Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Decision Discovery in Business Processes

  • Massimiliano de LeoniEmail author
  • Felix MannhardtEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_96



In the context of business process analytics, decision discovery is the problem of discovering the set of rules that are de-facto used to make decisions in a business process, by analyzing event logs recording past executions of the process.


The execution of business processes typically follow some decisions that determine, within the multiple alternative executions, how to carry on executions of the process. These decisions are defined over the characteristics of the single instances (e.g. loan’s amount, applicant’s or patient’s age). This chapter reports on different approaches to discover these decision rules when unknown to process stakeholders. Most of these techniques in fact leverage on machine-learning. A number of successful real-life case-study applications are discussed along with the open-source tools that were used.


The main focus of automatic process discovery has traditionally been in the realm of...
This is a preview of subscription content, log in to check access.


  1. Adriansyah A (2014) Aligning observed and modeled behavior. PhD thesis, Eindhoven University of Technology. https://doi.org/10.6100/IR770080
  2. Batoulis K, Meyer A, Bazhenova E, Decker G, Weske M (2015) Extracting decision logic from process models. In: CAiSE 2015. LNCS, vol 9097. Springer, pp 349–366. https://doi.org/10.1007/978-3-319-19069-3_22CrossRefGoogle Scholar
  3. Bazhenova E, Weske M (2016) Deriving decision models from process models by enhanced decision mining. In: BPM 2015 workshops. Springer, pp 444–457. https://doi.org/10.1007/978-3-319-42887-1_36CrossRefGoogle Scholar
  4. Bazhenova E, Bülow S, Weske M (2016) Discovering decision models from event logs. In: BIS 2016. LNBIP, vol 255. Springer, pp 237–251. https://doi.org/10.1007/978-3-319-39426-8_19CrossRefGoogle Scholar
  5. Bazhenova E, Haarmann S, Ihde S, Solti A, Weske M (2017) Discovery of fuzzy DMN decision models from event logs. In: CAiSE 2017. LNCS, vol 10253. Springer, pp 629–647. https://doi.org/10.1007/978-3-319-59536-8_39Google Scholar
  6. Bose JC, Mans RS, van der Aalst WMP (2013) Wanna improve process mining results? In: CIDM 2013. IEEE, pp 127–134.  https://doi.org/10.1109/cidm.2013.6597227
  7. Calvanese D, Dumas M, Ülari Laurson, Maggi FM, Montali M, Teinemaa I (2016) Semantics and analysis of DMN decision tables. In: BPM 2016. LNCS, vol 9850. Springer, pp 217–233. https://doi.org/10.1007/978-3-319-45348-4_13Google Scholar
  8. de Leoni M, van der Aalst WMP (2013) Data-aware process mining: discovering decisions in processes using alignments. In: SAC 2013. ACM, pp 1454–1461. https://doi.org/10.1145/2480362.2480633
  9. De Smedt J, vanden Broucke SKLM, Obregon J, Kim A, Jung JY, Vanthienen J (2017a) Decision mining in a broader context: an overview of the current landscape and future directions. In: BPM 2016 workshops. LNBIP, vol 281. Springer, pp 197–207. https://doi.org/10.1007/978-3-319-58457-7_15CrossRefGoogle Scholar
  10. De Smedt J, Hasic F, vanden Broucke S, Vanthienen J (2017b) Towards a holistic discovery of decisions in process-aware information systems. In: BPM 2017. LNCS, vol 10445. Springer. https://doi.org/10.1007/978-3-319-65000-5_11Google Scholar
  11. DMN (2016) Decision Model and Notation (DMN) v1.1. http://www.omg.org/spec/DMN/1.1/
  12. Kalenkova AA, de Leoni M, van der Aalst WMP (2014) Discovering, analyzing and enhancing BPMN models using prom. In: BPM 2014 Demos, CEUR-WS.org, CEUR workshop proceedings, vol 1295, p 36Google Scholar
  13. Maggi FM, Dumas M, García-Bañuelos L, Montali M (2013) Discovering data-aware declarative process models from event logs. In: BPM 2013. LNCS, vol 8094. Springer, pp 81–96. https://doi.org/10.1007/978-3-642-40176-3_8Google Scholar
  14. Mannhardt F (2018) Multi-perspective process mining. PhD thesis, Eindhoven University of TechnologyGoogle Scholar
  15. Mannhardt F, de Leoni M, Reijers HA (2015) The multi-perspective process explorer. In: BPM 2015 Demos, CEUR-WS.org, CEUR workshop proceedings, vol 1418, pp 130–134Google Scholar
  16. Mannhardt F, de Leoni M, Reijers HA, van der Aalst WMP (2016) Decision mining revisited – discovering overlapping rules. In: CAiSE 2016. LNCS, vol 9694. Springer, pp 377–392. https://doi.org/10.1007/978-3-319-39696-5_23Google Scholar
  17. Mannhardt F, de Leoni M, Reijers HA, van der Aalst WMP (2017) Data-driven process discovery – revealing conditional infrequent behavior from event logs. In: CAiSE 2017. LNCS, vol 10253, pp 545–560. https://doi.org/10.1007/978-3-319-59536-8_34Google Scholar
  18. Rhodes A et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377. https://doi.org/10.1007/s00134-017-4683-6CrossRefGoogle Scholar
  19. Rosca D, Wild C (2002) Towards a flexible deployment of business rules. Expert Syst Appl 23(4):385–394. https://doi.org/10.1016/s0957-4174(02)00074-xCrossRefGoogle Scholar
  20. Rozinat A (2010) Process mining: conformance and extension. PhD thesis, Eindhoven University of Technology, EindhovenGoogle Scholar
  21. Rozinat A, van der Aalst WMP (2006) Decision mining in ProM. In: BPM 2006. LNCS, vol 4102. Springer, pp 420–425. https://doi.org/10.1007/11841760_33Google Scholar
  22. Schönig S, Di Ciccio C, Maggi FM, Mendling J (2016) Discovery of multi-perspective declarative process models. In: ICSOC 2016. LNCS, vol 9936. Springer, pp 87–103. https://doi.org/10.1007/978-3-319-46295-0_6CrossRefGoogle Scholar
  23. van der Aalst WMP (2016) Process mining – data science in action, 2nd edn. Springer. https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  24. van Dongen BF, de Medeiros AKA, Verbeek HMW, Weijters AJMM, van der Aalst WMP (2005) The prom framework: a new era in process mining tool support. In: ICATPN 2005. LNCS, vol 3536. Springer, pp 444–454Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Economics and Technology ManagementSINTEF Technology and SocietyTrondheimNorway