Bioactive Molecules in Food pp 867-901 | Cite as
Natural Food Pigments and Colorants
Abstract
Extensive structure elucidation resulted in detailed information about anthocyanins, betacyanins, carotenoids, and chlorophylls, the major natural pigments in plant-derived foods. Modifications of the basic skeleton form a broad diversity of structures for anthocyanins and carotenoids. The chromophores responsible for the pleasant colors and the factors affecting them have been delineated. Identification of sources and determination of the composition in foods have also been widely pursued. Stability and influencing factors, alterations during processing and storage of foods, and stabilization methods have been studied as part of the effort to retain the natural color of foods and to substitute artificial food dyes with natural colorants, this substitution being justified by concern about the safety of artificial colorants and by the potential health benefits of the natural colorants. Carotenoids have been the most investigated in terms of health effects, involving epidemiological, in vitro, animal, and human intervention studies. A wide range of biological activities have been attributed to anthocyanins, based mainly on cell culture and animal studies; human clinical studies are lacking. Investigations of the potential health benefits of betacyanin and chlorophyll are in their initial stages.
Keywords
Natural pigments Natural colorants Anthocyanin Betacyanin Carotenoid Chlorophyll Bioactive compounds Health benefitsReferences
- 1.Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3:59–77PubMedCrossRefGoogle Scholar
- 2.Sigurdson GT, Tang P, Giusti MM (2017) Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol 8:261–280PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Clifford MN (2000) Anthocyanins – nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072CrossRefGoogle Scholar
- 4.Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins. Food Chem 113:859–871CrossRefGoogle Scholar
- 6.Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28:273–314PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Trouillas P, Sancho-Garcia JC, de Freitas V, Gierschner J, Otyepka M, Dangles O (2016) Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chem Rev 116:4937–4982PubMedCrossRefGoogle Scholar
- 8.Giusti MM, Rodríguez-Saona LE, Wrolstad RE (1999) Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. J Agric Food Chem 47:4631–4637PubMedCrossRefGoogle Scholar
- 9.Giusti MM, Wrolstad RE (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 14:217–225CrossRefGoogle Scholar
- 10.Goto T (1987) Structure, stability and color variation of natural anthocyanins. Prog Chem Org Nat Prod 52:113–158Google Scholar
- 11.Odake K, Terahara N, Saito N, Toki K, Honda T (1992) Chemical structures of two anthocyanins from purple sweet potato, Ipomoea batatas. Phytochemistry 31:2127–2130CrossRefGoogle Scholar
- 12.Pina F, Oliveira J, de Freitas V (2015) Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 71:3107–3114CrossRefGoogle Scholar
- 13.He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187PubMedCrossRefGoogle Scholar
- 14.De Brito ES, de Araújo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA (2007) Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara, and guajiru. J Agric Food Chem 55:9389–9394PubMedCrossRefPubMedCentralGoogle Scholar
- 15.Einbond LS, Reynertson KA, Luo X-D, Basile MJ, Kennelly EJ (2004) Anthocyanin antioxidants from edible fruits. Food Chem 84:23–28CrossRefGoogle Scholar
- 16.Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat Prod Rep 18:310–333PubMedCrossRefPubMedCentralGoogle Scholar
- 17.Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Wu X, Prior RL (2005) Identification and characterization of anthocyanins by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J Agric Food Chem 53:3101–3113PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Mazza GJ (2007) Anthocyanins and heart health. Ann Ist Super Sanita 43:369–374PubMedPubMedCentralGoogle Scholar
- 21.Lee J, Finn CE (2007) Anthocyanin and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric 87:2665–2675PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Dossett M, Lee J, Finn CE (2010) Variation in anthocyanins and total phenolics of black raspberry populations. J Funct Foods 2:292–297CrossRefGoogle Scholar
- 23.Ahmadiani N, Robbins RJ, Collins TM, Giusti MM (2014) Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J Agric Food Chem 62:7524–7531PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Jin AL, Ozga JA, Kennedy JA, Koerner-Smith JL, Botar G, Reinecke DM (2015) Developmental profile of anthocyanin, flavonol, and proanthocyanidin type, content, and localization in Saskatoon fruits (Amelanchier alnifolia Nutt.) J Agric Food Chem 63:1601–1614PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Jorjong S, Butkhup L, Samappito S (2015) Phytochemicals and antioxidant capacities of Mao-Luang (Antidesma bunius L.) cultivars from Northeastern Thailand. Food Chem 181:248–255PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Kim HJ, Park WS, Bae J-Y, Kang SY, Yang MH, Lee S, Lee H-S, Kwak S-S, Ahn M-J (2015) Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. J Food Compos Anal 41:188–193CrossRefGoogle Scholar
- 27.Kovacevic DB, Putnik P, Dragovic-Uzelac V, Vahcic N, Babojelic MS, Levaj B (2015) Influences of organically and conventionally grown strawberry cultivars on anthocyanin content and color in purees and low-sugar jams. Food Chem 181:94–100CrossRefGoogle Scholar
- 28.Szalóki-Dorkó L, Stéger-Máté M, Abrankó L (2015) Evaluation of colouring ability of main European elderberry (Sambucus nigra L.) varieties as potential resources of natural food colourants. Int J Food Sci Technol 50:1317–1323CrossRefGoogle Scholar
- 29.Xu J, Su X, Lim S, Griffin J, Carey E, Katz B, Tomich J, Smith JC, Wang W (2015) Characterization and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem 186:90–96PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Rotray W, Orsat V (2011) Blackberries and their anthocyanins: factors affecting biosynthesis and properties. Compr Rev Food Sci Food Saf 10:303–320CrossRefGoogle Scholar
- 31.Olsen H, Aaby K, Borge GIA (2010) Characterization, quantification, and yearly variation of the naturally occurring polyphenols in a common red variety of curly kale (Brassica oleracea L. convar. acephala var. sabellica cv. “Redbor”). J Agric Food Chem 58:11346–11354PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Pervaiz T, Songtao J, Faghihi F, Haider MS, Fang J (2017) Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J Plant Biochem Physiol 5:187. https://doi.org/10.4172/2329-9029.1000187CrossRefGoogle Scholar
- 33.Kovacevic DB, Putnik P, Dragovic-Uzelac V, Pedisíc S, Jambrak AR, Herceg Z (2016) Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegrate juice. Food Chem 190:317–323CrossRefGoogle Scholar
- 34.Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, Maiani G, Piskula MK (2009) Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol Nutr Food Res 53:S151–S183PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Mazza G, Brouillard R (1987) Recent developments in the stabilization of anthocyanins in food products. Food Chem 25:201–225CrossRefGoogle Scholar
- 36.Bridle P, Timberlake CF (1997) Anthocyanins as natural food colours – selected aspects. Food Chem 58:103–109CrossRefGoogle Scholar
- 37.Schwartz SJ, von Elbe JH, Giusti MM (2008) Colorants. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry. CRC Press Taylor & Francis Group, Boca RatonGoogle Scholar
- 38.Patras A, Brunton NP, O’Donnell C, Tiwar BK (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11CrossRefGoogle Scholar
- 39.Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems – an overview. Food Res Int 44:499–509CrossRefGoogle Scholar
- 40.Malaj N, de Simone BC, Quartarolo AD, Russo N (2013) Spectrophotometric study of copigmentation of malvidin-3-O-glucoside with p-coumaric, vanillic and syringic acids. Food Chem 141:3614–3620PubMedCrossRefGoogle Scholar
- 41.Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38CrossRefGoogle Scholar
- 42.Boyles MJ, Wrolstad RE (1993) Anthocyanin composition of red raspberry juice: influences of cultivar, processing, and environmental factors. J Food Sci 58:1135–1141CrossRefGoogle Scholar
- 43.Goto T, Kondo T (1991) Structure and molecular stacking of anthocyanins – flower color variation. Angew Chem Int Ed 30:17–33CrossRefGoogle Scholar
- 44.Brouillard R (1983) The in vivo expression of anthocyanin colour in plants. Phytochemistry 22:1311–1323CrossRefGoogle Scholar
- 45.Giusti MM, Wrolstad RE (1996) Radish anthocyanin extract as a natural red colorant for maraschino cherries. J Food Sci 61:688–694CrossRefGoogle Scholar
- 46.Giusti MM, Ghanadan H, Wrolstad RE (1998) Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one- and two-dimensional nuclear magnetic resonance techniques. J Agric Food Chem 46:4858–4863CrossRefGoogle Scholar
- 47.Giusti MM, Rodríguez-Saona LE, Bagett JR, Reed GL, Durst RW, Wrolstad RE (1998) Anthocyanin pigment composition of red radish cultivars as potential food colorants. J Food Sci 63:219–224CrossRefGoogle Scholar
- 48.Rodríguez-Saona LE, Giusti MM, Wrolstad RE (1999) Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model systems. J Food Sci 64:451–456CrossRefGoogle Scholar
- 49.Baublis A, Spomer A, Berber-Jiménez MD (1994) Anthocyanin pigments: comparison of extract stability. J Food Sci 59:1219–1221, 1233CrossRefGoogle Scholar
- 50.Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE (2002) Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem 50:6172–6181PubMedCrossRefGoogle Scholar
- 51.Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80:805–812CrossRefGoogle Scholar
- 52.Reyes LF, Cisneros-Zevallos L (2007) Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.) Food Chem 100:885–894CrossRefGoogle Scholar
- 53.Cai Z, Qu Z, Lan Y, Zhao S, Ma X, Wan Q, Jing P, Li P (2016) Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chem 197:266–272PubMedCrossRefGoogle Scholar
- 54.Heinonen J, Farahmandazad H, Vuorinen A, Kallio H, Yang B, Sainio T (2016) Extraction and purification of anthocyanins from purple-fleshed potato. Food Bioprod Process 99:136–146CrossRefGoogle Scholar
- 55.Francis FJ (1992) A new group of food colorants. Trends Food Sci Technol 3:27–30CrossRefGoogle Scholar
- 56.Dangles O, Saito N, Brouillard R (1993) Anthocyanin intramolecular copigment effect. Phytochemistry 34:119–124CrossRefGoogle Scholar
- 57.Malien-Aubert C, Dangles O, Amiot MJ (2001) Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J Agric Food Chem 49:170–176PubMedCrossRefGoogle Scholar
- 58.Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic 52:67–87Google Scholar
- 59.Yoshida K, Kondo T, Goto T (1991) Unusually stable monoacylated anthocyanin from purple yam Dioscorea alata. Tetrahedron Lett 32:5579–5580CrossRefGoogle Scholar
- 60.George F, Figueiredo P, Toki K, Tatsuzawa F, Saito N, Brouillard R (2001) Influence of trans-cis isomerisation of coumaric acid substituents on colour variance and stabilisation in anthocyanins. Phytochemistry 57:791–795PubMedCrossRefGoogle Scholar
- 61.Mazza G, Brouillard R (1990) The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 29:1097–1102CrossRefGoogle Scholar
- 62.Saito N, Tatsuzawa F, Yoda K, Yokoi M, Kasahara K, Iida S, Shigihara A, Honda T (1995) Acylated cyanidin glycosides in the violet-blue flowers of Ipomoea purpurea. Phytochemistry 40:1283–1289PubMedCrossRefGoogle Scholar
- 63.Davies AJ, Mazza G (1993) Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J Agric Food Chem 41:716–720CrossRefGoogle Scholar
- 64.Gordillo B, Rodríguez-Pulido FJ, Escudero-Gilete ML, González-Miret ML, Heredia FJ (2012) Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. J Agric Food Chem 60:2896–2905PubMedCrossRefGoogle Scholar
- 65.Goto T, Tamura H, Kawai T, Hoshino T, Harada N, Kondo T (1986) Chemistry of metalloanthocyanins. Ann N Y Acad Sci 471:155–173CrossRefGoogle Scholar
- 66.Dangles O, Elhabiri M, Brouillard R (1994) Kinetic and thermodynamic investigation of the aluminum–anthocyanin complexation in aqueous solution. J Chem Soc Perkin Trans 2:2587–2596Google Scholar
- 67.Elhabiri M, Figueiredo P, Toki K, Saito N, Brouillard R (1997) Anthocyanin–aluminium and –gallium complexes in aqueous solution. J Chem Soc Perkin Trans 2:355–362CrossRefGoogle Scholar
- 68.Skrede G, Wrolstad RE, Lea P, Enersen G (1992) Color stability of strawberry and blackcurrant syrups. J Food Sci 57:172–177CrossRefGoogle Scholar
- 69.Martí N, Pérez-Vicente A, García-Viguera C (2001) Influence of storage temperature and ascorbic acid addition on pomegranate juice. J Sci Food Agric 82:217–221CrossRefGoogle Scholar
- 70.Berké B, Chèze C, Vercauteren J, Deffieux G (1998) Bisulfite addition to anthocyanins: revisited structures of colourless adducts. Tetrahedron Lett 39:5771–5774CrossRefGoogle Scholar
- 71.Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16:423–428CrossRefGoogle Scholar
- 72.Skrede G, Wrolstad RE, Durst RW (2000) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.) J Food Sci 65:357–364CrossRefGoogle Scholar
- 73.Franke AA, Custer LJ, Arakaki C, Murphy SP (2004) Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. J Food Compos Anal 17:1–35CrossRefGoogle Scholar
- 74.Kırca A, Özkan M, Cemeroğlu B (2007) Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem 101:212–218CrossRefGoogle Scholar
- 75.Brownmiller C, Howard LR, Prior RI (2008) Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J Food Sci 73:H72–H79PubMedCrossRefGoogle Scholar
- 76.Xu B, Chang SKC (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57:4754–4764PubMedCrossRefGoogle Scholar
- 77.Kopjar M, Pilizota V (2011) Prevention of thermal degradation of anthocyanins in blackberry juice with the addition of different sugars. CyTA-J Food 9:237–242CrossRefGoogle Scholar
- 78.Brauch JE, Buchweitz M, Schweiggert RM, Carle R (2016) Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem 190:308–316PubMedCrossRefGoogle Scholar
- 79.Rubinskiene M, Viskelis P, Jasutiene I, Viskeliene R, Bobinas C (2005) Impact of various factor on the composition and stability of black currant anthocyanins. Food Res Int 38:867–871CrossRefGoogle Scholar
- 80.Sadilova E, Carle R, Stintzing FC (2007) Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol Nutr Food Res 51:1461–1471PubMedCrossRefGoogle Scholar
- 81.Sadilova E, Stintzing FC, Carle R (2006) Thermal degradation of acylated and nonacylated anthocyanins. J Food Sci 71:C504–C512CrossRefGoogle Scholar
- 82.Cortez R, Luna-Vital DA, Margulis D, de Mejia EG (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf 16:180–198CrossRefGoogle Scholar
- 83.Chung C, Rojanasasithara T, Mutilangi W, McClements DJ (2016) Stabilization of natural colors and nutraceuticals: inhibition of anthocyanin degradation in model beverages using polyphenols. Food Chem 212:596–603PubMedCrossRefGoogle Scholar
- 84.Sajilata MG, Singhal RS (2006) Isolation and stabilisation of natural pigments for food application. Stewart Postharvest Rev 5:11Google Scholar
- 85.Yousuf B, Gul K, Wani AA, Singh P (2016) Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr 56:2223–2230PubMedCrossRefGoogle Scholar
- 86.Bakowska-Barczak AM, Kolodziejczyk PP (2011) Black currant polyphenols: their storage stability and microencapsulation. Ind Crop Prod 34:1301–1309CrossRefGoogle Scholar
- 87.Idham Z, Muhamad II, Setapar SHM, Sarmidi MR (2012) Effect of thermal processes on roselle anthocyanins encapsulated in different polymer matrices. J Food Process Preserv 36:176–184CrossRefGoogle Scholar
- 88.Mahdavi AS, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32:509–518CrossRefGoogle Scholar
- 89.Robert P, Freedes C (2015) The encapsulation of anthocyanins from berry-type fruits. Molecules 20:5875–5888PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Liao H, Cai Y, Haslam E (1992) Polyphenol interactions. Anthocyanins: co-pigmentation and colour changes in red wines. J Sci Food Agric 59:299–305CrossRefGoogle Scholar
- 91.Brouillard R, Dangles O (1994) Anthocyanin molecular interactions: the first step in the formation of new pigments during wine aging? Food Chem 51:365–371CrossRefGoogle Scholar
- 92.Stintzing FC, Kammerer D, Schieber A, Adama H, Nacoulma OG, Carle R (2004) Betacyanins and phenolic compounds from Amaranthus spinosus L. and Boerhavia erecta L. Z. Naturforsch 59c:1–8Google Scholar
- 93.Stintzing FC, Schieber A, Carle R (2002) Betacyanins in fruits from red-purple pitaya Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem 77:101–106, 517CrossRefGoogle Scholar
- 94.Wybraniec S, Platzner I, Geresh S, Gottlieb HE, Haimberg M, Mogilnitzki M, Mizrahi Y (2001) Betacyanins from vine cactus Hylocereus polyrhizus. Phytochemistry 58:1209–1212PubMedCrossRefGoogle Scholar
- 95.Khan MI, Giridhar P (2015) Plant betalains: chemistry and biochemistry. Phytochemistry 117:267–295PubMedCrossRefGoogle Scholar
- 96.Cejudo-Bastante MJ, Hurtado N, Mosquera N, Heredia FJ (2014) Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions. Food Res Int 64:465–471PubMedCrossRefGoogle Scholar
- 97.Kumar SS, Manoj P, Shetty NP, Prakash M, Giridhar P (2015) Characterization of major betalain pigments – gomphrenin, betanin and isobetanin from Basella rubra L. fruit and evaluation of efficacy as a natural colourant in product (ice cream) development. J Food Sci Technol 52:4994–5002PubMedCrossRefGoogle Scholar
- 98.Castellar R, Obón JM, Alacid M, Fernández-López JA (2003) Color properties and stability of betacyanins from Opuntia fruits. J Agric Food Chem 51:2772–2776PubMedCrossRefPubMedCentralGoogle Scholar
- 99.Stintzing FC, Schieber A, Carle R (2003) Evaluation of colour properties and chemical quality parameters of cactus juices. Eur Food Res Technol 216:303–311CrossRefGoogle Scholar
- 100.Moβhammer MR, Stintzing FC, Carle R (2005) Colour studies on fruit juice blends from Opuntia and Hylocereus cacti and betalain-containing model solutions derived therefrom. Food Res Int 38:975–981CrossRefGoogle Scholar
- 101.Moβhammer MR, Stintzing FC, Carle R (2005) Development of a process for the production of a betalain-based colouring foodstuff from cactus pear. Innov Food Sci Emerg Technol 6:221–231CrossRefGoogle Scholar
- 102.Mosshammer MR, Stintzing FC, Carle R (2006) Evaluation of different methods for the production of juice concentrates and fruit powders from cactus pear. Innov Food Sci Emerg Technol 7:275–287CrossRefGoogle Scholar
- 103.Herbach KM, Stintzing FC, Carle R (2004) Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhisus (Weber) Britton & Rose] monitored by high-performance liquid chromatography-tandem mass spectrometric analyses. Eur Food Res Technol 219:377–385CrossRefGoogle Scholar
- 104.Herbach KM, Rohe M, Stintzing FC, Carle R (2006) Structural and chromatic stability of purple pitaya (Hylocereus polyrhisus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food Res Int 39:667–677CrossRefGoogle Scholar
- 105.Herbach KM, Maier C, Stintzing FC, Carle R (2007) Effects of processing and storage on juice color and betacyanin stability of purple pitaya (Hylocereus polyrhizus) juice. Eur Food Res Technol 224:649–658CrossRefGoogle Scholar
- 106.Wybraniec S, Mizrahi Y (2005) Generation of decarboxylated and dehydrogenated betacyanins in thermally treated purified fruit extract from purple pitaya (Hylocereus polyrhizus) monitored by LC-MS/MS. J Agric Food Chem 53:6704–6712PubMedCrossRefPubMedCentralGoogle Scholar
- 107.Cai YZ, Corke H (2000) Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci 65:1248–1252CrossRefGoogle Scholar
- 108.Cai YZ, Corke H (2001) Effect of postharvest treatments on Amaranthus betacyanin degradation evaluated by visible/near-infrared spectroscopy. J Food Sci 66:1112–1118CrossRefGoogle Scholar
- 109.Cai Y, Sun M, Corke H (1998) Colorant properties and stability of Amaranthus betacyanin pigments. J Agric Food Chem 46:4491–4495CrossRefGoogle Scholar
- 110.Cai Y-Z, Sun M, Corke H (2005) Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Sci Technol 16:370–376CrossRefGoogle Scholar
- 111.Von Elbe JH, Attoe EL (1985) Oxygen involvement in betanine degradation – measurement of active oxygen species and oxidation reduction potentials. Food Chem 16:49–67CrossRefGoogle Scholar
- 112.Schliemann W, Strack D (1998) Intramolecular stabilization of acylated betacyanins. Phytochemistry 49:585–588CrossRefGoogle Scholar
- 113.Havliková I, Miková K, Kyzlink V (1983) Heat stability of betacyanins. Z Lebensm-Unters -Forsch 177:247–250CrossRefGoogle Scholar
- 114.Huang AS, von Elbe JH (1987) Effect of pH on the degradation and regeneration of betanine. J Food Sci 52:1689–1693CrossRefGoogle Scholar
- 115.Czapski J (1985) The effect of heating conditions on losses and regeneration of betacyanins. Z Lebensm-Unters -Forsch 180:21–25CrossRefGoogle Scholar
- 116.von Elbe JH, Maing I-Y, Asmundson CH (1974) Color stability of betanin. J Food Sci 39:334–337CrossRefGoogle Scholar
- 117.Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation – structural and chromatic aspects. J Food Sci 71:R41–R50CrossRefGoogle Scholar
- 118.Kearsley MW, Katsaboxakis KZ (1980) Stability and use of natural colours in foods. Red beet powder, copper chlorophyll powder and cochineal. Int J Food Sci Technol 15:501–514CrossRefGoogle Scholar
- 119.Serris GS, Biliaderis CG (2001) Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. J Sci Food Agric 81:691–700CrossRefGoogle Scholar
- 120.Attoe EL, von Elbe JH (1984) Oxygen involvement in betanin degradation – oxygen uptake and influence of metal ions. Z Lebensm-Unters -Forsch 179:232–236CrossRefGoogle Scholar
- 121.Czapski J (1990) Heat stability of betacyanins in red beet juice and in betanine solutions. Z Lebensm-Unters -Forsch 191:275–278CrossRefGoogle Scholar
- 122.Sobkowska E, Czapski J, Kaczmarek R (1991) Red table beet pigment as food colorant. Int Food Ingredient 3:24–28Google Scholar
- 123.Escribano J, Cabanes J, Chazarra S, Garcia-Carmona F (1997) Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine/dopamine pair. J Agric Food Chem 45:4209–4214CrossRefGoogle Scholar
- 124.Escribano J, Gandía-Herrero F, Cabellero N, Pedreño MA (2002) Subcellular localization and isoenzyme pattern of peroxidase and polyphenol oxidase in beet root (Beta vulgaris L.) J Agric Food Chem 50:6123–6129PubMedCrossRefPubMedCentralGoogle Scholar
- 125.Zakharova NS, Petrova TA, Bokuchava MA (1987) Betanin enzymatic conversion. Appl Biochem Microbiol 25:768–774Google Scholar
- 126.Merin U, Gagel S, Popel G, Bernstein S, Rosenthal I (1987) Thermal degradation kinetics of prickly pear fruit red pigment. J Food Sci 52:485–486CrossRefGoogle Scholar
- 127.Herbach KM, Stintzing FC, Carle R (2004) Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J Food Sci 69:C491–C498CrossRefGoogle Scholar
- 128.Wilcox ME, Wyler H, Dreiding AS (1965) Stereochemistry of betanidin and isobetanidin VIII. Structure of the bark pigment betanin. Helv Chim Acta 48:1134–1147CrossRefGoogle Scholar
- 129.Schwartz SJ, von Elbe JH (1983) Identification of betanin degradation products. Z Lebensm-Unters-Forsch 176:448–453PubMedCrossRefPubMedCentralGoogle Scholar
- 130.Hilpert H, Siegfried MA, Dreiding AS (1985) Total synthese von decarboxybetalainen durch photochemische ringöffnung von 3-(4-pyridyl)alanin. Helv Chim Acta 68:1670–1678CrossRefGoogle Scholar
- 131.Von Elbe JH, Schwartz SJ, Hildenbrand BE (1981) Loss and regeneration of betacyanin pigments during processing of red beets. J Food Sci 46:1713–1715CrossRefGoogle Scholar
- 132.Jackman RL, Smith JL (1996) Anthocyanins and betalains. In: Hendry GAF, Houghton JD (eds) Natural food colorants, 2nd edn. Blackie Academic and Professional, GlasgowGoogle Scholar
- 133.Herbach KM, Stintzing FC, Carle R (2005) Identification of heat-induced degradation products from purified betanin, phyllocactin and hylocerenin by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:2603–2616PubMedCrossRefPubMedCentralGoogle Scholar
- 134.Huang AS, von Elbe JH (1985) Kinetics of the degradation and regeneration of betanine. J Food Sci 50:1115–1120, 1129CrossRefGoogle Scholar
- 135.Han D, Kim SJ, Kim SH, Kim DM (1998) Repeated regeneration of degraded red beet juice pigments in the presence of antioxidants. J Food Sci 63:69–72CrossRefGoogle Scholar
- 136.Herbach KM, Stintzing FC, Carle R (2006) Stability and color changes of thermally treated betanin, phyllocactin and hylocerenin solutions. J Agric Food Chem 54:390–398PubMedCrossRefPubMedCentralGoogle Scholar
- 137.Alard D, Wray V, Grotjahn L, Reznik H, Strack D (1985) Neobetanin: isolation and identification from Beta vulgaris. Phytochemistry 24:2383–2385CrossRefGoogle Scholar
- 138.Kujala T, Loponen J, Pihlaja K (2001) Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterization. Z Naturforsch C 56:343–348PubMedCrossRefPubMedCentralGoogle Scholar
- 139.Strack D, Engel U, Wray V (1987) Neobetanin: a new natural plant constituent. Phytochemistry 26:2399–2400CrossRefGoogle Scholar
- 140.Wybraniec S (2005) Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. J Agric Food Chem 53:3483–3487PubMedCrossRefPubMedCentralGoogle Scholar
- 141.Rodriguez-Amaya DB (1999) A guide to carotenoid analysis in foods. International Life Sciences Institute (ILSI) Press, Washington, DCGoogle Scholar
- 142.Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell 7:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
- 143.Breithaupt DE, Bamedi A (2001) Carotenoid esters in vegetables and fruits: a screening with emphasis on β-cryptoxanthin esters. J Agric Food Chem 49:2064–2070CrossRefGoogle Scholar
- 144.Weller P, Breithaupt DE (2003) Identification and quantification of zeaxanthin esters in plants using liquid chromatrography-mass spectrometry. J Agric Food Chem 51:7044–7049PubMedCrossRefPubMedCentralGoogle Scholar
- 145.Inbaraj BS, Lu H, Hung CF, Wu WB, Lin CL, Chen BH (2008) Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS. J Pharm Biomed Anal 47:812–818PubMedCrossRefPubMedCentralGoogle Scholar
- 146.Mertz C, Gancel A-L, Gunata Z, Alter P, Dhuique-Mayer C, Vaillant F, Perez AM, Ruales J, Brat P (2009) Phenolic compounds, carotenoids and antioxidant capacity of three tropical fruits. J Food Compos Anal 22:381–387CrossRefGoogle Scholar
- 147.Delgado-Pelayo R, Hornero-Méndez D (2012) Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries. J Agric Food Chem 60:8225–8232PubMedPubMedCentralCrossRefGoogle Scholar
- 148.Gross J (1987) Pigments in fruits. Academic, LondonGoogle Scholar
- 149.Kobori CN, Rodriguez-Amaya DB (2008) Uncultivated Brazilian green leaves are richer sources of carotenoids than commercially produced leafy vegetables. Food Nutr Bull 29:333–341CrossRefGoogle Scholar
- 150.De Oliveira GPR, Rodriguez-Amaya DB (2007) Processed and prepared products of corn as sources of lutein and zeaxanthin. Compositional variation in the food chain. J Food Sci 72:S79–S85CrossRefGoogle Scholar
- 151.Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis. International Food Policy Research Institute, Washington, DCGoogle Scholar
- 152.Niizu PY, Rodriguez-Amaya DB (2005) The flowers and leaves of Tropaeolum majus as rich sources of lutein. J Food Sci 70:S605–S609CrossRefGoogle Scholar
- 153.Breithaupt D, Wirt U, Bamedi A (2002) Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. J Agric Food Chem 50:66–70PubMedCrossRefPubMedCentralGoogle Scholar
- 154.Schweiggert U, Kurz C, Schieber A, Carle R (2007) Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (Capsicum annuum L) and hot chili peppers (Capsicum frutescens L.) Eur Food Res Technol 225:261–270CrossRefGoogle Scholar
- 155.Shahidi F, Metusalach, Brown JA (1998) Carotenoid pigments in seafoods and aquaculture. Crit Rev Food Sci Nutr 38:1–67PubMedCrossRefPubMedCentralGoogle Scholar
- 156.Liaaen-Jensen S (2004) Basic carotenoid chemistry. In: Krinsky NI, Mayne ST, Sies H (eds) Carotenoids in health and disease. Marcel Dekker, New YorkGoogle Scholar
- 157.Weedon BCL, Moss GP (1995) Structure and nomenclature. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol. 1A, isolation and analysis. Birkhaüser Verlag, BaselGoogle Scholar
- 158.Lessin WJ, Catigani GL, Schwartz SJ (1997) Quantification of cis-trans isomers of provitamin A carotenoids in fresh and processed fruits and vegetables. J Agric Food Chem 45:3728–3732CrossRefGoogle Scholar
- 159.Marx M, Schieber A, Carle R (2000) Quantitative determination of carotene stereoisomer in carrot juices and vitamin supplemented (ATBC) drinks. Food Chem 70:403–408CrossRefGoogle Scholar
- 160.Dachtler M, Glaser T, Kohler K, Albert K (2001) Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Anal Chem 73:667–674PubMedCrossRefPubMedCentralGoogle Scholar
- 161.Humphries JM, Khachick F (2003) Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J Agric Food Chem 51:1322–1327PubMedCrossRefPubMedCentralGoogle Scholar
- 162.Updike AA, Schwartz SJ (2003) Thermal processing of vegetables increases cis isomers of lutein and zeaxanthin. J Agric Food Chem 51:6184–6190PubMedCrossRefPubMedCentralGoogle Scholar
- 163.Aman R, Biehl J, Carle R, Conrad J, Beifuss U, Schieber A (2005) Application of HPLC coupled with DAD, APcI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers in thermally processed vegetables. Food Chem 92:753–763CrossRefGoogle Scholar
- 164.Schierle J, Bretzel W, Bühler I, Faccin N, Hess D, Steiner K, Schüep W (1997) Content and isomeric ratio of lycopene in food and human blood plasma. Food Chem 59:459–465CrossRefGoogle Scholar
- 165.Tiziani S, Schwartz SJ, Vodovotz Y (2006) Profiling of carotenoids in tomato juice by one- and two-dimensional NMR. J Agric Food Chem 54:6094–6100PubMedCrossRefPubMedCentralGoogle Scholar
- 166.Li H, Deng Z, Liu R, Loewen S, Tsao R (2012) Ultra-performance liquid chromatographic separation of geometric isomers of carotenoids and antioxidant activities of 20 tomato cultivars and breeding lines. Food Chem 132:508–517PubMedCrossRefPubMedCentralGoogle Scholar
- 167.Stinco CM, Rodríguez-Pulido FJ, Escudero-Gilete ML, Gordillo B, Vicario IM, Meléndez-Martínez AJ (2013) Lycopene isomers in fresh and processed tomato products: correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res Int 50:111–120CrossRefGoogle Scholar
- 168.Achir N, Randrianatoandro VA, Bohuon P, Laffargue A, Avallone S (2010) Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur J Lipid Sci Technol 112:349–361Google Scholar
- 169.Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of US foods: an update of the database. J Food Compos Anal 12:169–196CrossRefGoogle Scholar
- 170.Murkovic M, Gams K, Draxl S, Pfannhauser W (2000) Development of an Austrian carotenoid database. J Food Compos Anal 13:435–440CrossRefGoogle Scholar
- 171.Furtado JD, Siles X, Campos H (2004) Carotenoid concentrations in vegetables and fruits common to the Costa Rican diet. Int J Food Sci Nutr 55:101–113PubMedCrossRefPubMedCentralGoogle Scholar
- 172.Reif C, Arrigoni E, Schärer H, Nyström L, Hurrell RF (2013) Carotenoid database of commonly eaten Swiss vegetables and their estimated contribution to carotenoid intake. J Food Compos Anal 29:64–72CrossRefGoogle Scholar
- 173.Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Compos Anal 21:445–463CrossRefGoogle Scholar
- 174.Rodriguez-Amaya DB (2016) Food carotenoids: chemistry, biology and technology. IFT Press/Wiley, OxfordGoogle Scholar
- 175.Ishida BK, Turner C, Chapman MH, McKeon TA (2004) Fatty acid and carotenoid composition of Gac (Momordica cochinchinensis Spreng) fruit. J Agric Food Chem 52:274–279PubMedCrossRefGoogle Scholar
- 176.Vuong LT, Franke AA, Custer LJ, Murphy SP (2006) Momordica chochinchinensis Spreng. (gac) fruit carotenoids reevaluated. J Food Compos Anal 19:664–668CrossRefGoogle Scholar
- 177.Gross J (1991) Pigments in vegetables. Chlorophylls and carotenoids. Avi Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
- 178.Rodriguez-Amaya DB, Amaya-Farfan J, Rodriguez EB (2008a) Carotenoids in fruits: biology, chemistry, technology and health benefits. In: Francesco E (ed) Trends in phytochemistry. Research Signpost, KeralaGoogle Scholar
- 179.Maiani G, Castón MJP, Catasta G, Toti E, Cambrodón IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Böhm V, Mayer-Miebach E, Behsnilian D, Schlemmer U (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:S194–S218PubMedCrossRefGoogle Scholar
- 180.Rodriguez-Amaya DB (1997) Carotenoids and food preparation: the retention of provitamin A carotenoids in prepared, processed, and stored foods. Opportunities for Micronutrient Intervention (OMNI), ArlingtonGoogle Scholar
- 181.Rodriguez-Amaya DB (1999b) Changes in carotenoids during processing and storage of foods. Arch Latinoam Nutr 49:38S–47SPubMedGoogle Scholar
- 182.Xianquan S, Shi J, Kakuda Y, Yueming J (2005) Stability of lycopene during food processing and storage. J Med Food 8:413–422PubMedCrossRefGoogle Scholar
- 183.Hager TJ, Howard LR (2006) Processing effects on carrot phytonutrients. HortSci 41:74–79Google Scholar
- 184.Shi I, le Maguer M (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40:1–42PubMedCrossRefGoogle Scholar
- 185.Pénicaud C, Archir N, Dhuique-Mayer C, Dornier M, Bohuon P (2011) Degradation of β-carotene during fruit and vegetable processing or storage: reaction mechanisms and kinetic aspects: a review. Fruits 66:417–440CrossRefGoogle Scholar
- 186.Nguyen ML, Schwartz SJ (1998) Lycopene stability during food processing. Exp Biol Med 218:101–105CrossRefGoogle Scholar
- 187.Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50:728–760PubMedPubMedCentralCrossRefGoogle Scholar
- 188.Marx M, Stuparic M, Schieber A, Carle R (2003) Effects of thermal processing on trans-cis-isomerization of β-carotene in carrot juice and carotene-containing preparations. Food Chem 83:609–617CrossRefGoogle Scholar
- 189.Shi J, le Maguer M, Bryan M, Kakuda Y (2003) Kinetics of lycopene degradation in tomato puree by heat and light irradiation. J Food Process Eng 25:485–498CrossRefGoogle Scholar
- 190.Seybold C, Fröhlich K, Bitsch R, Otto K, Böhm V (2004) Changes in contents of carotenoids and vitamin E during tomato processing. J Agric Food Chem 52:7005–7010PubMedCrossRefGoogle Scholar
- 191.Mayer-Miebach E, Behsnilian D, Regier M, Schuchmann HP (2005) Thermal processing of carrots: lycopene stability and isomerization with regard to antioxidant potential. Food Res Int 38:1103–1108CrossRefGoogle Scholar
- 192.Vásquez-Caicedo AL, Schilling S, Carle R, Neidhart S (2007) Effects of thermal processing and fruit matrix on β-carotene stability and enzyme inactivation during transformation of mangoes into purée and nectar. Food Chem 102:1172–1186CrossRefGoogle Scholar
- 193.Imsic M, Winkler S, Tomkins B, Jones R (2010) Effect of storage and cooking on β-carotene isomers in carrots (Daucus carota L. cv. ‘Stefano’). J Agric Food Chem 58:5109–5113PubMedCrossRefGoogle Scholar
- 194.Cervantes-Paz B, Yahia EM, Ornelas-Paz JJ, Victoria-Campos CI, Ibarra-Junquera V, Pérez-Martínez JD, Escalante-Minakata P (2014) Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem 146:188–196PubMedCrossRefGoogle Scholar
- 195.Knockaert G, Pulissery SK, Colle I, van Buggenhout S, Hendrickx M, van Loey A (2012) Lycopene degradation, isomerization and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil: effect of additional thermal and high pressure processing. Food Chem 135:1290–1297PubMedCrossRefGoogle Scholar
- 196.Nguyen M, Francis D, Schwartz S (2001) Thermal isomerization susceptibility of carotenoids in different tomato varieties. J Sci Food Agric 81:910–917CrossRefGoogle Scholar
- 197.Rubio-Diaz DE, Santos A, Francis DM, Rodriguez-Saona LE (2010) Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy. J Agric Food Chem 58:8692–8698PubMedCrossRefGoogle Scholar
- 198.Schieber A, Carle R (2005) Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends Food Sci Technol 16:416–422CrossRefGoogle Scholar
- 199.Conn PF, Schalch W, Truscott TG (1991) The singlet oxygen and carotenoid interaction. J Photochem Photobiol B 11:41–47PubMedCrossRefGoogle Scholar
- 200.Stahl W, Sies H (1993) Physical quenching of singlet oxygen and cis-trans isomerization of carotenids. Ann N Y Acad Sci 691:10–19PubMedCrossRefGoogle Scholar
- 201.Rodriguez EB, Rodriguez-Amaya DB (2007) Formation of apocarotenals and epoxycarotenoids from β-carotene by chemical reactions and by autoxidation in model systems and processed foods. Food Chem 101:563–572CrossRefGoogle Scholar
- 202.Rodriguez EB, Rodríguez-Amaya DB (2009) Lycopene epoxides and apo-lycopenals formed by chemical reactions and autoxidation in model systems and processed foods. J Food Sci 74:C674–C682PubMedCrossRefPubMedCentralGoogle Scholar
- 203.Marty C, Berset C (1988) Degradation products of trans-β-carotene produced during extrusion cooking. J Food Sci 53:1880–1886CrossRefGoogle Scholar
- 204.Marty C, Berset C (1990) Factors affecting the thermal degradation of all-trans-β-carotene. J Agric Food Chem 38:1063–1067CrossRefGoogle Scholar
- 205.Marty C, Berset C (1986) Degradation of trans-β-carotene during heating in sealed glass tubes and extrusion cooking. J Food Sci 51:698–702CrossRefGoogle Scholar
- 206.Henry LK, Puspitasari-Nienabe NL, Jarén-Galán M, van Breemen RB, Castignani GL, Schwartz SJ (2000) Effects of ozone and oxygen on the degradation of carotenoids in an aqueous system. J Agric Food Chem 48:5008–5013PubMedCrossRefGoogle Scholar
- 207.Kanasawud P, Crouzet JC (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 1. β-carotene degradation. J Agric Food Chem 38:237–243CrossRefGoogle Scholar
- 208.Khachik F, Steck A, Niggli UA, Pfander H (1998) Partial synthesis and structural elucidation of the oxidative metabolites of lycopene identified in tomato paste, tomato juice, and human serum. J Agric Food Chem 46:4874–4884CrossRefGoogle Scholar
- 209.Khachik F, Pfander H, Traber B (1998) Proposed mechanisms for the formation of synthetic and naturally occurring metabolites of lycopene in tomato products and human serum. J Agric Food Chem 46:4885–4890CrossRefGoogle Scholar
- 210.Mercadante AZ, Rodriguez-Amaya DB (1998) Influence of ripening, cultivar differences, and processing on the carotenoid composition of mango. J Agric Food Chem 46:128–130PubMedCrossRefPubMedCentralGoogle Scholar
- 211.Cano MP, de Ancos B (1994) Carotenoid and carotenoid ester composition in mango fruit as influenced by processing method. J Agric Food Chem 42:2737–2742CrossRefGoogle Scholar
- 212.Lee HS, Coates GA (2003) Effect of thermal pasteurization on Valencia orange juice color and pigments. Lebensm-Wiss Technol 36:153–156CrossRefGoogle Scholar
- 213.Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot MJ (2007) Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed components. J Agric Food Chem 55:4209–4216PubMedCrossRefPubMedCentralGoogle Scholar
- 214.Hadjal T, Dhuique-Mayer C, Madani K, Dornier M, Achir N (2013) Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems. Food Chem 138:2442–2450PubMedCrossRefPubMedCentralGoogle Scholar
- 215.Kopec RE, Riedl KM, Harrison EH, Curley RW Jr, Hruszkewycz DP, Clinton SK, Schwartz SJ (2010) Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 58:3290–3296PubMedPubMedCentralCrossRefGoogle Scholar
- 216.Zeb A, Murkovic M (2013) Determination of thermal oxidation and oxidation products of β-carotene in corn triacylglycerols. Food Res Int 50:534–544CrossRefGoogle Scholar
- 217.Zepka LQ, Mercadante AZ (2009) Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem 117:28–34CrossRefGoogle Scholar
- 218.Kanasawud P, Crouzet JC (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 2. Lycopene degradation. J Agric Food Chem 38:1238–1242CrossRefGoogle Scholar
- 219.Caris-Veyrat C, Schmid A, Carail M, Bohm V (2003) Cleavage products of lycopene produced by in vitro oxidations: characterization and mechanisms of formation. J Agric Food Chem 51:7318–7732PubMedCrossRefPubMedCentralGoogle Scholar
- 220.Rios JJ, Fernández-García E, Mínguez-Mosquera MI, Pérez-Gálvez A (2008) Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chem 106:1145–1153CrossRefGoogle Scholar
- 221.Kobori CN, Wagner R, Padula M, Rodriguez-Amaya DB (2014) Formation of volatile compounds from lycopene by autoxidation in a model system simulating dehydrated foods. Food Res Int 63(Part A):49–54CrossRefGoogle Scholar
- 222.Coria-Cayupán YS, de Pinto MIS, Nazareno MA (2009) Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J Agric Food Chem 57:10122–10129PubMedCrossRefPubMedCentralGoogle Scholar
- 223.Znidarcic D, Ban D, Sircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1116PubMedCrossRefPubMedCentralGoogle Scholar
- 224.Acosta-Quezada PG, Raigón MD, Riofrío-Cuenca T, García-Martínez MD, Plazas M, Burneo JI, Figueroa JG, Vilanova S, Prohens J (2015) Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem 169:327–335PubMedCrossRefPubMedCentralGoogle Scholar
- 225.Schwartz SJ, Lorenzo TV (1990) Chlorophyll in foods. Crit Rev Food Sci Nutr 29:1–17PubMedCrossRefPubMedCentralGoogle Scholar
- 226.Heaton JW, Marangoni AG (1996) Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci Technol 7:8–15CrossRefGoogle Scholar
- 227.Schwartz SJ, Woo SL, von Elbe JH (1981) High-performance liquid chromatography of chlorophylls and their derivatives in fresh and processed spinach. J Agric Food Chem 29:533–535CrossRefGoogle Scholar
- 228.Watanabe T, Nakazato M, Mazaki H, Hongu A, Konno M, Saitoh S, Honda K (1985) Chlorophyll a epimer and pheophytin a in green leaves. Biochim Biophys Acta 807:110–117CrossRefGoogle Scholar
- 229.López-Ayerra B, Murcia MA, Garcia-Carmona F (1998) Lipid peroxidation and chlorophyll levels in spinach during refrigerated storage and after industrial processing. Food Chem 61:113–118CrossRefGoogle Scholar
- 230.Murcia MA, López-Ayerra B, Martínez-Tomé M, García-Carmona F (2000) Effect of industrial processing on chlorophyll content of broccoli. J Sci Food Agric 80:1447–1451CrossRefGoogle Scholar
- 231.Turkmen N, Poyrazoglu ES, Sari F, Sedat Velioglu Y (2006) Effects of cooking methods on chlorophylls, pheophytins and colour of selected green vegetables. Int J Food Sci Technol 41:281–288CrossRefGoogle Scholar
- 232.Schwartz SJ, von Elbe JH (1983b) Kinetics of chlorophyll degradation to pyropheophytin in vegetables. J Food Sci 48:1303–1306CrossRefGoogle Scholar
- 233.Canjura FL, Schwartz SJ, Nunes RV (1991) Degradation kinetics of chlorophylls and chlorophyllides. J Food Sci 56:1639–1643CrossRefGoogle Scholar
- 234.Koca N, Karadeniz F, Burdurlu HS (2006) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100:609–615CrossRefGoogle Scholar
- 235.Belitz HI, Grosch W (1987) Vegetables and their products. Food chemistry (trans: Hadziyev D). Springer, BerlinGoogle Scholar
- 236.Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50:67–95PubMedCrossRefPubMedCentralGoogle Scholar
- 237.Takamiya K-I, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431PubMedCrossRefPubMedCentralGoogle Scholar
- 238.Vergara-Domínguez H, Rios JJ, Gandul-Rojas B, Roca M (2016) Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation. Food Chem 212:604–611PubMedCrossRefPubMedCentralGoogle Scholar
- 239.von Elbe JH, Huang AS, Attoe EL, Nank WK (1986) Pigment composition and color of conventional and Veri-Green canned beans. J Agric Food Chem 34:52–54CrossRefGoogle Scholar
- 240.Gaur S, Shivhare U, Ahmed J (2006) Degradation of chlorophyll during processing of green vegetables a review. Stewart Postharvest Rev 5:14Google Scholar
- 241.Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58:100–110PubMedCrossRefPubMedCentralGoogle Scholar
- 242.Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516CrossRefGoogle Scholar
- 243.Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83:1265–1271PubMedCrossRefGoogle Scholar
- 244.Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216PubMedCrossRefPubMedCentralGoogle Scholar
- 245.Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439PubMedCrossRefPubMedCentralGoogle Scholar
- 246.Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817PubMedCrossRefPubMedCentralGoogle Scholar
- 247.Kiokias S, Gordon MH (2004) Antioxidant properties of carotenoids in vitro and in vivo. Food Rev Int 20:99–121CrossRefGoogle Scholar
- 248.Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351CrossRefGoogle Scholar
- 249.Stahl W, Ale-Agha N, Polidori MC (2002) Non-antioxidant properties of carotenoids. Biol Chem 383:553–558PubMedCrossRefPubMedCentralGoogle Scholar
- 250.Pan M-H, Lai C-S, Dushenkov S, Ho C-T (2009) Modulation of inflammatory genes by natural dietary bioactive compounds. J Agric Food Chem 57:4467–4477PubMedCrossRefPubMedCentralGoogle Scholar
- 251.Agarwal S, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163:739–744Google Scholar
- 252.Agarwal M, Parameswari RP, Vasanthi HR, Das DK (2012) Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health. Molecules 17:4755–4769PubMedPubMedCentralCrossRefGoogle Scholar
- 253.Giovannucci E (2002a) A review of epidemiologic studies of tomatoes, lycopene and prostate cancer. Exp Biol Med 227:852–859CrossRefGoogle Scholar
- 254.Rao AV, Rao LG (2004) Lycopene and human health. Curr Top Nutr Res 2:127–136Google Scholar
- 255.Singh P, Goyal GK (2008) Dietary lycopene: its properties and anticarcinogenic effects. Comp Rev Food Sci Food Saf 7:255–270CrossRefGoogle Scholar
- 256.Sharoni Y, Linnewiel-Hermoni K, Zango G, Khanin M, Salman H, Veprik A, Danilenko M, Levy J (2012) The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. Am J Clin Nutr 96:1173–1178SCrossRefGoogle Scholar
- 257.Hadley CW, Miller EC, Schwartz SJ, Clinton SK (2002) Tomatoes, lycopene, and prostate cancer: progress and promise. Exp Biol Med 227:869–880CrossRefGoogle Scholar
- 258.Miller EC, Giovannucci E, Erdman JW Jr, Bahnson R, Schwartz SJ, Clinton S (2002) Tomato products, lycopene and prostate cancer risk. Urol Clin N Am 29:83–93CrossRefGoogle Scholar
- 259.Wertz K, Siler U, Goralczyk R (2004) Lycopene: modes of action to promote prostate health. Arch Biochem Biophys 430:127–134PubMedCrossRefPubMedCentralGoogle Scholar
- 260.Stacewicz-Sapuntzakis M, Bowen PE (2005) Role of lycopene and tomato products in prostate health. Biochim Biophys Acta 1740:202–205PubMedCrossRefPubMedCentralGoogle Scholar
- 261.Ito Y, Wakai K, Suzuki K, Tamakoshi A, Seki N, Ando M, Nishino Y, Kondo T, Watanabe Y, Ozasa K, Ohno Y, for the JACC Study Group (2003) Serum carotenoids and mortality from lung cancer: a case-control study nested in the Japan Collaborative Cohort (JACC) Study. Cancer Sci 94:57–63PubMedCrossRefPubMedCentralGoogle Scholar
- 262.Nkondjock A, Ghadirian P, Johnson KC, Krewski D, the Canadian Cancer Registries Epidemiology Research Group (2005) Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J Nutr 135:592–597PubMedCrossRefPubMedCentralGoogle Scholar
- 263.Erhardt JG, Meisner C, Bode JC, Bode C (2003) Lycopene, β-carotene, and colorectal adenomas. Am J Clin Nutr 78:1219–1224PubMedCrossRefPubMedCentralGoogle Scholar
- 264.Franceschi S, Bidioli E, La Vecchia C, Talamini R, D’Avanzo B, Negri E (1994) Tomatoes and risk of digestive-tract cancers. Int J Cancer 59:181–184PubMedCrossRefPubMedCentralGoogle Scholar
- 265.Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE (2001) Macular pigment in donor eyes with and without AMD: a case-control study. Invest Ophthalmol Vis Sci 42:235–240PubMedPubMedCentralGoogle Scholar
- 266.Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40PubMedCrossRefPubMedCentralGoogle Scholar
- 267.Moeller SM, Jacques PF, Blumberg JB (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19:522S–527SPubMedCrossRefPubMedCentralGoogle Scholar
- 268.Moeller SM, Parekh N, Tinker L, Ritrenbaugh C, Blodi B, Wallace RB, Mares JA (2006) Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Opthalmol 124:1151–1162CrossRefGoogle Scholar
- 269.Gale CR, Hall NF, Phillips DIW, Martyn CN (2003) Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Opthalmol Vis Sci 44:2461–2465CrossRefGoogle Scholar
- 270.Delcourt C, Carriere I, Delage M, Barbenger-Gateau P, Schalch W (2006) Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract; the POLA Study. Invest Opthalmol Vis Sci 47:2329–2335CrossRefGoogle Scholar
- 271.Tan JSL, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P (2008) Dietary antioxidants and the long-term incidence of age-related macular degeneration – The Blue Mountain Eye Study. Opthalmology 115:334–341CrossRefGoogle Scholar
- 272.Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration. Crit Rev Food Sci Nutr 49:313–326PubMedCrossRefPubMedCentralGoogle Scholar
- 273.Gale CR, Hall NF, Phillips DIW, Martyn CN (2001) Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology 108:1992–1998PubMedCrossRefPubMedCentralGoogle Scholar
- 274.Dherani M, Murthy GVS, Gupta SK, Young IS, Maraini G, Camparini M, Price GM, John N, Chakravarthy U, Fletcher AE (2008) Blood levels of vitamin C, carotenoids and retinol are inversely associated with cataract in a North Indian population. Invest Ophthalmol Vis Sci 49:3328–3335PubMedCrossRefPubMedCentralGoogle Scholar
- 275.Ma L, Dou H-L, Wu Y-Q, Huang Y-M, Huang Y-B, Xu X-R, Zou Z-Y, Lin X-M (2012) Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr 107:350–359PubMedCrossRefPubMedCentralGoogle Scholar
- 276.Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C (2001) Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric 81:904–909CrossRefGoogle Scholar
- 277.Olmedilla B, Granado F, Blanco I, Vaquero M (2003) Lutein, but not alpha-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-year double-blind, placebo-controlled pilot study. Nutrition 19:21–24PubMedCrossRefPubMedCentralGoogle Scholar
- 278.Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201PubMedCrossRefPubMedCentralGoogle Scholar
- 279.Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz CNB, Fogelman AM (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: The Los Angeles Atherosclerosis study. Circulation 103:2922–2927PubMedCrossRefPubMedCentralGoogle Scholar
- 280.Xu X-R, Zou Z-Y, Huang Y-M, Xiao X, Ma L, Lin X-M (2012) Serum carotenoids in relation to risk factors for the development of atherosclerosis. Clin Biochem 45:1357–1361PubMedCrossRefPubMedCentralGoogle Scholar
- 281.Karppi J, Kurl S, Mäkikallioi TH, Ronkainen K, Laukkanen JA (2013) Serum β-carotene concentrations and the risk of congestive heart failure in men: a population-based study. Int J Cardiol 168:1841–1846PubMedCrossRefPubMedCentralGoogle Scholar
- 282.Connor SL, Ojeda LS, Sexton G, Weidner G, Connor WE (2004) Diets lower in folic acid and carotenoids are associated with coronary disease epidemic in central and eastern Europe. J Am Diet Assoc 104:1793–1799PubMedCrossRefPubMedCentralGoogle Scholar
- 283.Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208PubMedPubMedCentralGoogle Scholar
- 284.Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf 12:483–508CrossRefGoogle Scholar
- 285.Gowd V, Jia Z, Chen W (2017) Anthocyanins as promising molecules and dietary bioactive components against diabetes – a review of recent advances. Trends Food Sci Technol 68:1–13CrossRefGoogle Scholar
- 286.Hou D-X (2003) Potential mechanisms of cancer chemoprevention by anthocyanin. Curr Mol Med 3:149–159PubMedCrossRefPubMedCentralGoogle Scholar
- 287.Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290PubMedPubMedCentralCrossRefGoogle Scholar
- 288.Li D, Wang P, Luo Y, Zhao M, Chen F (2017) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57:1729–1741PubMedCrossRefPubMedCentralGoogle Scholar
- 289.Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7PubMedPubMedCentralCrossRefGoogle Scholar
- 290.Tesoriere L, Allegra M, Butera D, Livrea MA (2004) Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 80:941–945PubMedCrossRefPubMedCentralGoogle Scholar
- 291.Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in heath and disease. Forum Nutr 7:2801–2822Google Scholar
- 292.Gengatharan A, Dykes GA, Cho WS (2015) Betalains: Natural plant pigments with potential application in functional foods. LWT- Food Sci Technol 64:645–649CrossRefGoogle Scholar
- 293.Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, Westenbrink S, van der Meer R, Goldbohm RA (2006) Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomark Prev 15:717–725CrossRefGoogle Scholar
- 294.Dashwood RH (1997) Chlorophylls as anticarcinogens. Int J Oncol 10:721–727PubMedPubMedCentralGoogle Scholar
- 295.Tajmir-Riahi HA, Neault JF, Diamantoglou S (2004) DNA adducts with chlorophyll and chlorophyllin as antimutagenic agents: synthesis, stability, and structural features. Methods Mol Biol 274:159–171PubMedPubMedCentralGoogle Scholar
- 296.De Vogel J, Jonker-Termont DS, van Lieshout EM, Katan MB, van der Meer R (2005) Green vegetables, red meat and colon cancer: chlorophyll prevents the cytotoxic and hyperproliferative effects of haem in rat colon. Carcinogenesis 26:387–393PubMedCrossRefGoogle Scholar