Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Geo-replication Models

  • Mahsa NajafzadehEmail author
  • Suresh Jagannathan
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_186

Synonyms

Definitions

Geo-replication copies data in multiple data centers or sites across the globe, in order to bring data closer to the clients. Users can access a nearby data center, and perform operations locally, if possible. This local access improves latency by avoiding the high cost of network latency between data centers and increases availability in the presence of failures (Corbett et al. 2012; DeCandia et al. 2007; Shapiro et al. 2011; Lloyd et al. 2011). For instance, the data for a bank account can be replicated at the bank’s branches in different locations around the world. A bank user can access a local branch and perform transactions.

Overview

Geo-replication models have emerged as an important technique for distributed applications over the Internet, such as cloud computing. Wide area network (WAN) communication becomes a fundamental barrier for developing the large-scale Internet-based...

This is a preview of subscription content, log in to check access.

References

  1. Bailis P, Fekete A, Ghodsi A, Hellerstein JM, Stoica I (2013) HAT, not CAP: towards highly available transactions. In: Proceedings of the 14th USENIX conference on hot topics in operating systems, HotOS’13. USENIX Association, Berkeley, pp 24–24. http://dl.acm.org/citation.cfm?id=2490483.2490507Google Scholar
  2. Bailis P, Fekete A, Franklin MJ, Ghodsi A, Hellerstein JM, Stoica I (2015) Coordination avoidance in database systems. PVLDB 8:185–196Google Scholar
  3. Baker J, Bond C, Corbett JC, Furman J, Khorlin A, Larson J, Leon JM, Li Y, Lloyd A, Yushprakh V (2011) Megastore: providing scalable, highly available storage for interactive services. In: Proceedings of the conference on innovative data system research (CIDR), pp 223–234. http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
  4. Balegas V, Preguiça N, Rodrigues R, Duarte S, Ferreira C, Najafzadeh M, Shapiro M (2015) Putting consistency back into eventual consistency. In: European conference on computer system (EuroSys), Bordeaux, pp 6:1–6:16. https://doi.org/10.1145/2741948.2741972, http://dl.acm.org/citation.cfm?doid=2741948.2741972
  5. Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, Puz N, Weaver D, Yerneni R (2008) Pnuts: Yahoo!’s hosted data serving platform. Proc VLDB Endow 1(2):1277–1288. https://doi.org/10.1145/1454159.1454167CrossRefGoogle Scholar
  6. Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman J, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D (2012) Spanner: Google’s globally-distributed database. In: Symposium on operating systems design and implementation (OSDI), Usenix, Hollywood, pp 251–264Google Scholar
  7. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s highly available key-value store. In: Symposium on Operating systems Principles (SOSP). Operating systems review, vol 41. Association for Computing Machinery, Stevenson, Washington, pp 205–220Google Scholar
  8. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59. https://doi.org/10.1145/564585.564601CrossRefGoogle Scholar
  9. Gotsman A, Yang H, Ferreira C, Najafzadeh M, Shapiro M (2016) ’Cause I’m strong enough: reasoning about consistency choices in distributed systems. In: Symposium on principles of programming languages (POPL), St. PetersburgGoogle Scholar
  10. Gray J, Lamport L (2006) Consensus on transaction commit. Trans Database Syst 31(1):133–160. http://portal.acm.org/citation.cfm?id=1132863.1132867CrossRefGoogle Scholar
  11. Gray J, Reuter A (1993) Transaction processing: concepts and techniques. Morgan Kaufmann, San Francisco. ISBN:1-55860-190-2zbMATHGoogle Scholar
  12. Guy R, Heidemann JS, Mak W, Popek GJ, Rothmeier D (1990) Implementation of the Ficus replicated file system. In: USENIX conference proceedings, pp 63–71Google Scholar
  13. Herlihy M, Wing J (1990) Linearizability: a correcteness condition for concurrent objects. ACM Trans Program Lang Syst 12(3):463–492. https://doi.org/10.1145/78969.78972CrossRefGoogle Scholar
  14. Johnson PR, Thomas RH (1976) The maintenance of duplicate databases. Internet request for comments RFC 677. Information sciences institute. http://www.rfc-editor.org/rfc.html
  15. Jones CB (1983) Specification and design of (parallel) programs. In: IFIP congress, North-HollandGoogle Scholar
  16. Kaki G, Nagar K, Najafzadeh M, Jagannathan S (2018) Alone together: compositional reasoning and inference for weak isolation. In: Proceedings of the 45rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL’18Google Scholar
  17. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. SIGOPS Oper Syst Rev 44(2):35–40. https://doi.org/10.1145/1773912.1773922CrossRefGoogle Scholar
  18. Li C, Porto D, Clement A, Gehrke J, Preguiça N, Rodrigues R (2012) Making geo-replicated systems fast as possible, consistent when necessary. In: Symposium on operating systems design and implementation (OSDI), Hollywood, pp 265–278Google Scholar
  19. Li C, Leitão J, Clement A, Preguiça N, Rodrigues R, Vafeiadis V (2014) Automating the choice of consistency levels in replicated systems. In: Proceedings of the 2014 USENIX conference on USENIX annual technical conference, USENIX ATC’14. USENIX Association, Berkeley, pp 281–292. http://dl.acm.org/citation.cfm?id=2643634.2643664Google Scholar
  20. Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for eventual: scalable causal consistency for wide-area storage with COPS. In: Symposium on operating system principles (SOSP). Association for Computing Machinery, Cascais, pp 401–416. https://doi.org/10.1145/2043556.2043593Google Scholar
  21. Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2013) Stronger semantics for low-latency geo-replicated storage. In: Networked systems design and implementation (NSDI), Lombard, pp 1–14Google Scholar
  22. Papadimitriou CH (1979) The serializability of concurrent database updates. J ACM 26(4):631–653. http://portal.acm.org/citation.cfm?id=322154.322158MathSciNetzbMATHCrossRefGoogle Scholar
  23. Popek G, Walker B, Chow J, Edwards D, Kline C, Rudisin G, Thiel G (1981) Locus: a network transparent, high reliability distributed system. In: Symposium on operating systems principles (SOSP). ACM, pp 169–177Google Scholar
  24. Ratner D, Reiher P, Popek G (1999) Roam: a scalable replication system for mobile computing. In: International workshop on database & expert systems applications (DEXA). IEEE Computer Society, Los Alamitos, pp 96–104. http://doi.ieeecomputersociety.org/10.1109/DEXA.1999.795151Google Scholar
  25. Satyanarayanan M, Kistler JJ, Kumar P, Okasaki ME, Siegel EH, Steere DC (1990) Coda: a highly available file system for a distributed workstation environment. IEEE Trans Comput 39:447–459CrossRefGoogle Scholar
  26. Shapiro M, Preguiça N, Baquero C, Zawirski M (2011) Conflict-free replicated data types. In: Défago X, Petit F, Villain V (eds) International symposium on stabilization, safety, and security of distributed Systems (SSS). Lecture notes in computer science, vol 6976. Springer, Grenoble, pp 386–400CrossRefGoogle Scholar
  27. Sovran Y, Power R, Aguilera MK, Li J (2011) Transactional storage for geo-replicated systems. In: Symposium on operating systems principles (SOSP). Association for Computing Machinery, Cascais, pp 385–400Google Scholar
  28. Terry DB, Theimer MM, Petersen K, Demers AJ, Spreitzer MJ, Hauser CH (1995) Managing update conflicts in Bayou, a weakly connected replicated storage system. In: Symposium on operating systems principles (SOSP), ACM SIGOPS. ACM Press, Copper Mountain, pp 172–182. http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdfGoogle Scholar
  29. Terry DB, Prabhakaran V, Kotla R, Balakrishnan M, Aguilera MK, Abu-Libdeh H (2013) Consistency-based service level agreements for cloud storage. In: SOSPCrossRefGoogle Scholar
  30. Wang AI, Reiher P, Bagrodia R, Kuenning G (2002) Understanding the behavior of the conflict-rate metric in optimistic peer replication. In: Proceedings of the 13th international workshop on database and expert systems applications, pp 757–761.  https://doi.org/10.1109/DEXA.2002.1045989
  31. Wittie MP, Pejovic V, Deek L, Almeroth KC, Zhao BY (2010) Exploiting locality of interest in online social networks. In: Proceedings of the 6th international conference, Co-NEXT’10. ACM, New York, pp 25:1–25:12. https://doi.org/10.1145/1921168.1921201

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA