Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Tools and Libraries for Big Data Analysis

  • Shadi KhalifaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_282


Data analysts go through all different kinds of pain on daily basis to extract actionable insights from raw data. They deal with corrupt data, anomalies, missing values, high dimensionality, and irregularities. With Big Data, they also have to deal with data heterogeneity, high arrival velocity, and large volumes. For each Big Data analysis task, using the right tool can significantly reduce the processing time and help generate better insights. This chapter presents a survey of existing Big Data analysis tools and libraries where they are introduced and compared. In the last section, some design principles are highlighted to be considered when developing Big Data analysis tools.

This is a preview of subscription content, log in to check access.


  1. Agarwal S, Mozafari B, Panda A, Milner H, Madden S, Stoica I (2013) BlinkDB: queries with bounded errors and bounded response times on very large data. In: Proceedings of the 8th ACM European conference on computer systems, Prague, 14–17 Apr 2013, pp 29–42Google Scholar
  2. Akidau T, Balikov A, Bekiroğlu K, Chernyak S, Haberman J, Lax R, McVeety S, Mills D, Nordstrom P, Whittle S (2013) MillWheel: fault-tolerant stream processing at internet scale. Proc VLDB Endow 6(11):1033–1044CrossRefGoogle Scholar
  3. Barga R, Ekanayake J, Wei L (2012) Project Daytona: data analytics as a cloud service. In: Proceedings of the IEEE 28th international conference on data engineering, Washington, 1–5 Apr 2012, pp 1317–1320Google Scholar
  4. Bockermann C, Blom H (2012) Processing data streams with the rapidminer streams-plugin. In: Proceedings of the rapidminer community meeting and conference, Budapest, 28–31 Aug 2012Google Scholar
  5. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on operating systems design & implementation, San Francisco, 6–8 Dec 2004Google Scholar
  6. Hall A, Bachmann O, Büssow R, Gănceanu S, Nunkesser M (2012) Processing a trillion cells per mouse click. Proc VLDB Endow 5(11):1436–1446CrossRefGoogle Scholar
  7. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, Shenker S, Stoica I (2011) Mesos: a platform for fine-grained resource sharing in the data center. In: Proceedings of the 8th USENIX conference on networked systems design and implementation, Boston, 30 Mar–1 Apr 2011, pp 295–308Google Scholar
  8. Khalifa S, Elshater Y, Sundaravarathan K, Bhat A, Martin P, Imam F, Rope D, Mcroberts M, Statchuk C (2016) The six pillars for building big data analytics ecosystems. ACM Comput Surv 49:2. Article 33CrossRefGoogle Scholar
  9. Koliopoulos A-K, Yiapanis P, Tekiner F, Nenadic G, Keane J (2015) A parallel distributed Weka framework for big data mining using spark. In: Proceedings of IEEE international congress on big data, New York City, 27 June–2 July 2015, pp 9–16Google Scholar
  10. Laptev N, Zeng K, Zaniolo C (2012) Early accurate results for advanced analytics on MapReduce. Proc VLDB Endow 5(10):1028–1039CrossRefGoogle Scholar
  11. Melnik S, Gubarev A, Long JJ, Romer G, Shivakumar S, Tolton M, Vassilakis T (2010) Dremel: interactive analysis of web-scale datasets. Proc VLDB Endow 3(1–2):330–339CrossRefGoogle Scholar
  12. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig latin: a not-so-foreign language for data processing. In: Proceedings of the ACM SIGMOD international conference on management of data, Vanncouver, 10–12 June 2008, pp 1099–1110Google Scholar
  13. Olston C, Chiou G, Chitnis L, Liu F, Han Y, Larsson M, Neumann A, Rao VBN, Sankarasubramanian V, Seth S, Tian C, ZiCornell T, Wang X (2011) Nova: continuous Pig/Hadoop workflows. In: Proceedings of the ACM SIGMOD international conference on management of data, Athens, 12–16 June 2011, pp 1081–1090Google Scholar
  14. Prekopcsak Z, Makrai G, Henk T, Gaspar-Papanek C (2011) Radoop: analyzing big data with rapidminer and hadoop. In: Proceedings of RCOMM 2011, Dublin, 7–10 June 2011Google Scholar
  15. Rais-Ghasem M, Grosset R, Petitclerc M, Wei Q (2013) Towards semantic data analysis. In: Proceedings of the 2013 CASCON, Markham, 18–20 Nov 2013, pp 192–199Google Scholar
  16. Sparks E, Talwalkar A, Smith V, Pan X, Gonzales J, Kraska T, Jordan M, Franklin MJ (2013) MLI: an API for distributed machine learning. In: Proceedings of the 2013 IEEE 13th international conference on data mining, Dallas, 7–10 Dec 2013, pp 1187–1192Google Scholar
  17. Talwalkara A, Kraskaa T, Griffith R, Duchi J, Gonzalez J, Britz D, Pan X, Smith V, Sparks E, Wibisono A, Franklin MJ, Jordan MI (2012) MLbase: a distributed machine learning wrapper. In: Proceedings of big learning workshop at NIPS, Lake Tahoe, 7–8 Dec 2012Google Scholar
  18. Thusoo A, Sarma JS, Jain N, Zheng S, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R (2009) Hive: a warehousing solution over a map-reduce framework. Proc VLDB Endow 2(2):1626–1629CrossRefGoogle Scholar
  19. White T (2009) Hadoop: the definitive guide (1st edn). O’Reilly Media, SebastopolGoogle Scholar
  20. Xin RS, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I (2013) Shark: SQL and rich analytics at scale. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, New York City, 23–28 June 2013, pp 13–24Google Scholar
  21. Yui M, Kojima I (2013) A database-hadoop hybrid approach to scalable machine learning. In: Proceedings of the 2013 IEEE international congress on big data, Santa Clara, 27 June–2 July 2013, pp 1–8Google Scholar
  22. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computing, Boston, 22–25 June 2010Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Queen’s UniversityKingstonCanada

Section editors and affiliations

  • Domenico Talia
  • Paolo Trunfio
    • 1
  1. 1.DIMESUniversity of CalabriaRendeItaly