Encyclopedia of Big Data Technologies

2019 Edition
| Editors: Sherif Sakr, Albert Y. Zomaya

Integration-Oriented Ontology

  • Sergi Nadal
  • Alberto AbellóEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-77525-8_13



The purpose of an integration-oriented ontology is to provide a conceptualization of a domain of interest for automating the data integration of an evolving and heterogeneous set of sources using Semantic Web technologies. It links domain concepts to each of the underlying data sources via schema mappings. Data analysts, who are domain experts but not necessarily have technical data management skills, pose ontology-mediated queries over the conceptualization, which are automatically translated to the appropriate query language for the sources at hand. Following well-established rules when designing schema mappings allows to automate the process of query rewriting and execution.


Information integration, or data integration, has been an active problem of study for decades. Shortly, it consists in giving a single query involving several data sources to get a single answer.

Semantic Web technologies are well-suited to implement such...

This is a preview of subscription content, log in to check access.


  1. Artale A, Kontchakov R, Wolter F, Zakharyaschev M (2013) Temporal description logic for ontology-based data access. In: IJCAI 2013, Proceedings of the 23rd international joint conference on artificial intelligence, Beijing, 3–9 Aug 2013, pp 711–717Google Scholar
  2. Bizer C, Heath T, Berners-Lee T (2009) Linked data – the story so far. Int J Semant Web Inf Syst 5(3):1–22CrossRefGoogle Scholar
  3. Botoeva E, Calvanese D, Cogrel B, Rezk M, Xiao G (2016) OBDA beyond relational Dbs: a study for Mongodb. In: 29th international workshop on description logicsGoogle Scholar
  4. Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J Autom Reason 39(3):385–429MathSciNetzbMATHCrossRefGoogle Scholar
  5. Calvanese D, Cogrel B, Komla-Ebri S, Kontchakov R, Lanti D, Rezk M, Rodriguez-Muro M, Xiao G (2017) Ontop: answering SPARQL queries over relational databases. Semantic Web 8(3):471–487CrossRefGoogle Scholar
  6. Cyganiak R, Das S, Sundara S (2012) R2RML: RDB to RDF mapping language. W3C recommendation, W3C. http://www.w3.org/TR/2012/REC-r2rml-20120927/
  7. Eiter T, Ortiz M, Simkus M, Tran T, Xiao G (2012) Query rewriting for Horn-SHIQ plus rules. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence, Toronto, 22–26 July 2012Google Scholar
  8. Feier C, Kuusisto A, Lutz C (2017) Rewritability in monadic disjunctive datalog, MMSNP, and expressive description logics (invited talk). In: 20th international conference on database theory, ICDT 2017, Venice, 21–24 Mar 2017, pp 1:1–1:17Google Scholar
  9. Gottlob G, Orsi G, Pieris A (2011) Ontological queries: rewriting and optimization. In: Proceedings of the 27th international conference on data engineering, ICDE 2011, 11–16 Apr 2011, Hannover, pp 2–13Google Scholar
  10. Grau BC, Fokoue A, Motik B, Wu Z, Horrocks I (2012) OWL 2 web ontology language profiles, 2nd edn. W3C recommendation, W3C. http://www.w3.org/TR/2012/REC-owl2-profiles-20121211
  11. Gruber T (2009) Ontology. In: Tamer Özsu M, Liu L (eds) Encyclopedia of database systems. Springer, New York/London, pp 1963–1965Google Scholar
  12. Halevy AY (2001) Answering queries using views: a survey. VLDB J 10(4):270–294zbMATHCrossRefGoogle Scholar
  13. Hansen P, Lutz C (2017) Computing FO-rewritings in EL in practice: from atomic to conjunctive queries. In: 16th international semantic web conference (ISWC), pp 347–363Google Scholar
  14. Horrocks I, Giese M, Kharlamov E, Waaler A (2016) Using semantic technology to tame the data variety challenge. IEEE Internet Comput 20(6):62–66CrossRefGoogle Scholar
  15. Jiménez-Ruiz E, Kharlamov E, Zheleznyakov D, Horrocks I, Pinkel C, Skjæveland MG, Thorstensen E, Mora J (2015) Bootox: practical mapping of RDBs to OWL 2. In: The semantic web – ISWC 2015 – 14th international semantic web conference, Bethlehem, 11–15 Oct 2015, Proceedings, Part II, pp 113–132Google Scholar
  16. Keet CM, Ongoma EAN (2015) Temporal attributes: status and subsumption. In: 11th Asia-Pacific conference on conceptual modelling, APCCM 2015, Sydney, pp 61–70Google Scholar
  17. Lenzerini M (2002) Data integration: a theoretical perspective. In: 21st ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (PODS), pp 233–246Google Scholar
  18. Levy AY, Rajaraman A, Ordille JJ (1996) Querying heterogeneous information sources using source descriptions. In: 22th international conference on very large data bases (VLDB), pp 251–262Google Scholar
  19. Lutz C, Wolter F, Zakharyaschev M (2008) Temporal description logics: a survey. In: 15th international symposium on temporal representation and reasoning, TIME 2008, Université du Québec à Montréal, 16–18 June 2008, pp 3–14Google Scholar
  20. Nadal S, Romero O, Abelló A, Vassiliadis P, Vansummeren S (2018) An integration-oriented ontology to govern evolution in big data ecosystems. Information Systems, Elsevier.  https://doi.org/10.1016/j.is.2018.01.006Google Scholar
  21. Pérez-Urbina H, Motik B, Horrocks I (2009) A comparison of query rewriting techniques for dl-lite. In: Proceedings of the 22nd international workshop on description logics (DL 2009), Oxford, 27–30 July 2009Google Scholar
  22. Poggi A, Lembo D, Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2008) Linking data to ontologies. J Data Semant 10:133–173zbMATHGoogle Scholar
  23. Pottinger R, Halevy AY (2001) Minicon: a scalable algorithm for answering queries using views. VLDB J 10(2–3):182–198zbMATHGoogle Scholar
  24. Quix C, Hai R, Vatov I (2016) GEMMS: a generic and extensible metadata management system for data lakes. In: 28th international conference on advanced information systems engineering (CAiSE), pp 129–136, CAiSE ForumGoogle Scholar
  25. Varga J, Romero O, Pedersen TB, Thomsen C (2014) Towards next generation BI systems: the analytical metadata challenge. In: 16th international conference on data warehousing and knowledge discovery (DaWaK), pp 89–101Google Scholar
  26. Wood D, Cyganiak R, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax. W3C recommendation, W3C. http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Polytechnic University of CataloniaBarcelonaSpain