Advertisement

Brassinosteroids: Molecules with Myriad Roles

  • Arti Bartwal
  • Sandeep Arora
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Brassinosteroids constitute the sixth class of plant hormones that are implicated in diverse metabolic functions related to plant growth and development. These steroidal phytohormones are widely distributed throughout the plant kingdom and display large structural diversity. Studies on brassinosteroids, aided by the recent developments in technology, have deciphered their role in not only plant growth and developmental processes but also in plant adaptation under changing environmental conditions. Extensive experimental studies have unravelled brassinosteroid biosynthetic pathway and their signalling modules under various environmental conditions. Current trends indicate that brassinosteroids play a pivotal role in plant’s tolerance against biotic and abiotic stresses, resulting in efficient stress management under challenging environmental conditions. Due to their distinctive and versatile functions, brassinosteroids are widely used to increase crop quality and productivity. Brassinosteroids are also reported to possess immunomodulatory, anticancerous, and antiviral properties that also find wide potential applications. The present chapter focuses on the current status of our understanding about the role of brassinosteroids, their molecular mechanism of action, and their potential applications in agriculture and allied fields.

Keywords

Brassinosteroids Phytohormones Molecular mechanism of action Plant growth regulators Stress management 

References

  1. 1.
    Kamiya Y (2009) Plant hormones: versatile regulators of plant growth and development. Annu Rev Plant Biol 61.  https://doi.org/10.1146/annurev.arplant.60.031110.100001
  2. 2.
    Heldt HW, Piechulla B (2011) Plant biochemistry. Academic, LondonGoogle Scholar
  3. 3.
    Taiz L, Zeiger E (2012) Plant physiology. Sinauer Associates, SunderlandGoogle Scholar
  4. 4.
    Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857CrossRefGoogle Scholar
  5. 5.
    Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451CrossRefGoogle Scholar
  6. 6.
    Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537CrossRefGoogle Scholar
  7. 7.
    Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Anderson JLF, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217CrossRefGoogle Scholar
  8. 8.
    Kanwar MK, Bajguz A, Zhou J, Bhardwaj R (2017) Analysis of brassinosteroids in plants. J Plant Growth Regul 36:1002–1030CrossRefGoogle Scholar
  9. 9.
    Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046CrossRefGoogle Scholar
  10. 10.
    Xin P, Yan J, Li B, Fang S, Fan J, Tian H, Shi Y, Tian W, Yan C, Chu J (2016) A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissue. Front Plant Sci 7:1786.  https://doi.org/10.3389/fpls.2016.01786CrossRefGoogle Scholar
  11. 11.
    Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2012) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32:216–232CrossRefGoogle Scholar
  12. 12.
    Cheng X, Gou X, Yin H, Mysore KS, Li J, Wen J (2017) Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Sci Rep 7:9327.  https://doi.org/10.1038/s41598-017-09297-9CrossRefGoogle Scholar
  13. 13.
    Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL, Chory L (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. PNAS 109:297–302CrossRefGoogle Scholar
  14. 14.
    Jiang J, Zhang C, Wang X (2015) A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. Plant Cell 27:361–374CrossRefGoogle Scholar
  15. 15.
    Gui J, Zheng S, Liu C, Shen J, Li J, Li L (2016) OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signalling in rice. Dev Cell 38:201–213CrossRefGoogle Scholar
  16. 16.
    Yang X, Bai Y, Shang J, Xin R, Tang W (2016) The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant Cell Environ 39:1994–2003CrossRefGoogle Scholar
  17. 17.
    Ha Y, Shang Y, Nam KH (2016) Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J Exp Bot 67:6297–6308CrossRefGoogle Scholar
  18. 18.
    Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422CrossRefGoogle Scholar
  19. 19.
    Sun Y, Fan XY, Cao DM, He K, Tang W, Zhu JY, He JX, Bai MY, Zhu S et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777CrossRefGoogle Scholar
  20. 20.
    Clouse SD (2011) Brassinosteroids. The Arabidopsis Book/Am Soc Plant Biologists 9:e0151.  https://doi.org/10.1199/tab.0151.CrossRefGoogle Scholar
  21. 21.
    Zhiponova MK, Vanhoutte I, Boudolf V et al (2013) Brassinosteroid production and signalling differentially control cell division and expansion in the leaf. New Phytol 197:490–502CrossRefGoogle Scholar
  22. 22.
    Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308CrossRefGoogle Scholar
  23. 23.
    Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X (2015) Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34:220–228CrossRefGoogle Scholar
  24. 24.
    Rodríguez M, González MC, Cristo E, Oliva O, Pujol M, Borras-Hidalgo O (2013) Identification of genes with altered expression levels in contrasting rice cultivars exposed to salt stress treatments. Biotechnol Apl 30:178–181Google Scholar
  25. 25.
    Schmidt R, Schippers JH, Mieulet D et al (2013) MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J 76:258–273Google Scholar
  26. 26.
    Hacham Y, Holland N, Butterfield C, Tomas SU, Bennett MJ, Chory C, Goldstein SS (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848CrossRefGoogle Scholar
  27. 27.
    Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25:1031–1042CrossRefGoogle Scholar
  28. 28.
    Blasi JV, González-García MP, Frigola D, Fàbregas N, Alexiou KG, Bigas NL et al (2014) Regulation of plant stem cell quiescence by a brassinosteroid signalling module. Dev Cell 30:36–47CrossRefGoogle Scholar
  29. 29.
    Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10:1–8CrossRefGoogle Scholar
  30. 30.
    Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signalling networks. Front Plant Sci 5:151.  https://doi.org/10.3389/fpls.2014.00151CrossRefGoogle Scholar
  31. 31.
    Guerriero G, Hausman JF, Cai G (2014) No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 15:5094–5114CrossRefGoogle Scholar
  32. 32.
    Guo HQ, Li L, Ye HX, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 106:7648–7653CrossRefGoogle Scholar
  33. 33.
    Xie L, Yang C, Wang X (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot 62:4495–4506CrossRefGoogle Scholar
  34. 34.
    Yamagami A, Saito C, Nakazawa M, Fujioka S, Uemura T, Matsui M, Sakuta M, Shinozaki K, Osada H, Nakano A, Asami T, Nakano T (2017) Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep 7:5739.  https://doi.org/10.1038/s41598-017-06016-2CrossRefGoogle Scholar
  35. 35.
    Gururani MA, Venkatesh JA, Tran L (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320CrossRefGoogle Scholar
  36. 36.
    Ahammed GJ, Li X, Xia XJ, Shi K, Zhou YH, Yu JQ (2015) Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Environ Pollut 201:58–66CrossRefGoogle Scholar
  37. 37.
    Deng XG, Zhu T, Zhang DW, Lin HH (2015) The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. J Exp Bot 66:6219–6232CrossRefGoogle Scholar
  38. 38.
    Farooq M, Wahid A, Lee DJ, Cheema SA, Aziz T (2010) Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345CrossRefGoogle Scholar
  39. 39.
    Hayat S, Alyemeni M, Hasan S (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335CrossRefGoogle Scholar
  40. 40.
    Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K et al (2009) Reactive oxygen species are involved in brassinosteroid – induced stress tolerance in cucumber. Plant Physiol 150:801–814CrossRefGoogle Scholar
  41. 41.
    Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH et al (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145CrossRefGoogle Scholar
  42. 42.
    Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482CrossRefGoogle Scholar
  43. 43.
    Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757CrossRefGoogle Scholar
  44. 44.
    Yusuf M, Khan TA, Fariduddin Q (2017) Brassinosteroids: physiological roles and its signalling in plants. In: Sarwat M, Ahmad A, Abdin MZ, Ibrahim MM (eds) Stress signaling in plants: genomics and proteomics perspective, vol 2. Springer International Publishing, Berlin, pp 241–260CrossRefGoogle Scholar
  45. 45.
    Wei L, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ et al (2015) Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci 6:982.  https://doi.org/10.3389/fpls.2015.00982CrossRefGoogle Scholar
  46. 46.
    Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675CrossRefGoogle Scholar
  47. 47.
    Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci U S A 105:9829–9834CrossRefGoogle Scholar
  48. 48.
    Divi UK, Rahman T, Krishna P (2016) Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnol J 14:419–432CrossRefGoogle Scholar
  49. 49.
    Schmitz AJ, Folsom JJ, Jikamaru Y, Ronald P, Walia H (2013) SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway. New Phytol 198:1060–1070CrossRefGoogle Scholar
  50. 50.
    Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295CrossRefGoogle Scholar
  51. 51.
    Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM et al (2007) A proteomic study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 6:2058–2071CrossRefGoogle Scholar
  52. 52.
    Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75–84CrossRefGoogle Scholar
  53. 53.
    Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T et al (2013) A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol 200(4):1076–1088CrossRefGoogle Scholar
  54. 54.
    Zhang C, Bai MY, Chang K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696CrossRefGoogle Scholar
  55. 55.
    Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175CrossRefGoogle Scholar
  56. 56.
    Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364CrossRefGoogle Scholar
  57. 57.
    Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83CrossRefGoogle Scholar
  58. 58.
    Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, Kugler KG et al (2017) Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci U S A 113:5982–5991CrossRefGoogle Scholar
  59. 59.
    Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric 4:1436212.  https://doi.org/10.1080/23311932.2018.1436212CrossRefGoogle Scholar
  60. 60.
    Que F, Wang GL, Xu ZS, Wang F, Xiong AS (2017) Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Front Plant Sci 8:1356.  https://doi.org/10.3389/fpls.2017.01356CrossRefGoogle Scholar
  61. 61.
    Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582CrossRefGoogle Scholar
  62. 62.
    Wu CY, Trieu A, Radhakrishnan P et al (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145CrossRefGoogle Scholar
  63. 63.
    Sakaguchi J, Watanabe Y (2017) Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth. Sci Rep 7:1808.  https://doi.org/10.1038/s41598-017-01872-4CrossRefGoogle Scholar
  64. 64.
    Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS et al (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618CrossRefGoogle Scholar
  65. 65.
    Kaur N, Dhawan M, Sharma I, Pati PK (2016) Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol 16:131.  https://doi.org/10.1186/s12870-016-0824-2CrossRefGoogle Scholar
  66. 66.
    Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240CrossRefGoogle Scholar
  67. 67.
    Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K et al (2012) Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochem Biophys Res Commun 426:390–394CrossRefGoogle Scholar
  68. 68.
    Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV et al (2013) MAP 65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. J Exp Bot 64:3787–3802CrossRefGoogle Scholar
  69. 69.
    Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen Z et al (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191:706–720CrossRefGoogle Scholar
  70. 70.
    Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z et al (2013) Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid induced H2O2 generation and stress tolerance. Plant Cell Environ 36:789–803CrossRefGoogle Scholar
  71. 71.
    Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-Homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518CrossRefGoogle Scholar
  72. 72.
    Zhang A, Zhang J, Zhang J, Ye N, Zhang H, Tan M, Jiang M (2011) Nitric oxide mediates brassinosteroid-induced aba biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol 52:181–192CrossRefGoogle Scholar
  73. 73.
    Zhu T, Deng XG, Tan WR, Zhou X, Luo SS, Han XY, Zhang DW, Lin HH (2015) Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings’ response to salt stress. Physiol Plant 156:150–163CrossRefGoogle Scholar
  74. 74.
    Jiang YP, Cheng F, Zhou YH, Xia XJ, Maoa WH, Shi K, Chen ZX, Yu JQ (2012) Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochem Biophys Res Commun 426:390–394CrossRefGoogle Scholar
  75. 75.
    Li L, Staden JV, Jäger AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress plant. Growth Regul 25:81–87CrossRefGoogle Scholar
  76. 76.
    Núñez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47:67–70CrossRefGoogle Scholar
  77. 77.
    Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31CrossRefGoogle Scholar
  78. 78.
    Behnamnia LM, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum. Gen Appl Plant Physiol 35:22–34Google Scholar
  79. 79.
    Zhu J, Lu P, Jiang Y, Wang M, Zhang L (2014) Effects of brassinosteroid on antioxidant system in salvia miltiorrhiza under drought stress. J Res Agric Anim Sci 2:01–06Google Scholar
  80. 80.
    Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP (2001) Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 212:199–204CrossRefGoogle Scholar
  81. 81.
    Ekinci M, Yildirim E, Dursun A, Turan M (2012) Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Hortic Sci 47:631–636Google Scholar
  82. 82.
    Ahmad H, Hayat S, Ali M, Ghani MI, Zhihui C (2017) Regulation of growth and physiological traits of cucumber (Cucumis sativus L.) through various levels of 28-homobrassinolide under salt stress conditions. Can J Plant Sci 9:132–140Google Scholar
  83. 83.
    Marakli S, Gozukirmizi N (2018) Analyses of abiotic stress and brassinosteroid-related some genes in barley roots grown under salinity stress and HBR treatments: expression profiles and phylogeny. Plant Biosyst 152:324–332CrossRefGoogle Scholar
  84. 84.
    Lalotra S, Hemantaranjan A, Kumar S, Kant R (2017) Effect of brassinosteroid (brassinolide) on seedling traits, morphology and metabolism in mung bean under salinity stress. Annu Res Rev Biol 12:1–8CrossRefGoogle Scholar
  85. 85.
    Martins S, Jorda AM, Cayrel A, Huguet S, Ljung CPLRK, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8:309.  https://doi.org/10.1038/s41467-017-00355-4CrossRefGoogle Scholar
  86. 86.
    Jin SH, Li XQ, Wang GG, Zhu XT (2015) Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants 7:plv009.  https://doi.org/10.1093/aobpla/plv009CrossRefGoogle Scholar
  87. 87.
    Yadava P, Kaushal J, Gautam A, Parmar H, Singh I (2016) Physiological and biochemical effects of 24-epibrassinolide on heat-stress adaptation in maize (Zea mays L). Nat Sci 8:171–179Google Scholar
  88. 88.
    Thussagunpanit J, Kanapol J, Lily K, Wi Stith C, Porn P, Sureeporn S, Apichart S (2014) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34:320–331CrossRefGoogle Scholar
  89. 89.
    Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29:681–691CrossRefGoogle Scholar
  90. 90.
    Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191–204CrossRefGoogle Scholar
  91. 91.
    Ahmad F, Singh A, Kamal A (2018) Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. J Appl Biol Biotechnol 6:56–62Google Scholar
  92. 92.
    Anuradha S, Rao SSR (2007) Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian J Plant Physiol 12:396–400Google Scholar
  93. 93.
    Hayat S, Hasan SA, Hayat Q, Ahmad A (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shot gun approach. Protoplasma 239:3–14.  https://doi.org/10.1007/s00709-009-0075-2CrossRefGoogle Scholar
  94. 94.
    Ramakrishna B, Rao SS (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677CrossRefGoogle Scholar
  95. 95.
    Khripach VA, Zhabinskii VN, De Groot AE (1999) Brassinosteroids. A new class of plant hormones. Academic, San DiegoGoogle Scholar
  96. 96.
    Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801CrossRefGoogle Scholar
  97. 97.
    Abdullahi BA, Gu XG, Gan QL, Yang YH (2003) Brassinolide amelioration of aluminium toxicity in mung bean seedling growth. J Plant Nutr 26:1725–1734CrossRefGoogle Scholar
  98. 98.
    Janeczko A, Koscielniak J, Pilipowicz M, Lukaszewska GS, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298CrossRefGoogle Scholar
  99. 99.
    Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9CrossRefGoogle Scholar
  100. 100.
    Campos ML, Peres LEP (2012) Brassinosteroids as mediators of plant biotic stress responses. In: Brassinosteroids: practical applications in agriculture and human health. Bentham Science Publishers (eBook), vol 9. pp 35–43Google Scholar
  101. 101.
    Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH (2016) Role of brassinosteroid signalling in modulating tobacco mosaic virus resistance in Nicotiana benthamiana. Sci Rep 6:20579.  https://doi.org/10.1038/srep20579CrossRefGoogle Scholar
  102. 102.
    Nahar K, Kyndt T, Hause B, Hofte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant-Microbe Interact 26:106–115CrossRefGoogle Scholar
  103. 103.
    Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898CrossRefGoogle Scholar
  104. 104.
    Ali SS, Kumar GB, Khan M, Doohan FM (2013) Brassinosteroid enhances resistance to fusarium diseases of barley. Phytopathology 103:1260–1267CrossRefGoogle Scholar
  105. 105.
    Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109:303–308CrossRefGoogle Scholar
  106. 106.
    Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellins and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846CrossRefGoogle Scholar
  107. 107.
    Kaňa R, Špundová M, Ilık P, Lazár D, Klem K, Tomek P, Prášil O (2004) Effect of herbicide clomazone on photosynthetic processes in primary barley (Hordeum vulgare L.) leaves. Pest Biochem Physiol 78:161–170CrossRefGoogle Scholar
  108. 108.
    Bhardwaj R, Arora N, Uppal P, Sharma I, Kanwar MK (2011) Prospects of brassinosteroids in medicinal applications. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, DordrechtGoogle Scholar
  109. 109.
    Verma A, Malik CP, Gupta VK (2012) In Vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. ISRN Agronomy:356485.  https://doi.org/10.5402/2012/356485CrossRefGoogle Scholar
  110. 110.
    Khripach V, Zhabinskii V, Groot AD (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447CrossRefGoogle Scholar
  111. 111.
    Divi UK, Krishna P (2009) Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 26:131–136CrossRefGoogle Scholar
  112. 112.
    Sharma I, Kaur N, Pati PK (2017) Brassinosteroids: A promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Front Plant Sci 8:2151.  https://doi.org/10.3389/fpls.2017.02151

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Genomic ResearchNational Bureau of Plant Genetic ResourcesNew DelhiIndia
  2. 2.Plant Stress Biology Group, Department of Molecular Biology & Genetic EngineeringG B Pant University of Agriculture & TechnologyPantnagarIndia

Personalised recommendations