Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Graph Representations and Storage

  • Marcus ParadiesEmail author
  • Hannes VoigtEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_211

Definitions

Graph representation concerns the layout of graph data in the linearly addressed storage of computers (main memory, SSD, hard disk, etc.). General objectives for graph representations are (1) to use little storage space (space-efficiency) while (2) allowing operations and queries on the graph to be executed in a short time (time-efficiency). Hence, every graph representation technique is subject to a specific space–time trade-off. It depends on the particular scenario (data, workload, available resources, etc.) whether the space–time trade-off of a certain representation technique is worthwhile.

Overview

Graph data comes with a large variation of graph data models, with RDF and the property graph model (PGM) being the most prominent ones. The specific graph representation depends on the data model. We introduce the most important concepts for graph representations as data–model-agnostic as possible. The discussion is structured in (1) primary representation of the graph...

This is a preview of subscription content, log in to check access.

References

  1. Abadi DJ, Marcus A, Madden S, Hollenbach KJ (2007) Scalable semantic web data management using vertical partitioning. In: VLDB. ACM, pp 411–422Google Scholar
  2. Aberger CR, Tu S, Olukotun K, Ré C (2016) EmptyHeaded: a relational engine for graph processing. In: SIGMOD, pp 431–446. https://doi.org/10.1145/2882903.2915213
  3. Apostolico A, Drovandi G (2009) Graph compression by BFS. Algorithms 2(3):1031–1044. https://doi.org/10.3390/a2031031MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bast H, Delling D, Goldberg AV, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2016) Route planning in transportation networks. In: Algorithm engineering – selected results and surveys, vol 9220, pp 19–80. https://doi.org/10.1007/978-3-319-49487-6_2MathSciNetCrossRefGoogle Scholar
  5. Blandford DK, Blelloch GE, Kash IA (2004) An experimental analysis of a compact graph representation. In: ALENEX. SIAM, pp 49–61Google Scholar
  6. Boldi P, Vigna S (2004) The webGraph framework I: compression techniques. In: WWW. ACM, pp 595–602. https://doi.org/10.1145/988672.988752
  7. Boldi P, Rosa M, Santini M, Vigna S (2011) Layered label propagation: a multiResolution coordinate-free ordering for compressing social networks. In: WWW. ACM, pp 587–596. https://doi.org/10.1145/1963405.1963488
  8. Bornea MA, Dolby J, Kementsietsidis A, Srinivas K, Dantressangle P, Udrea O, Bhattacharjee B (2013) Building an efficient RDF store over a relational database. In: SIGMOD. ACM, pp 121–132. https://doi.org/10.1145/2463676.2463718
  9. Brisaboa NR, Ladra S, Navarro G (2014) Compact representation of web graphs with extended functionality. Inf Syst 39:152–174. https://doi.org/10.1016/j.is.2013.08.003CrossRefGoogle Scholar
  10. Chen R, Shi J, Chen Y, Chen H (2015) PowerLyra: differentiated graph computation and partitioning on skewed graphs. In: EuroSys. ACM, pp 1:1–1:15. https://doi.org/10.1145/2741948.2741970
  11. Chong EI, Das S, Eadon G, Srinivasan J (2005) An efficient SQL-based RDF querying scheme. In: VLDB. ACM, pp 1216–1227Google Scholar
  12. Chu E, Beckmann JL, Naughton JF (2007) The case for a wide-table approach to manage sparse relational data sets. In: SIGMOD. ACM, pp 821–832. https://doi.org/10.1145/1247480.1247571Google Scholar
  13. Claude F, Navarro G (2010a) Extended compact web graph representations. In: Algorithms and applications, essays dedicated to Esko Ukkonen on the occasion of his 60th birthday. Springer, pp 77–91. https://doi.org/10.1007/978-3-642-12476-1_5CrossRefGoogle Scholar
  14. Claude F, Navarro G (2010b) Fast and compact web graph representations. ACM Trans Web 4(4):16:1–16:31. https://doi.org/10.1145/1841909.1841913CrossRefGoogle Scholar
  15. Cormen TH, Leiserson CE, Rivest R, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press, CambridgezbMATHGoogle Scholar
  16. Crockford D (2006) The application/json media type for JavaScript object notation (JSON), RFC 4627. http://tools.ietf.org/html/rfc4627
  17. Erling O, Mikhailov I (2007) RDF support in the virtuoso DBMS. In: CSSW, GI, vol 113, pp 59–68Google Scholar
  18. Grabowski S, Bieniecki W (2011) Merging adjacency lists for efficient web graph compression. In: ICMMI. Springer, pp 385–392. https://doi.org/10.1007/978-3-642-23169-8_42Google Scholar
  19. Gustavson FG (1978) Two fast algorithms for sparse matrices: multiplication and permuted transposition. Trans Math Softw 4(3):250–269. https://doi.org/10.1145/355791.355796MathSciNetzbMATHCrossRefGoogle Scholar
  20. Hauck M, Paradies M, Fröning H, Lehner W, Rauhe H (2015) Highspeed graph processing exploiting main-memory column stores. In: Euro-Par, pp 503–514. https://doi.org/10.1007/978-3-319-27308-2_41Google Scholar
  21. Herrmann K, Voigt H, Lehner W (2014a) Cinderella – adaptive online partitioning of irregularly structured data. In: SMDB. IEEE Computer Society, pp 284–291.  https://doi.org/10.1109/ICDEW.2014.6818342Google Scholar
  22. Herrmann K, Voigt H, Lehner W (2014b) Online horizontal partitioning of heterogeneous data. It – Inf Technol 56(1):4–12.  https://doi.org/10.1515/itit-2014-1015Google Scholar
  23. Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams D, Kalnis P (2013) Mizan: a system for dynamic load balancing in large-scale graph processing. In: EuroSys. ACM, pp 169–182. https://doi.org/10.1145/2465351.2465369Google Scholar
  24. Krause A, Kissinger T, Habich D, Voigt H, Lehner W (2017) Partitioning strategy selection for in-memory graph pattern matching on multiprocessor systems. In: Euro-ParCrossRefGoogle Scholar
  25. LeBeane M, Song S, Panda R, Ryoo JH, John LK (2015) Data partitioning strategies for graph workloads on heterogeneous clusters. In: SC. ACM, pp 56:1–56:12. https://doi.org/10.1145/2807591.2807632
  26. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: BSMSP. University of California Press, vol 1, pp 281–297MathSciNetGoogle Scholar
  27. Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J (2015) RDFox: a highly-scalable RDF store. In: ISWC. Springer, vol 9367, pp 3–20. https://doi.org/10.1007/978-3-319-25010-6_1Google Scholar
  28. Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for RDF. PVLDB 1(1):647–659Google Scholar
  29. Paradies M, Lehner W, Bornhövd C (2015) GRAPHITE: an extensible graph traversal framework for relational database management systems. In: SSDBM. ACM, pp 29:1–29:12. https://doi.org/10.1145/2791347.2791383
  30. Pham M, Passing L, Erling O, Boncz PA (2015) Deriving an emergent relational schema from RDF data. In: WWW. ACM, pp 864–874. https://doi.org/10.1145/2736277.2741121Google Scholar
  31. Rudolf M, Paradies M, Bornhövd C, Lehner W (2013) The graph story of the SAP HANA database. In: BTW, GI, vol 214, pp 403–420Google Scholar
  32. Shun J, Blelloch GE (2013) Ligra: a lightweight graph processing framework for shared memory. In: PPoPP, pp 135–146. https://doi.org/10.1145/2442516.2442530
  33. Sommer C (2014) Shortest-path queries in static networks. ACM Comput Surv 46(4):45:1–45:31. https://doi.org/10.1145/2530531zbMATHCrossRefGoogle Scholar
  34. Su J, Zhu Q, Wei H, Yu JX (2017) Reachability querying: can it be even faster? IEEE TKDE 29(3):683–697.  https://doi.org/10.1109/TKDE.2016.2631160Google Scholar
  35. Sun W, Fokoue A, Srinivas K, Kementsietsidis A, Hu G, Xie GT (2015) SQLGraph: an efficient relational-based property graph store. In: SIGMOD. ACM, pp 1887–1901. https://doi.org/10.1145/2723372.2723732
  36. Verma S, Leslie LM, Shin Y, Gupta I (2017) An experimental comparison of partitioning strategies in distributed graph processing. PVLDB 10(5):493–504Google Scholar
  37. Weiss C, Karras P, Bernstein A (2008) Hexastore: sextuple indexing for semantic web data management. PVLDB 1(1):1008–1019Google Scholar
  38. Yu JX, Cheng J (2010) Graph reachability queries: a survey. In: Managing and mining graph data, vol 40. Springer, pp 181–215. https://doi.org/10.1007/978-1-4419-6045-0_6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SAP SEWalldorfGermany
  2. 2.Dresden Database Systems Group, Technische Universität DresdenDresdenGermany
  3. 3.SAP SEBerlinGermany