil composition and biological evaluation of Anethum graveolens L. (seed) grown in Thailand. J Nat Sci Res 4:34–41Google Scholar
  114. 114.
    Kaur GJ, Arora DS (2009) Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med 9:30. Scholar
  115. 115.
    Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y (2013) Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 62:1175–1183PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Dahiya P, Purkayastha S (2012) Phytochemical analysis and antibacterial efficacy of dill seed oil against multi-drug resistant clinical isolates. Asian J Pharm Clin Res 5:62–64Google Scholar
  117. 117.
    Sava-Sand C, Antofie MM (2016) New improvements in plant quality of Angelica archangelica l. as a crop species of food and pharmaceutical interest. Sci Paper Series Manag Eco Eng Agri Rural Develop 16:477–480Google Scholar
  118. 118.
    Bhat ZA, Kumar D, Shah MY (2011) Angelica archangelica Linn. Is an angel on earth for the treatment of diseases. Int J Nutri Pharmacol Neurol Diseases 1:36–50Google Scholar
  119. 119.
    Elgohary AA, Shafaa MW, Raafat BM, Rizk RA, Metwally FG, Saleh AM (2009) Prophylactic effect of Angelica archangelica against acute lead toxicity in albino rabbits. Romanian. J Biophys 19:259–275Google Scholar
  120. 120.
    Wojcikowski K, Stevenson L, Leach D, Wohlmuth H, Gobe G (2007) Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: a comparison using a sequential three-solvent extraction process. J Alternat Complement Med 13:103–109CrossRefGoogle Scholar
  121. 121.
    Sezer-Senol F, Skalicka-Woźniak K, Khan MTH, Orhan IE, Głowniak K (2011) An in vitro and in silico approach to cholinesterase inhibitory and antioxidant effects of the methanol extract, furanocoumarin fraction, and major coumarins of Angelica officinalis L. fruits. Phytochem Lett 4:462–467CrossRefGoogle Scholar
  122. 122.
    Nemeth S, Paşca B, Teodorescu A, Coita I, Teaha D (2015) Coumarins isolated from the dry roots of Angelica archangelica L. and their antibacterial activity. Analele Universităţii din Oradea, Fascicula: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimntară B 14:355–362Google Scholar
  123. 123.
    Rather RA, Rehman SU, Naseer S, Lone SH, Bhat KA, Chouhan A (2013) Flash chromatography guided fractionation and antibacterial activity studies of Angelica archangelica root extracts. IOSR-JAC 4:34–38CrossRefGoogle Scholar
  124. 124.
    Prakash B, Singh P, Goni R, Raina AK, Dubey NK (2015) Efficacy of Angelica archangelica essential oil, phenyl ethyl alcohol and α- terpineol against isolated molds from walnut and their antiaflatoxigenic and antioxidant activity. J Food Sci Technol 52:2220–2228PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Fraternale D, Flamini G, Ricci D (2016) Essential oil composition of Angelica archangelica L. (Apiaceae) roots and its antifungal activity against plant pathogenic fungi. Plant Biosyst 150:558–563CrossRefGoogle Scholar
  126. 126.
    Raafat BM, Zahrany SM, Al-Zahrani AS, Tawifiek E, Al-Omery AM (2012) Angelica Archangelica roots water extraction as a natural antioxidant tolerating ROS production in lead poisoning. RJPBCS 3:795–806Google Scholar
  127. 127.
    Yeh ML, Liu CF, Huang CL, Huang TC (2003) Hepatoprotective effect of Angelica archangelica in chronically ethanol-treated mice. Pharmacology 68:70–73PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Sigurdsson S, Ogmundsdottir HM, Gudbjarnason S (2005) The cytotoxic effect of two chemotypes of essential oils from the fruits of Angelica archangelica L. Anticancer Res 25:1877–1880PubMedPubMedCentralGoogle Scholar
  129. 129.
    Kumar D, Ali Bhat Z (2012) Anti-anxiety activity of methanolic extracts of different parts of Angelica archangelica Linn. J Tradit Complement Med 2:235–241PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pathak S, Wanjari MM, Jain SK, Tripathi M (2010) Evaluation of antiseizure activity of essential oil from roots of Angelica archangelica Linn. In mice. Indian J Pharm Sci 72:371–375PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Asif HM, Akram M, Usmanghani K, Akhtar N, Shah PA, Uzair M, Ramzan M, Ali Shah SM, Rehman R (2011) Monograph of Apium graveolens Linn. JMPR 5:1494–1496Google Scholar
  132. 132.
    Fazal SS, Singla RK (2012) Review on the pharmacognostical and pharmacological characterization of Apium Graveolens Linn. IGJPS 2:36–42Google Scholar
  133. 133.
    Kooti W, Daraei N (2017) A review of the antioxidant activity of celery (Apium graveolens L.). J Evid Based Complementary Altern Med. Scholar
  134. 134.
    Sameh B, Ibtissem B, Mahmoud A, Boukef K, Boughattas NA (2011) Antioxidant activity of Apium graveolens extracts. JBAPN 1:340–343Google Scholar
  135. 135.
    Kooti W, Ali-Akbari S, Asadi-Samani M, Ghadery H, Ashtary-Larky D (2014) A review on medicinal plant of Apium graveolens. Adv Herb Med 1:48–59Google Scholar
  136. 136.
    Shanmugapriya R, Ushadevi T (2014) In vitro antibacterial and antioxidant activities of Apium graveolens L. seed extracts. Int J Drug Dev Res 6:165–170Google Scholar
  137. 137.
    Uddin Z, Shad AA, Bakht J, Ullah I, Jan S (2015) In vitro antimicrobial, antioxidant activity and phytochemical screening of Apium Graveolens. Pak J Pharm Sci 28:1699–1704PubMedPubMedCentralGoogle Scholar
  138. 138.
    Singh A, Handa SS (1995) Hepatoprotective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J Ethnopharmacol 49:119–126PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Sultana S, Ahmed S, Jahangir T, Sharma S (2005) Inhibitory effect of celery seeds extract on chemically induced hepatocarcinogenesis: modulation of cell proliferation, metabolism and altered hepatic foci development. Cancer Lett 221:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kolarovic J, Popovic M, Mikov M, Mitic R, Gvozdenovic L (2009) Protective effects of celery juice in treatments with doxorubicin. Molecules 14:1627–1638PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Belal NM (2011) Hepatoprotective effect of feeding celery leaves mixed with chicory leaves and barley grains to hypercholesterolemic rats. Asian J Clin Nutri 3:14–24CrossRefGoogle Scholar
  142. 142.
    Osman N (2013) The role of antioxidant properties of celery against lead acetate induced hepatotoxicity and oxidative stress in irradiated rats. Arab J Nucl Sci Appl 46:339–346Google Scholar
  143. 143.
    Ramezani M, Nasri S, Yassa N (2009) Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice. Pharm Biol 49:740–743CrossRefGoogle Scholar
  144. 144.
    Choosri N, Tanasawet S, Chonpathompikunlert P, Sukketsiri W (2017) Apium graveolens extract attenuates adjuvant induced arthritis by reducing oxidative stress. J Food Biochem 41(1):12276. Scholar
  145. 145.
    Mansi K, Abushoffa AM, Disi A, Aburjai T (2009) Hypolipidemic effects of seed extract of celery (Apium graveolens) in rats. Phcog Mag 5:301–305CrossRefGoogle Scholar
  146. 146.
    Al-Saaidi JAA, Alrodhan MNA, Ismael AK (2012) Antioxidant activity of n-butanol extract of celery (Apium Graveolens) seed in streptozotocin-induced diabetic male rats. Res Pharmaceut Biotechnol 4:24–29CrossRefGoogle Scholar
  147. 147.
    Branković S, Gočmanac-Ignjatović M, Kostić M, Veljković M, Miladinović B, Milutinović M, Radenković M (2015) Spasmolytic activity of the aqueous and ethanol celery leaves (Apium graveolens l.) extracts on the contraction of isolated rat ileum. Acta Medica Medianae 54:11–16CrossRefGoogle Scholar
  148. 148.
    Moghadam MH, Imenshahidi M, Mohajeri SA (2013) Antihypertensive effect of celery seed on rat blood pressure in chronic administration. J Med Food 16:558–563PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Al Jawad FH, Al Razzuqi RAM, Al Jeboori AA (2011) Apium Graveolens accentuates urinary ca+2 excretions in experimental model of nephrocalcinosis. Int J Green Pharm 5:100–102CrossRefGoogle Scholar
  150. 150.
    Aćimović M, Dolijanović Ž, Oljača S, Kovačević D, Oljača M (2015) Effect of organic and mineral fertilizers on essential oil content in caraway, anise and coriander fruits. Acta Scientiarum Polonorum Hortorum Cultus 14(1):95–103Google Scholar
  151. 151.
    Najda A, Dyduch J, Brzozowski N (2008) Flavonoid content and antioxidant activity of caraway roots (Carum carvi L.) Veget Crops Res Bull 68:127–133CrossRefGoogle Scholar
  152. 152.
    Foti MC, Ingold KU (2003) Mechanism of inhibition of lipid peroxidation by γ-terpinene, an unusual and potentially useful hydrocarbon antioxidant. J Agric Food Chem 51:2758–2765PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Damašius J, Škėmaitė M, Kirkilaitė G, Vinauskienė R, Venskutonis PR (2007) Antioxidant and antimicrobial properties of caraway (Carum carvi L.) and cumin (Cuminum cyminum L.) extracts. Vet Med Zoot 40:9–13Google Scholar
  154. 154.
    Samojlik I, Lakić N, Mimica-Dukić N, Đaković-Švajcer K, Božin B (2010) Antioxidant nad hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J Agric Food Chem 58:8848–8853PubMedCrossRefGoogle Scholar
  155. 155.
    Johri KR (2011) Cuminum cyminum and Carum carvi: an update. Pharmacogn Rev 5:63–72PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Hawerelak JA, Cattley T, Myers SP (2009) Essential oils in the treatment of intestinal dysbiosis: a preliminary in vitro study. Altern Med Rev 14:380–384Google Scholar
  157. 157.
    Keshavarz A, Minaiyan M, Ghannadi A, Mahzouni P (2013) Effects of Carum carvi L. (caraway) extract and essential oil on TNBS-induced colitis in rats. Resеаrch in pharmaceutical. Science 8:1–8Google Scholar
  158. 158.
    Khayyal MT, Seif-El-Nasr M, El-Ghazaly MA, Okpanyi SN, Kelber O, Weiser D (2006) Mechanisms involved in the gastro-protective effect of STW5 (Iberogast®) and its components against ulcers and rebound acidity. Phytomedicine 13:56–66PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Al-Essa MK, Shafagoj YA, Mohammed FI, Afifi FU (2010) Relaxant effect of ethanol extr act of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. Pharm Biol 48:76–80PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Sadeghian S, Neyestani T, Shirazi MH, Ranjabarian P (2005) Bacteriostatic effect of dill, fennel, caraway and cinnamon extracts against Helicobacter pylori. J Nutr Environ Med 15:47–55CrossRefGoogle Scholar
  161. 161.
    Villarini M, Fatigoni C, Cerbone B, Dominici L, Moretti M, Pagiotti R (2011) In vitro testing of a laxative herbal food supplement for genotoxic and antigentoxic properties. J Med Plants Res 5:2533–2539Google Scholar
  162. 162.
    Yosefi SS, Sadeghpour O, Sohrabvand F, Atarod Z, Askarfarashah M, Ateni TR, Yekta NH (2014) Effectiveness of Carum carvi on early return of bowel motility after caesarean section. Eur. J Exp Biol 4:258–262Google Scholar
  163. 163.
    Haidari F, Sayed-Sadjadi N, Taha-Jalali M, Mohammed-Shahi M (2011) The effect of oral administration of Carum carvi on weight, serum glucose, and lipid profile in streptozotocin-induced diabetic rats. Saudi Med J 32:695–700PubMedPubMedCentralGoogle Scholar
  164. 164.
    Lemhadri A, Hajji L, Michel JB, Eddouks M (2006) Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats. J Ethnopharmacol 106:321–326PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Saghir MR, Sadiq S, Nayak S, Tahir MU (2012) Hypolipidemic effect of aqueous extract of Carum carvi (black zeera) seeds in diet induced hyperlipidemic rats. Pak J Pharm Sci 25:333–337PubMedPubMedCentralGoogle Scholar
  166. 166.
    Eidi A, Eidi M, Rohani HA, Basati F (2010) Hypoglycemic effect of ethanolic extract of Carum carvi L. seeds in normal and streptozotocin-induced diabetic rats. J Med Plants 9:106–113Google Scholar
  167. 167.
    Moubarz G, Taha MM, Mahdy-Abdallah H (2014) Antioxidant effect of Carum carvi on the immune status of streptozotocin-induced diabetic rats infested with Staphylococcus aureus. World Appl Sci J 30:63–69Google Scholar
  168. 168.
    Iacobellis NS, Cantore PL, Capasso F, Senatore F (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Simic A, Rančić A, Sokolović MD, Ristić M, Grujić-Jovanović S, Vukojevic J, Marin PD (2008) Essential oil composition of Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharm Biol 46:437–441CrossRefGoogle Scholar
  170. 170.
    Škrinjar M, Mandić A, Mišan A, Sakač M, Lj Š, Zec M (2009) Effect of mint (Mentha piprita L.) and caraway (Carum carvi L.) on growth of some toxigenic Aspergillus species and aflatoxin B1 production. J Nat Sci Matica Srpska Novi Sad 116:131–139CrossRefGoogle Scholar
  171. 171.
    Koppula S, Kopalli SR, Sreemantula S (2009) Adaptogenic and nootropic activities of aqueous extracts of Carum carvi Linn (caraway) fruit: an experimental study in Wistar rats. Aus J Med Herbal 21:72–78Google Scholar
  172. 172.
    Lahlou S, Tahraoui A, Israili Z, Lyoussi B (2007) Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. J Ethnopharmacol 110:458–463PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Sadiq S, Nagi AH, Shahzad M, Zia A (2010) The reno-protective effect of aqueous extract of Carum carvi (black zeera) seeds in streptozotocin induced diabetic nephropathy in rodents. Saudi J Kidney Dis Transpl 21:1058–1065PubMedPubMedCentralGoogle Scholar
  174. 174.
    El-Soud NH, El-Lithy NA, El-Saeed G, Wahby MS, Khalil MY, Morsy F, Shaffie N (2014) Renoprotective effects of caraway (Carum carvi L.) essential oil in streptozotocin induced diabetic rats. J Appl Pharmaceut Sci 4:27–33Google Scholar
  175. 175.
    Marangoni C, de Moura NF (2011) Antioxidant activity of essential oil from Coriandrum sativum L. in Italian salami. Ciênc Tecnol Aliment 31:124–128CrossRefGoogle Scholar
  176. 176.
    Darughe F, Barzegar M, Sahari MA (2012) Antioxidant and antifungal activity of coriander (Coriandrum sativum L.) essential oil in cake. Int Food Res J 19:1253–1260Google Scholar
  177. 177.
    Matasyoh JC, Maiyo ZC, Ngure RM, Chepkorir R (2009) Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem 113:526–529CrossRefGoogle Scholar
  178. 178.
    Silva F, Ferreira S, Queiroz JA, Domingues FC (2011) Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol 60:1479–1486PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Aćimović M, Oljača S, Dražić S (2012) Uses of coriander (Coriandrum sativum L.) Med Raw Mat 31:67–82Google Scholar
  180. 180.
    Aćimović M, Kostadinović L, Puvača N, Popović S, Urošević M (2016a) Phytochemical constituents of selected plants from Apiaceae family and their biological effects in poultry. Food Feed Res 43:35–41CrossRefGoogle Scholar
  181. 181.
    Momin AH, Acharya SS, Gajjar AV (2012) Coriandrum sativum – review of advances in phytopharmacology. IJPSR 3:1233–1239Google Scholar
  182. 182.
    Emamghoreishi M, Heidari-Hamedani GH (2008) Effect of extract and essential oil of Coriandrum sativum seed against pentylenetetrazole-induced seizure. Pharm Sci 7:1–10Google Scholar
  183. 183.
    Mahendra P, Bisht S (2011) Anti-anxiety activity of Coriandrum Sativum assessed using different experimental anxiety models. Indian J Pharmacol 43:574–577PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Pathan AR, Kothawade KA, Logade MN (2011) Anxiolytic and analgetic effect of seeds of Coriandrum Sativum Linn. International journal of research in pharmacy and. Chemistry 1:1087–1099Google Scholar
  185. 185.
    Aissaoui A, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute diuretic effect of continuous intravenous infusion of an aqueous extract of Coriandrum sativum L. in anesthetized rats. J Ethnopharmacol 115:89–95PubMedCrossRefGoogle Scholar
  186. 186.
    Millet J (2005) Cilantro, chlorella, and heavy metals. Med Herbal 14:17–20Google Scholar
  187. 187.
    Rajeshwari U, Andallu B (2011) Medicinal benefits of coriander (Coriandrum sativum L.) Spatula DD 1:51–58CrossRefGoogle Scholar
  188. 188.
    Lal AA, Kumar T, Murthy PB, Pillai KS (2004) Hypolipidemic effect of Coriandrum sativum L. in triton-induced hyperlipidemic rats. Indian J Exp Biol 42:909–912PubMedPubMedCentralGoogle Scholar
  189. 189.
    Dhanapakiam P, Mini Joseph J, Ramaswamy VK, Moorthi M, Senthil Kumar A (2008) The cholesterol lowering property of coriander seeds (Coriandrum sativum): mechanism of action. J Environ Biol 29:53–56PubMedPubMedCentralGoogle Scholar
  190. 190.
    Joshi SC, Sharma N, Sharma P (2012) Antioxidant and lipid lowering effects of Coriandrum sativum in cholesterol fed rabbits. Int J Pharm Pharm Sci 4:231–234Google Scholar
  191. 191.
    Yibru E, Menon MKC, Belayneh Y, Seyifu D (2015) The effect of Coriandrum sativum seed extract on hyperglycemia, lipid profile and renal function in streptozotocin induced type- 2 diabetic Swiss albino mice. IJHSR 5:166–177Google Scholar
  192. 192.
    Aissaoui A, Zizi S, Israili ZH, Lyoussi B (2011) Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones Shawi rats. J Ethnopharmacol 137:652–661PubMedCrossRefGoogle Scholar
  193. 193.
    Kansal L, Sharma V, Sharma A, Lodi S, Sharma SH (2011) Protective role of Coriandrum sativum (coriander) extracts against lead nitrate induced oxidative stress and tissue damage in the liver and kidney in male mice. Int J Appl Biol Pharm 2:65–83Google Scholar
  194. 194.
    John NAA, Shobana G, Keerthana K (2014) Protective effect of Coriander sativum L. on cadmium induced toxicity in albino rats. World J Pharm Pharm Sci 3:525–534Google Scholar
  195. 195.
    Moustafa AH, Ali EMM, Moselhey SS, Tousson E, El-Said KS (2014) Effect of coriander on thioacetamide-induced hepatotoxicity in rats. Toxicol Ind Health 30:621–629PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Sreelatha S, Padma PR, Umadevi M (2009) Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem Toxicol 47:702–708PubMedCrossRefGoogle Scholar
  197. 197.
    Ramadan MM, Algader NNEA, El-Kamali HH, Ghanem KZ, Farrag ARH (2013) Chemopreventive effect of Coriandrum sativum fruits on hepatic toxicity in male rats. WJMS 8:322–333Google Scholar
  198. 198.
    Pandey A, Bigoniya P, Raj V, Patel KK (2011) Pharmacological screening of Coriandrum sativum Linn. For hepatoprotective activity. J Pharm Bioallied Sci 3:435–441PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Nithya TG, Sumalatha D (2014) Evaluation of invitro anti-oxidant and anticancer activity of Coriandrum sativum against human colon cancer HT-29 cell lines. Int J Pharm Pharm Sci 6:421–424Google Scholar
  200. 200.
    Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi MS (2013) Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med 13:347. Scholar
  201. 201.
    Gomez-Flores R, Hernández-Martínez H, Tamez-Guerra P, Tamez-Guerra R, Quintanilla-Licea R, Monreal-Cuevas E, Rodríguez-Padilla C (2010) Antitumor and immunomodulating potential of Coriandrum sativum, Piper nigrum and Cinnamomum zeylanicum. J Nat Prod 3:54–63Google Scholar
  202. 202.
    Chandan HS, Tapas AR, Sakarkar DM (2011) Anthelmintic activity of extracts of Coriandrum Sativum Linn. In Indian earthworm. Int J Phytomed 3:36–40Google Scholar
  203. 203.
    Eguale T, Tilahun G, Debella A, Feleke A, Makonnen E (2007) In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum Sativum against Haemonchus contortus. J Ethnopharmacol 110:428–343PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Mnif S, Aifa S (2015) Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem Biodivers 12:733–742PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Moghadam ARL (2016) Chemical composition and antioxidant activity Cuminum cyminum L. essential oils. Int J Food Prop 19:438–442CrossRefGoogle Scholar
  206. 206.
    Rebey IB, Zakhama N, Karoui IJ, Marzouk B (2012) Polyphenol composition and antioxidant activity of cumin (Cuminum cyminum L.) seed extract under drought. J Food Sci 77:C734–C739PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Abbaszadegan A, Gholami A, Ghahramani Y, Ghareghan R, Ghareghan M, Kazemi A, Iraji A, Ghasemi Y (2016) Antimicrobial and cytotoxic activity of Cuminum cyminum as an intracanal medicament compared to chlorhexidine gel. Iran Endod J 11:44–50PubMedPubMedCentralGoogle Scholar
  208. 208.
    Saee Y, Dadashi M, Eslami G, Goudarzi H, Taheri S, Fallah F (2016) Evaluation of antimicrobial activity of Cuminum cyminum essential oil and extract against bacterial strains isolated from patients with symptomatic urinary tract infection. NBM 4:147–152Google Scholar
  209. 209.
    Koppula S, Choi DK (2011) Cuminum Cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach. Pharm Biol 49:702–708PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Dhandapani S, Subramanian VR, Rajagopal S, Namasivayam N (2002) Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacol Res 46:251–255PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Srivastava V, Dubey S, Sharma SB, Chaddha V (2013) Studies on hypolipidemic activity of seeds of Cuminum cyminum Linn. Indo am. J Pharm Res 3:8260–8265Google Scholar
  212. 212.
    Willatgamuwa SA, Platel K, Saraswathi G, Srinivasan K (1998) Antidiabetic influence of dietary cumin seeds (Cuminum cyminum) in streptozotocin induced diabetic rats. Nutr Res 18:131–142CrossRefGoogle Scholar
  213. 213.
    Keihan GS, Gharib MH, Momeni A, Hemati Z, Sedighin R (2016) A comparison between the effect of Cuminum cyminum and vitamin E on the level of leptin, paraoxonase 1, HbA1c and oxidized LDL in diabetic patients. Int J Mol Cell Med 5:229–235Google Scholar
  214. 214.
    Mushtaq A, Ahmad M, Jabeen Q, Saqib A, Wajid M, Akram MA (2014) Hepatoprotective investigations of Cuminum cyminum dried seeds in nimesulide intoxicated albino rats by phytochemical and biochemical methods. Int J Pharm Pharm Sci 6:506–510Google Scholar
  215. 215.
    Abbas N, Naz M, Alyousef L, Ahmed ES, Begum A (2017) Comparative study of hepatoprotective effect produced by Cuminum cyminum, fruits of Phyllanthus emblicus and silymarin against cisplatin-induced hepatotoxicity. Int J Pharm Sci Res 8:2026–2032Google Scholar
  216. 216.
    Kumar A, Kumar R, Kumar N, Nath A, Singh JK, Ali M (2011) Protective effect of Cuminum cyminum and Coriandrum sativum on profenofos induced liver toxicity. Int J Pharm Biol Arch 2:1405–1409Google Scholar
  217. 217.
    Mekawey AAI, Mokhtar MM, Farrag RM (2009) Antitumor and antibacterial activities of [1-(2-ethyl, 6-Heptyl) phenol] from Cuminum cyminum seeds. J Appl Scis Res 5:1881–1888Google Scholar
  218. 218.
    Prakash E, Gupta DK (2014) Cytotoxic activity of ethanolic extract of Cuminum cyminum Linn against seven human cancer cell line. Univers J Agric Res 2:27–30Google Scholar
  219. 219.
    Bhat SP, Rizvi W, Kumar A (2014) Effect of Cuminum cyminum L. seed extracts on pain and inflammation. J Nat Remedies 14:186–192Google Scholar
  220. 220.
    Gilani AH, Shaheen E, Saeed SA, Bibi S, Irfanullah SM, Faizi S (2000) Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine 7:423–426PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Sudewi S, Wahyuono S, Astuti P (2014) Isolation and identification of free radicals scavenger from Daucus carota L leaves. Trad Med J 19:142–148Google Scholar
  222. 222.
    Mohammedi H, Mecherara-Idjeri S, Foudil-Cherif Y, Hassani A (2015) Chemical composition and antioxidant activity of essential oils from Algerian Daucus carota L. subsp. carota aerial parts. J Essent Oil Bear Pl 18:873–883CrossRefGoogle Scholar
  223. 223.
    Al-Snafi AE (2017) Nutritional and therapeutic importance of Daucus Carota- a review. IOSR J Pharm 7:72–88Google Scholar
  224. 224.
    Zhang D, Hamauzu Y (2004) Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.) J Food Agric Environ 2:95–100Google Scholar
  225. 225.
    Sun T, Simon PW, Tanumihardjo SA (2009) Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem 57:4142–4147PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Mueller L, Boehm V (2011) Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 16:1055–1069PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Shoba S, Patil PA, Vivek V (2008) Hepatoprotective activity of Daucus carota L. aqueous extract against paracetamol, isoniazid and alcohol induced hepatotoxicity in male Wistar rats. Pharmacologyonline 3:776–787Google Scholar
  228. 228.
    Jain PK, Khurana N, Pounikar Y, Patil S, Gajbhiye A (2012) Hepatoprotective effect of carrot (Daucus carota L.) on paracetamol intoxicated rats. IJPPT 1:115–120Google Scholar
  229. 229.
    Singh K, Singh N, Chandy A, Manigauha A (2012) In vivo antioxidant and hepatoprotective activity of methanolic extracts of Daucus carota seeds in experimental animals. Asian Pac J Trop Biomed 2:385–388PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Khatib N, Angel G, Nayna H, Kumar JR (2010) Gastroprotective activity of the aqueous extract from the roots of Daucus carota L in rats. IJRAP 1:112–119Google Scholar
  231. 231.
    Jiin WH, Hidayat EM, Lukman K (2014) Gastroprotective effect of carrot (Daucus carota L.) juice in rat models. Althea Medical Journal 1:35–39CrossRefGoogle Scholar
  232. 232.
    Patil MV, Kandhare A, Bhise S (2012) Anti-inflammatory effect of Daucus carota root on experimental colitis in rats. Int J Pharm Pharm Sci 4:337–343Google Scholar
  233. 233.
    Chandra P, Kishore K, Ghosh AK (2015) Assessment of antisecretory, gastroprotective, and in-vitro antacid potential of Daucus carota in experimental rats. Osong Public Health Res Perspect 6:329–335PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Wehbe K, Mroueh M, Daher CF (2009) The potential role of Daucus carota aqueous and methanolic extracts on inflammation and gastric ulcers in rats. J Complement Integr Med 6(1):7. Scholar
  235. 235.
    Valente J, Resende R, Zuzarte M, Goncalves MJ, Lopes MC, Cavaleiro C, Pereira C, Saiguerio L, Cruz MT (2015) Bioactivity and safety profile of Daucus carota subsp. maximus essential oil. Ind Crop Prod 77:218–224CrossRefGoogle Scholar
  236. 236.
    Kamiloglu S, Grootaert C, Capanoglu E, Ozkan C, Smagghe G, Raes K, Van Camp J (2016) Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Mol Nutr Food Res 00:1–11. Scholar
  237. 237.
    Diab-Assaf M, El-Sharif S, Mroueh M (2007) Evaluation of anti-cancer effect of Daucus carota on the human promyelocytic leukemia HL-60 cells. Clin Cancer Res 13:56Google Scholar
  238. 238.
    Najm PI (2014) The anti-cancer activity of 2 himachalene-6-ol extracted from Daucus carota ssp. carota. Dissertation, Lebanese American UniversityGoogle Scholar
  239. 239.
    Shebaby WN, El-Sibai M, Smith KB, Karam MC, Mroueh M, Daher CF (2013) The antioxidant and anticancer effects of wild carrot oil extract. Phytother Res 27:737–744PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Shebaby WN, Mroueh M, Bodman-Smith K, Mansour A, Taleb RI, Daher CF, El-Sibai M (2014) Daucus carota pentane-based fractions arrest the cell cycle and increase apoptosis in MDA-MB-231 breast cancer cells. BMC Complement Altern Med 14:387. Scholar
  241. 241.
    Ranjbar B, Pouraboli I, Mehrabani M, Dabiri S, Javadi A (2010) Effect of the methanolic extract of Daucus carota seeds on the carbohydrate metabolism and morphology of pancreas in type I diabetic male rats. Physiol Pharmacol 14:85–93Google Scholar
  242. 242.
    Vasudevan M, Parle M (2006) Pharmacological evidence for the potential of Daucus carota in the management of cognitive dysfunctions. Biol Pharm Bull 29:1154–1161PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Jaffat HS, Semysim EA (2016) Hypo-lipidemic effects of aqueous extract of Daucus carota seeds (Daucus carota L.) induced atherogenic diet in wister male rats. Res J Pharm Biol Chem Sci 7:2714–2720Google Scholar
  244. 244.
    Mani V, Parle M, Ramasamy K, Majeed ABA (2010) Anti-dementia potential of Daucus carota seed extract in rats. Pharmacologyonline 1:552–565Google Scholar
  245. 245.
    Vasudevan M, Gunnam KK, Parle M (2006) Antinociceptive and anti-imflammatory properties of Daucus carota seeds extract. J Health Sci 52:598–606CrossRefGoogle Scholar
  246. 246.
    Pouraboli I, Ranjbar B (2015) The effect of Daucus carota seeds extract on lipid profile, LFT and kidney function indicators in streptozocin-induced diabetic rats. Int J Plant Sci Ecol 1:84–87Google Scholar
  247. 247.
    Singh K, Dhongade H, Singh N, Kashyap P (2010) Hypolipidemic activity of ethanolic extract of Daucus carota seeds in normal rats. IJBAR 1:73–80Google Scholar
  248. 248.
    Rahimi R, Ardekani MR (2013) Medicinal properties of Foeniculum Vulgare mill. In traditional Iranian medicine and modern phytotherapy. Chin J Integr Med 19:73–79PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Badgujar SB, Patel VV, Bandivdekar AH (2014) Foeniculum vulgare mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed Res Int 2014:842674. Scholar
  250. 250.
    Rather MA, Dar BA, Sofi SN, Bhat BA, Qurishi MA (2016) Foeniculum vulgare: a comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab J Chem 9:S1574–S1583CrossRefGoogle Scholar
  251. 251.
    Diao WR, QP H, Zhang H, JG X (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare mill.) Food Control 35:109–116CrossRefGoogle Scholar
  252. 252.
    Mota AS, Martins MR, Arantes S, Lopes VR, Bettencourt E, Pombal S, Gomes AC, Silva LA (2015) Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits. Nat Prod Commun 10:673–676PubMedPubMedCentralGoogle Scholar
  253. 253.
    Mimica-Dukić N, Kujundžić S, Soković M, Couladis M (2003) Essential oil composition and antifungal activity of Foeniculum vulgare mill. Obtained by different distillation conditions. Phytother Res 17:368–371PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Skrobonja J, Delić D, Karaman M, Matavulj M, Bogavac M (2013) Antifungal properties of Foeniculum vulgare, Carum carvi and Eucalyptus sp. essential oils against Candida albicans strains. J Nat Sci Matica Srpska Novi Sad 124:195–202CrossRefGoogle Scholar
  255. 255.
    Thakur N, Sareen N, Shama B, Jagota K (2013) Studies on in vitro antifungal activity of Foeniculum vulgare Mill. against spoilage fungi. GJBB 2:427–430Google Scholar
  256. 256.
    Shukla HS, Dubey P, Chaturvedi RV (1989) Antiviral properties of essential oils of Foeniculum vulgare and Pimpinella anisum L. Agron EDP Sci 9:277–279Google Scholar
  257. 257.
    Shahat AA, Ibrahim AY, Hendawy SF, Omer EA, Hammouda FM, Abdel-Rahman FH, Saleh MA (2011) Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 16:1366–1377PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Chang S, Bassiri A, Jalali H (2013) Evaluation of antioxidant activity of fennel (Foeniculum vulgare) seed extract on oxidative stability of olive oil. JCHR 3:53–61Google Scholar
  259. 259.
    El Ouariachi E, Lahhit N, Bouyanzer A, Hammouti B, Paolini J, Majidi L, Desjobert JM, Costa J (2014) Chemical composition and antioxidant activity of essential oils and solvent extracts of Foeniculum Vulgare mill. From Morocco. J Chem Pharm Res 6:743–748Google Scholar
  260. 260.
    Choi EM, Hwang JK (2004) Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 75:557–565PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Yang IJ, Lee DU, Shin HM (2015) Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 37:308–317PubMedCrossRefPubMedCentralGoogle Scholar
  262. 262.
    Mohamad RH, El-Bastawesy AM, Abdel-Monem MG, Noor AM, Al-Mehdar HA, Sharawy SM, El-Merzabani MM (2011) Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J Med Food 14:986–1001PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Özbek H, Ugras S, Dulger H, Bayram I, Tuncer I, Ozturk G, Ozturk A (2003) Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia 74:317–319PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Özbek H, Ugras S, Bayram I, Uygan I, Erdogan E, Öztürk A, Huyut Z (2004) Hepatoprotective effect of Foeniculum vulgare essential oil: a carbon-tetrachloride induced liver fibrosis model in rats. Scand J Lab Anim Sci 1:9–17Google Scholar
  265. 265.
    Parsaeyan N (2016) The effect of Foeniculum vulgare (fennel) extract on lipid profile, lipid peroxidation and liver enzymes of diabetic rat. IJDO 8:24–29Google Scholar
  266. 266.
    Beaux D, Fleurentin J, Mortier F (1997) Diuretic action of hydroalcohol extracts of Foeniculum vulgare var dulce (D.C.) roots in rats. Phytother Res 11:320–322CrossRefGoogle Scholar
  267. 267.
    Sadrefozalayi S, Farokhi F (2014) Effect of the aqueous extract of Foeniculum vulgare (fennel) on the kidney in experimental PCOS female rats. Avicenna J Phytomed 4:110–117PubMedPubMedCentralGoogle Scholar
  268. 268.
    Blank I, Schieberle P (1993) Analysis of the seasoning-like flavour substances of a commercial lovage extract (Levisticum officinale Koch.) Flav Frag J 8:191–195CrossRefGoogle Scholar
  269. 269.
    Reza VRM, Abbas H (2007) The essential oil composition of Levisticum Officinale from Iran. Asian J Biochem 2:161–163CrossRefGoogle Scholar
  270. 270.
    Mahmoudzehi S, Dorrazehi GM, Jamalzehi S, Khabbaz AHH, Ghorbani F, Hooti A, Dadkani AG, Souran MM (2017) The neuroprotective effects of alcoholic extract of Levisticum officinale on alpha motoneurons’ degeneration after sciatic nerve compression in male rats. Biomed Pharmacol J 10:633–640CrossRefGoogle Scholar
  271. 271.
    Mohammadi M, Parvaneh E, Ghamari ZT (2016) Clinical investigation of Levisticum officinale (lovage) effectiveness’ in patients with cystinuria. J Urol Res 3:1071Google Scholar
  272. 272.
    Naber KG (2013) Efficacy and safety of the phytotherapeutic drug Canephron® N in prevention and treatment of urogenital and gestational disease: review of clinical experience in Eastern Europe and Central Asia. Res Rep Urol 5:39–46PubMedPubMedCentralGoogle Scholar
  273. 273.
    Mirjalili MH, Salehi P, Sonboli A, Hadian J, Ebrahimi SN, Yousefzadi M (2010) The composition and antibacterial activity of the essential oil of Levisticum officinale Koch flowers and fruits at different developmental stages. J Serb Chem Soc 75:1661–1669CrossRefGoogle Scholar
  274. 274.
    Ebrahimi A, Eshraghi A, Mahzoonieh MR, Lotfalian S (2016) Antibacterial and antibiotic-potentiation activities of Levisticum officinale L. extracts on pathogenic bacteria. Int J Inf Secur 4:e38768.
  275. 275.
    Mohamadi N, Rajaei P, Moradalizadeh M, Amiri MS (2017) Essential oil composition and antioxidant activity of Levisticum officinale Koch. At various phenological stages. J Med Plants 16:45–55Google Scholar
  276. 276.
    Mirjalili MH, Salehi P, Sonboli A, Hadian J, Ebrahimi SN, Yousefzadi M (2010) The composition and antibacterial activity of the essential oil of Levisticum Officinale Koch flowers and fruits at different developmental stages. J Serb Chem Soc 75:1661–1669CrossRefGoogle Scholar
  277. 277.
    Sertel S, Eichhorn T, Plinkert P, Efferth T (2011) Chemical composition and antiproliferative activity of essential oil from the l of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res 31:185–192PubMedPubMedCentralGoogle Scholar
  278. 278.
    El-Hamid SRA, Abeer YI, Hendawy SF (2009) Anti-inflammatory, antioxidant, anti-tumor and physiological studies on Levisticum officinale Koch plant. Planta Med 75:PE62. Scholar
  279. 279.
    Cain N, Darbyshire SJ, Francis A, Nurse RE, Simard MJ (2010) The biology of Canadian weeds. 144. Pastinaca sativa L. Can J Plant Sci 90:217–240CrossRefGoogle Scholar
  280. 280.
    Skalicka-Woźniak K, Zagaja M, Głowniak K, Łuszczki J (2014) Purification and anticonvulsant activity of xanthotoxin (8-methoxypsoralen). Cent Eur J Biol 9:431–436Google Scholar
  281. 281.
    Akbarmivehie M, Baghaei H (2016) The effect of addition parsnip herb and its extract on momtaze hamburger shelf life. Eur Online J Nat Soc Sci 5:132–146Google Scholar
  282. 282.
    Mangkoltriluk W, Srzednicki G, Craske J (2005) Preservation of flavour components in parsley (Petroselinum crispum) by heat pump and cabinet drying. Pol J Food Nutr Sci 14:63–66Google Scholar
  283. 283.
    Zhang H, Chen F, Wang X, Yao HY (2006) Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res Int 39:833–839CrossRefGoogle Scholar
  284. 284.
    Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS (2015) Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J Sci Food Agric 95:2763–2771PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Al-Howiriny TA, Al-Sohaibani MO, El-Tahir KH, Rafatullah S (2003) Preliminary evaluation of the anti-inflammatory and anti-hepatotoxic activities of ‘parsley’ Petroselinum crispum in rats. J Nat Remedies 3:54–62Google Scholar
  286. 286.
    Kamal T, Abd-Elhady E, Sadek K, Shukry M (2014) Effect of parsley (Petroselium crispum) on carbon tetrachloride-induced acute hepatotoxicity in rats. Res J Pharm Biol Chem Sci 5:1524–1534Google Scholar
  287. 287.
    Troncoso L, Guija E (2007) Petroselinum sativum (perejil) antioxidant and hepatoprotective effects in rats with paracetamol-induced hepatic intoxication. Anales de la Facultad de Medicina Universidad Nacional Mayor de San Marcos 68:333–343Google Scholar
  288. 288.
    Jassim AM (2013) Protective effect of Petroselinum crispum (parsley) extract on histopathological changes in liver, kidney and pancreas induced by sodium valproate in male rats. Kufa J Veteri Med Sci 4:20–27Google Scholar
  289. 289.
    Bolkent S, Yanardag R, Ozsoy-Sacan O, Karabulut-Bulan O (2004) Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study. Phytother Res 18:996–999PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Nair VY, Balakrishanan N, Antony Santiago JV (2015) Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet. Bratislava Med J 116:547–553CrossRefGoogle Scholar
  291. 291.
    Campos KE, Balbi APC, Alves MJQF (2009) Diuretic and hipotensive activity of aqueous extract of parsley seeds (Petroselinum sativum Hoffm.) in rats. Rev Bras Farmacogn 19:41–45CrossRefGoogle Scholar
  292. 292.
    Vargas JLZ, Lujan EGT, Pachas LCC, Lujan EPT, Lujan MT, Lujan PE (2016) Determination of diuretic activity of Petroselinum sativum (parsley). J Hypertens 34:431. Scholar
  293. 293.
    Moram GSE (2016) Evaluation of anti-urolithiatic effect of aqueous extract of parsley (Petroselinum sativum) using ethylene glycol-induced renal calculi. WJPR 5:1721–1735Google Scholar
  294. 294.
    Shojaii A, Fard MA (2012) Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharmaceutics. Scholar
  295. 295.
    Aćimović M, Dojčinović N (2014) A review of pharmacological properties of anise (Pimpinella anisum L.) Med Raw Mat 34:3–17Google Scholar
  296. 296.
    Gülçın I, Oktay M, Kıreçcı E, Küfrevıoǧlu I (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382CrossRefGoogle Scholar
  297. 297.
    Tavallali V, Rahmati S, Bahmanzadegan A (2017) Antioxidant activity, polyphenolic contents and essential oil composition of Pimpinella Anisum L. as affected by zinc fertilizer. J Sci Food Agric. Scholar
  298. 298.
    Bekara A, Aithamadouhe N, Kahloula K, Sadi N, Aoues AK (2016) Effect of Pimpinella anisum L aqueous extract against oxidative stress induced by lead exposure in young rats brain. J Appl Environ Biol Sci 6:85–93Google Scholar
  299. 299.
    Akhtar A, Deshmukh AA, Bhonsle AV, Kshirsagar PM, Kolekar MA (2008) In vitro antibacterial activity of Pimpinella anisum fruit extracts against some pathogenic bacteria. Vet World 1:272–274Google Scholar
  300. 300.
    Kadan S, Rayan M, Rayan A (2013) Anticancer activity of anise (Pimpinella anisum L.) seed extract. Open Nutraceuticals J 6:1–5CrossRefGoogle Scholar
  301. 301.
    Rahamooz-Haghighi S, Asadi MH (2016) Anti-proliferative effect of the extracts and essential oil of Pimpinella Anisum on gastric cancer cells. J Herb Med Pharmacol 5:157–161Google Scholar
  302. 302.
    Shobha RI, Rajeshwari CU, Andallu B (2013) Anti-peroxidative and anti diabetic activities of aniseeds (Pimpinella anisum l) and identification of bioactive compounds. AJPCT 1:516–527Google Scholar
  303. 303.
    Rajeshwari U, Shobha I, Andallu B (2011) Comparison of aniseeds and coriander seeds for antidiabetic, hypolipidemic and antioxidant activities. Spatula DD 1:9–16CrossRefGoogle Scholar
  304. 304.
    El-Sayed MGA, Elkomy A, Sahar S, El-Banna AH (2015) Hepatoprotective effect of Pimpinella anisum and Foeniculum vulgare against carbon tetrachloride induced fibrosis in rats. World. J Pharm Sci 4:78–88Google Scholar
  305. 305.
    Jamshidzadeh A, Heidari R, Razmjou M, Karimi F, Moein MR, Farshad O, Akbarizadeh AR, Shayesteh MRH (2015) An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity. Iran J Basic Med Sci 18:205–211PubMedPubMedCentralGoogle Scholar
  306. 306.
    Aćimović M, Tešević V, Mara D, Stanković J, Cvetković M, Djuragić O (2016) Influence of fertilization on total polyphenole content in aniseed postdistillation waste material. AJMAP 3:57–67Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Alternative Crops and Organic AgricultureInstitute of Field and Vegetable CropsNovi SadSerbia

Personalised recommendations