Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Spatio-textual Data

  • Gao CongEmail author
  • Christian S. Jensen
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_68



With the proliferation of GPS-equipped mobile devices, notably smartphones, massive volumes of geo-located, or geo-tagged, text content are becoming available. For example, Foursquare hosts over 105 million locations around the world with over 12 billion check-ins (https://foursquare.com/ about accessed January 2018), where each location is associated with both a geographical location and text content and similarly each check-in is also associated with a location and text. Facebook also supports location check-ins. We refer to such data as geo-textual, or spatio-textual, data. Other examples of such data include points of interest (POIs) with descriptive text, geo-tagged microblog posts (e.g., tweets), geo-tagged photos with text tags (e.g., as found at Flickr and Instagram), geo-tagged news, and geo-tagged web pages. Spatio-textual data can be divided into (i) streaming spatio-textual data that arrives at a high rate,...

This is a preview of subscription content, log in to check access.


  1. Cao X, Cong G, Jensen CS, Ooi BC (2011) Collective spatial keyword querying. In: SIGMOD, pp 373–384Google Scholar
  2. Cao X, Cong G, Guo T, Jensen CS, Ooi BC (2015) Efficient processing of spatial group keyword queries. ACM Trans Database Syst 40(2):13MathSciNetCrossRefGoogle Scholar
  3. Chen Y, Suel T, Markowetz A (2006) Efficient query processing in geographic web search engines. In: SIGMOD, pp 277–288Google Scholar
  4. Chen L, Cong G, Cao X (2013) An efficient query indexing mechanism for filtering geo-textual data. In: SIGMOD, pp 749–760Google Scholar
  5. Chen L, Cong G, Cao X, Tan K (2015) Temporal spatial-keyword top-k publish/subscribe. In: ICDE, pp 255–266Google Scholar
  6. Choi D-W, Chung C-W, Tao Y (2012) A scalable algorithm for maximizing range sum in spatial databases. Proc VLDB Endow 5(11):1088–1099CrossRefGoogle Scholar
  7. Christoforaki M, He J, Dimopoulos C, Markowetz A, Suel T (2011) Text vs. space: efficient geo-search query processing. In: CIKM, pp 423–432Google Scholar
  8. Cong G, Jensen SC, Wu D (2009) Efficient retrieval of the top-k most relevant spatial web objects. In: PVLDB, pp 337–348Google Scholar
  9. Cong G, Lu H, Ooi BC, Zhang D, Zhang M (2012) Efficient spatial keyword search in trajectory databases. CoRR, abs/(1205)2880Google Scholar
  10. Felipe ID, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE, pp 656–665Google Scholar
  11. Feng K, Cong G, Bhowmick SS, Peng W-C, Miao C (2016) Towards best region search for data exploration. In: SIGMOD. ACMCrossRefGoogle Scholar
  12. Guo T, Cao X, Cong G (2015) Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp 405–418Google Scholar
  13. Hariharan R, Hore B, Li C, Mehrotra S (2007) Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In: SSDBM, p 16Google Scholar
  14. Hu H, Liu Y, Li G, Feng J, Tan K (2015) A location-aware publish/subscribe framework for parameterized spatio-textual subscriptions. In: ICDE, pp 711–722Google Scholar
  15. Imai H, Asano T (1983) Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J Algorithms 4(4):310–323MathSciNetzbMATHCrossRefGoogle Scholar
  16. Khodaei A, Shahabi C, Li C (2010) Hybrid indexing and seamless ranking of spatial and textual features of web documents. In: DEXA (1), pp 450–466Google Scholar
  17. Li G, Wang Y, Wang T, Feng J (2013) Location-aware publish/subscribe. In: KDD, pp 802–810Google Scholar
  18. Liu Y, Pham T, Cong G, Yuan Q (2017) An experimental evaluation of point-of-interest recommendation in location-based social networks. PVLDB 10(10): 1010–1021Google Scholar
  19. Long C, Wong RC, Wang K, Fu WA (2013) Collective spatial keyword queries: a distance owner-driven approach. In: SIGMOD, pp 689–700Google Scholar
  20. Mahmood AR, Aly AM, Qadah T, Rezig EK, Daghistani A, Madkour A, Abdelhamid AS, Hassan MS, Aref WG, Basalamah SM (2015) Tornado: a distributed spatio-textual stream processing system. PVLDB 8(12):2020–2023Google Scholar
  21. Nandy SC, Bhattacharya BB (1995) A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Comput Math Appl 29(8): 45–61MathSciNetzbMATHCrossRefGoogle Scholar
  22. Rocha-Junior JB, Gkorgkas O, Jonassen S, Nørvåg K (2011) Efficient processing of top-k spatial keyword queries. In: SSTD, pp 205–222Google Scholar
  23. Skovsgaard A, Sidlauskas D, Jensen CS (2014) Scalable top-k spatio-temporal term querying. In: ICDE, pp 148–159Google Scholar
  24. Vaid S, Jones CB, Joho H, Sanderson M (2005) Spatio-textual indexing for geographical search on the web. In: SSTD, pp 218–235Google Scholar
  25. Wang X, Zhang Y, Zhang W, Lin X, Wang W (2015) Ap-tree: efficiently support continuous spatial-keyword queries over stream. In: ICDE, pp 1107–1118Google Scholar
  26. Wu D, Cong G, Jensen CS (2012a) A framework for efficient spatial web object retrieval. VLDB J 21(6): 797–822CrossRefGoogle Scholar
  27. Wu D, Yiu ML, Cong G, Jensen CS (2012b) Joint top-k spatial keyword query processing. IEEE Trans Knowl Data Eng 24(10):1889–1903CrossRefGoogle Scholar
  28. Zhang D, Chee YM, Mondal A, Tung AKH, Kitsuregawa M (2009) Keyword search in spatial databases: towards searching by document. In: ICDE, pp 688–699Google Scholar
  29. Zhang D, Ooi BC, Tung AKH (2010) Locating mapped resources in web 2.0. In: ICDE, pp 521–532Google Scholar
  30. Zhang C, Zhang Y, Zhang W, Lin X (2013a) Inverted linear quadtree: efficient top k spatial keyword search. In: ICDE, pp 901–912Google Scholar
  31. Zhang D, Tan K-L, Tung AKH (2013b) Scalable top-k spatial keyword search. In: EDBT, pp 359–370Google Scholar
  32. Zhou Y, Xie X, Wang C, Gong Y, Ma W-Y (2005) Hybrid index structures for location-based web search. In: CIKM, pp 155–162Google Scholar
  33. Zhao K, Chen L, Cong G (2016) Topic exploration in spatio-temporal document collections. In: SIGMOD. ACMCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Computer ScienceAalborg UniversityAalborgDenmark