Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Pattern Recognition

  • Alessandro MargaraEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_189

Synonyms

Definitions

Complex event recognition (CER) refers to the detection of situations of interest – complex events – from streams of primitive events. Event recognition is performed on the fly, as new events are observed from the input streams, to enable timely reactions.

Overview

Complex event recognition (CER) aims to detect high-level situations of interest, or complex events, on the fly from the observation of streams of lower-level primitive events, thus offering the opportunity to implement proper reactive or proactive measures (Artikis et al. 2017). Examples of CER come from many different applicative domains. Environmental monitoring applications observe data coming from sensors to detect critical situations and anomalies. Financial applications require constant analysis of stocks to detect trends. Fraud detection tools monitor streams of credit card transactions to prevent frauds.

The research and development of CER...

This is a preview of subscription content, log in to check access.

References

  1. Ali MH, Gerea C, Raman BS, Sezgin B, Tarnavski T, Verona T, Wang P, Zabback P, Ananthanarayan A, Kirilov A, Lu M, Raizman A, Krishnan R, Schindlauer R, Grabs T, Bjeletich S, Chandramouli B, Goldstein J, Bhat S, Li Y, Di Nicola V, Wang X, Maier D, Grell S, Nano O, Santos I (2009) Microsoft CEP server and online behavioral targeting. VLDB 2(2):1558–1561. https://doi.org/10.14778/1687553.1687590CrossRefGoogle Scholar
  2. Alli G, Baresi L, Bianchessi A, Cugola G, Margara A, Morzenti A, Ongini C, Panigati E, Rossi M, Rotondi S, Savaresi S, Schreiber FA, Sivieri A, Tanca L, Vannutelli Depoli E (2012) Green move: towards next generation sustainable smartphone-based vehicle sharing. In: Proceedings of the conference on sustainable internet and ICT for sustainability (SustainIT’12). IEEEGoogle Scholar
  3. Anicic D, Fodor P, Rudolph S, Stühmer R, Stojanovic N, Studer R (2011) ETALIS: rule-based reasoning in event processing. Springer, Berlin/Heidelberg, pp 99–124. https://doi.org/10.1007/978-3-642-19724-6_5CrossRefGoogle Scholar
  4. Artikis A, Skarlatidis A, Portet F, Paliouras G (2012) Review: logic-based event recognition. Knowl Eng Rev 27(4):469–506. https://doi.org/10.1017/S0269888912000264CrossRefGoogle Scholar
  5. Artikis A, Sergot M, Paliouras G (2015) An event calculus for event recognition. Trans Knowl Data Eng 27(4):895–908CrossRefGoogle Scholar
  6. Artikis A, Margara A, Ugarte M, Vansummeren S, Weidlich M (2017) Complex event recognition languages: tutorial. In: Proceedings of the international conference on distributed and event-based systems (DEBS’17). ACM, pp 7–10. https://doi.org/10.1145/3093742.3095106
  7. Balis B, Kowalewski B, Bubak M (2011) Real-time grid monitoring based on complex event processing. Futur Gener Comput Syst 27(8):1103–1112. https://doi.org/10.1016/j.future.2011.04.005CrossRefGoogle Scholar
  8. Brenna L, Demers A, Gehrke J, Hong M, Ossher J, Panda B, Riedewald M, Thatte M, White W (2007) Cayuga: a high-performance event processing engine. In: Proceedings of the international conference on management of data (SIGMOD’07). ACM, pp 1100–1102. https://doi.org/10.1145/1247480.1247620
  9. Chakravarthy S, Mishra D (1994) Snoop: an expressive event specification language for active databases. Data Knowl Eng 14(1):1–26. https://doi.org/10.1016/0169-023X(94)90006-XCrossRefGoogle Scholar
  10. Cugola G, Margara A (2010) Tesla: a formally defined event specification language. In: Proceedings of the international conference on distributed event-based systems (DEBS’10). ACM, pp 50–61. https://doi.org/10.1145/1827418.1827427
  11. Cugola G, Margara A (2012a) Complex event processing with t-rex. J Syst Softw 85(8):1709–1728. https://doi.org/10.1016/j.jss.2012.03.056CrossRefGoogle Scholar
  12. Cugola G, Margara A (2012b) Low latency complex event processing on parallel hardware. J Parallel Distrib Comput 72(2):205–218. https://doi.org/10.1016/j.jpdc.2011.11.002CrossRefGoogle Scholar
  13. Cugola G, Margara A (2012c) Processing flows of information: from data stream to complex event processing. ACM Comput Surv 44(3):15:1–15:62. https://doi.org/10.1145/2187671.2187677CrossRefGoogle Scholar
  14. Dousson C, Le Maigat P (2007) Chronicle recognition improvement using temporal focusing and hierarchization. In: Proceedings of the international joint conference on artificial intelligence (IJCAI’07), Morgan Kaufmann, pp 324–329Google Scholar
  15. Etzion O, Niblett P (2010) Event processing in action. Manning Publications Co., GreenwichGoogle Scholar
  16. Gyllstrom D, Agrawal J, Diao Y, Immerman N (2008) On supporting kleene closure over event streams. In: Proceedings of the international conference on data engineering (ICDE’08). IEEE, pp 1391–1393.  https://doi.org/10.1109/ICDE.2008.4497566
  17. Kolchinsky I, Sharfman I, Schuster A (2015) Lazy evaluation methods for detecting complex events. In: Proceedings of the international conference on distributed event-based systems (DEBS’15). ACM, pp 34–45. https://doi.org/10.1145/2675743.2771832
  18. Mei Y, Madden S (2009) Zstream: a cost-based query processor for adaptively detecting composite events. In: Proceedings of the international conference on management of data (SIGMOD’09). ACM, pp 193–206. https://doi.org/10.1145/1559845.1559867
  19. Mutschler C, Ziekow H, Jerzak Z (2013) The debs 2013 grand challenge. In: Proceedings of the international conference on distributed event-based systems (DEBS’13). ACM, pp 289–294. https://doi.org/10.1145/2488222.2488283
  20. Patroumpas K, Artikis A, Katzouris N, Vodas M, Theodoridis Y, Pelekis N (2015) Event recognition for maritime surveillance. In: Proceedings of the international conference on extending database technology (EDBT’15), OpenProceedings.org, pp 629–640. https://doi.org/10.5441/002/edbt.2015.63
  21. Schultz-Møller NP, Migliavacca M, Pietzuch P (2009) Distributed complex event processing with query rewriting. In: Proceedings of the international conference on distributed event-based systems (DEBS’09). ACM, pp 4:1–4:12. https://doi.org/10.1145/1619258.1619264
  22. Terroso-Saenz F, Valdes-Vela M, Sotomayor-Martinez C, Toledo-Moreo R, Gomez-Skarmeta AF (2012) A cooperative approach to traffic congestion detection with complex event processing and vanet. Trans Intell Transp Syst 13(2):914–929.  https://doi.org/10.1109/TITS.2012.2186127CrossRefGoogle Scholar
  23. White W, Riedewald M, Gehrke J, Demers A (2007) What is “next” in event processing? In: Proceedings of the symposium on principles of database systems (PODS’07). ACM, pp 263–272. https://doi.org/10.1145/1265530.1265567
  24. Wu E, Diao Y, Rizvi S (2006) High-performance complex event processing over streams. In: Proceedings of the international conference on management of data (SIGMOD’06). ACM, pp 407–418, https://doi.org/10.1145/1142473.1142520
  25. Yao W, Chu CH, Li Z (2011) Leveraging complex event processing for smart hospitals using RFID. J Netw Comput Appl 34(3):799–810. https://doi.org/10.1016/j.jnca.2010.04.020CrossRefGoogle Scholar
  26. Zhang H, Diao Y, Immerman N (2014) On complexity and optimization of expensive queries in complex event processing. In: Proceedings of the international conference on management of data (SIGMOD’14). ACM, pp 217–228. https://doi.org/10.1145/2588555.2593671

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Politecnico di MilanoMilanoItaly