Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Graph Pattern Matching

  • Yinghui WuEmail author
  • Arijit KhanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_74


The graph pattern matching problem is to find the answers Q(G) of a pattern query Q in a given graph G. The answers are induced by specific query language and ranked by a quality measure. The problem can be categorized into three classes (Khan and Ranu 2017): (1) Subgraph/supergraph containment query, (2) graph similarity queries, and (3) graph pattern matching.

In the context of searching a graph database D that consists of many (small) graph transactions, the graph pattern matching finds the answers Q(G) as a set of graphs from D. For subgraph (resp. supergraph containment) query, it is to find Q(G) that are subgraphs (resp. supergraphs) of Q. The graph similarity queries are to find Q(G) as all graph transactions that are similar to Q for a particular similarity measure.

In the context of searching a single graph G, graph pattern matching is to find all the occurrences of a query graph Q in a given data graph G, specified by a matching function. The remainder of this...

This is a preview of subscription content, log in to check access.


  1. Aditya B, Bhalotia G, Chakrabarti S, Hulgeri A, Nakhe C, Parag P, Sudarshan S (2002) BANKS: browsing and keyword searching in relational databases. In: VLDBGoogle Scholar
  2. Armbrust M, Fox A, Patterson D, Lanham N, Trushkowsky B, Trutna J, Oh H (2009) Scads: scale-independent storage for social computing applications. arXiv preprint arXiv:09091775Google Scholar
  3. Cao Y, Fan W, Huai J, Huang R (2015) Making pattern queries bounded in big graphs. In: ICDE, pp 161–172Google Scholar
  4. Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372CrossRefGoogle Scholar
  5. Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y (2010) Graph pattern matching: from intractable to polynomial time. PVLDB 3(1–2):264–275Google Scholar
  6. Fan W, Li J, Ma S, Tang N, Wu Y (2011) Adding regular expressions to graph reachability and pattern queries. In: ICDE, pp 39–50zbMATHGoogle Scholar
  7. Fan W, Li J, Wang X, Wu Y (2012a) Query preserving graph compression. In: SIGMOD, pp 157–168Google Scholar
  8. Fan W, Wang X, Wu Y (2012b) Performance guarantees for distributed reachability queries. PVLDB 5(11):1304–1316Google Scholar
  9. Fan W, Wang X, Wu Y (2013) Incremental graph pattern matching. TODS 38(3):18:1–18:47MathSciNetzbMATHCrossRefGoogle Scholar
  10. Fan W, Wang X, Wu Y (2014a) Answering graph pattern queries using views. In: ICDECrossRefGoogle Scholar
  11. Fan W, Wang X, Wu Y (2014b) Querying big graphs within bounded resources. In: SIGMODCrossRefGoogle Scholar
  12. Fan W, Wang X, Wu Y, Deng D (2014c) Distributed graph simulation: impossibility and possibility. PVLDB 7(12):1083–1094Google Scholar
  13. Fan W, Xu J, Wu Y, Yu W, Jiang J, Zheng Z, Zhang B, Cao Y, Tian C (2017) Parallelizing sequential graph computations. In: SIGMODCrossRefGoogle Scholar
  14. He H, Singh A (2008) Graphs-at-a-time: query language and access methods for graph databases. In: SIGMODCrossRefGoogle Scholar
  15. He H, Wang H, Yang J, Yu PS (2007) BLINKS: ranked keyword searches on graphs. In: SIGMODCrossRefGoogle Scholar
  16. Jayaram N, Khan A, Li C, Yan X, Elmasri R (2015) Querying knowledge graphs by example entity tuples. TKDE 27(10):2797–2811Google Scholar
  17. Kargar M, An A (2011) Keyword search in graphs: finding R-cliques. PVLDB 4(10):681–692Google Scholar
  18. Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T (2004) PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res 32: 83–88CrossRefGoogle Scholar
  19. Khan A, Ranu S (2017) Big-graphs: querying, mining, and beyond. In: Handbook of big data technologies. Springer, Cham, pp 531–582CrossRefGoogle Scholar
  20. Khan A, Li N, Guan Z, Chakraborty S, Tao S (2011) Neighborhood based fast graph search in large networks. In: SIGMODCrossRefGoogle Scholar
  21. Khan A, Wu Y, Aggarwal C, Yan X (2013) NeMa: fast graph search with label similarity. PVLDB 6(3): 181–192Google Scholar
  22. Lee J, Han WS, Kasperovics R, Lee JH (2012) An in-depth comparison of subgraph isomorphism algorithms in graph databases. PVLDB 6(2):133–144Google Scholar
  23. Liang Z, Xu M, Teng M, Niu L (2006) NetAlign: a web-based tool for comparison of protein interaction networks. Bioinformatics 22(17):2175–2177CrossRefGoogle Scholar
  24. Ma S, Cao Y, Fan W, Huai J, Wo T (2011) Capturing topology in graph pattern matching. PVLDB 5(4):310–321zbMATHGoogle Scholar
  25. Mottin D, Lissandrini M, Velegrakis Y, Palpanas T (2014) Exemplar queries: give me an example of what you need. PVLDB 7(5):365–376Google Scholar
  26. Shang H, Zhang Y, Lin X, Yu J (2008) Taming verification hardness: an efficient algorithm for testing subgraph isomorphism. PVLDB 1(1):364–375Google Scholar
  27. Singh R, Xu J, Berger B (2008) Global alignment of multiple protein interaction networks with application to functional orthology detection. PNAS 105(35):12763–12768CrossRefGoogle Scholar
  28. Tian Y, Patel JM (2008) TALE: a tool for approximate large graph matching. In: ICDEGoogle Scholar
  29. Tian Y, McEachin R, Santos C, States D, Patel J (2006) SAGA: a subgraph matching tool for biological graphs. Bioinformatics 23(2):232–239CrossRefGoogle Scholar
  30. Tong H, Faloutsos C, Gallagher B, Eliassi-Rad T (2007) Fast best-effort pattern matching in large attributed graphs. In: KDDCrossRefGoogle Scholar
  31. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23:31–42MathSciNetCrossRefGoogle Scholar
  32. Zhang S, Li S, Yang J (2009) GADDI: distance index based subgraph matching in biological networks. In: EDBTCrossRefGoogle Scholar
  33. Zhao P, Han J (2010) On graph query optimization in large networks. In: VLDBCrossRefGoogle Scholar
  34. Zheng W, Cheng H, Zou L, Yu JX, Zhao K (2017) Natural language question/answering: let users talk with the knowledge graph. In: CIKMCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Washington State UniversityPullmanUSA
  2. 2.Nanyang Technological UniversitySingaporeSingapore