Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Semantic Interlinking

  • Gianluca DemartiniEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_229


Semantic interlinking is defined as the establishment of links and relations between multiple structured datasets.



The exponential growth of data is becoming pervasive across different areas of business and science. Despite its wide availability in large amounts, data is typically stored in standalone silos where different datasets are represented using different formats, stored and indexed within different system architectures, and maintained following different business processes. For example, in certain organizations it is possible to encounter customer databases, technical reports, product images, and other datasets that need to be used in conjunction. Such data integration problems are a long-standing open research challenge in the data management area. The recent rise of big data with its volume and variety dimensions has magnified already existing issues.

Similar challenges are also often present in Open Data where datasets are published and made...

This is a preview of subscription content, log in to check access.


  1. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: The semantic web, 6th international semantic web conference, 2nd Asian semantic web conference, ISWC 2007 + ASWC 2007, Busan, Korea, 11–15 Nov 2007. Springer, Berlin, pp 722–735Google Scholar
  2. Bilenko M, Kamath B, Mooney RJ (2006) Adaptive blocking: learning to scale up record linkage. In: Sixth international conference on data mining (ICDM’06), pp 87–96.  https://doi.org/10.1109/ICDM.2006.13
  3. Bizer C, Heath T, Ayers D, Raimond Y (2007) Interlinking open data on the web. In: Demonstrations track, 4th European semantic web conference, InnsbruckGoogle Scholar
  4. Christen P (2012) A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans Knowl Data Eng 24(9):1537–1555.  https://doi.org/10.1109/TKDE.2011.127CrossRefGoogle Scholar
  5. Demartini G, Difallah DE, Cudré-Mauroux P (2012) Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: Proceedings of the 21st international conference on world wide web. ACM, pp 469–478Google Scholar
  6. Demartini G, Difallah DE, Cudré-Mauroux P (2013) Large-scale linked data integration using probabilistic reasoning and crowdsourcing. VLDB J 22(5):665–687CrossRefGoogle Scholar
  7. Egami S, Kawamura T, Ohsuga A (2016) Building urban LOD for solving illegally parked bicycles in Tokyo. In: Proceedings 15th international semantic web conference, part II, the semantic web – ISWC 2016, Kobe, 17–21 Oct 2016, pp 291–307.  https://doi.org/10.1007/978-3-319-46547-0_28Google Scholar
  8. Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P, Trojahn C (2011) Ontology alignment evaluation initiative: six years of experience. In: Spaccapietra S (ed) Journal on data semantics XV. Springer, Berlin, pp 158–192CrossRefGoogle Scholar
  9. Jain P, Hitzler P, Sheth AP, Verma K, Yeh PZ (2010) Ontology alignment for linked open data. Springer, Berlin/Heidelberg, pp 402–417.  https://doi.org/10.1007/978-3-642-17746-0_26Google Scholar
  10. Knoblock CA, Szekely PA, Fink EE, Degler D, Newbury D, Sanderson R, Blanch K, Snyder S, Chheda N, Jain N, Krishna RR, Sreekanth NB, Yao Y (2017) Lessons learned in building linked data for the American art collaborative. In: Proceedings of the 16th international semantic web conference, part II, the semantic web – ISWC 2017, Vienna, 21–25 Oct 2017, pp 263–279.  https://doi.org/10.1007/978-3-319-68204-4_26Google Scholar
  11. Kuhn T, Willighagen E, Evelo C, Queralt-Rosinach N, Centeno E, Furlong LI (2017) Reliable granular references to changing linked data. Springer International Publishing, Cham, pp 436–451.  https://doi.org/10.1007/978-3-319-68288-4_26Google Scholar
  12. Lin T, Mausam, Etzioni O (2012) Entity linking at web scale. In: Proceedings of the joint workshop on automatic knowledge base construction and web-scale knowledge extraction, association for computational linguistics, AKBC-WEKEX ’12, Stroudsburg, pp 84–88. http://dl.acm.org/citation.cfm?id=2391200.2391216
  13. Moro A, Raganato A, Navigli R (2014) Entity linking meets word sense disambiguation: a unified approach. Trans Assoc Comput Linguist 2:231–244CrossRefGoogle Scholar
  14. Papadakis G, Ioannou E, Palpanas T, Niederee C, Nejdl W (2013) A blocking framework for entity resolution in highly heterogeneous information spaces. IEEE Trans Knowl Data Eng 25(12):2665–2682CrossRefGoogle Scholar
  15. Parundekar R, Knoblock CA, Ambite JL (2010) Linking and building ontologies of linked data. Springer, Berlin/Heidelberg, pp 598–614.  https://doi.org/10.1007/978-3-642-17746-0_38Google Scholar
  16. Petersen N, Halilaj L, Grangel-González I, Lohmann S, Lange C, Auer S (2017) Realizing an RDF-based information model for a manufacturing company – a case study. In: Proceedings of the 16th international semantic web conference, part II, the semantic web – ISWC 2017, Vienna, 21–25 Oct 2017, pp 350–366.  https://doi.org/10.1007/978-3-319-68204-4_31Google Scholar
  17. Rao D, McNamee P, Dredze M (2013) Entity linking: finding extracted entities in a knowledge base. Springer, Berlin/Heidelberg, pp 93–115.  https://doi.org/10.1007/978-3-642-28569-1_5Google Scholar
  18. Rong S, Niu X, Xiang EW, Wang H, Yang Q, Yu Y (2012) A machine learning approach for instance matching based on similarity metrics. Springer, Berlin/Heidelberg, pp 460–475.  https://doi.org/10.1007/978-3-642-35176-1_29Google Scholar
  19. Sarasua C, Simperl E, Noy NF (2012) Crowdmap: crowdsourcing ontology alignment with microtasks. In: International semantic web conference. Springer, pp 525–541Google Scholar
  20. Shen W, Wang J, Han J (2015) Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans Knowl Data Eng 27(2):443–460CrossRefGoogle Scholar
  21. Shvaiko P, Euzenat J (2013) Ontology matching: state of the art and future challenges. IEEE Trans Knowl Data Eng 25(1):158–176.  https://doi.org/10.1109/TKDE.2011.253CrossRefGoogle Scholar
  22. Vrandečić D, Krötzsch M (2014) Wikidata: a free collaborative knowledgebase. Commun ACM 57(10):78–85CrossRefGoogle Scholar
  23. Wang J, Kraska T, Franklin MJ, Feng J (2012) Crowder: crowdsourcing entity resolution. Proc VLDB Endow 5(11):1483–1494CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The University of QueenslandSt. LuciaAustralia