Structure-Property Relationships in Cellulose-Based Hydrogels

  • Diana Elena CiolacuEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogels are widely used for different biomedical applications, due to their ability to absorb, retain, and release water solutions in a reversible manner and in response to specific environmental stimuli. The review is focused on the preparation methods, main characteristics, as well as biomedical applications of hydrogels prepared from the most abundant biopolymers on earth, cellulose. The chapter emphasizes the latest developments in the design and manufacture of cellulose-based hydrogels. The preparation of hydrogels without covalent cross-links (physical hydrogels) and with covalent cross-links (chemical hydrogels) is discussed. The behavior of gels upon coagulation and the swelling capacity in water were analyzed. A systematic investigation into the structure and physical-chemical properties of cellulose-based hydrogels was performed in order to describe the relationships between the network structure and gel properties. The degree of cross-linking of the hydrogels, the morphology of the three-dimensional (3D) matrices, the bulk geometry, and the description by different complementary techniques which offered insight into structure-property relationships of hydrogels are reviewed. The sorption properties of cellulose-based hydrogels and the effect of the design parameters of hydrogels on their biomedical applications are also discussed.


Cellulose Hydrogel Gelation Cross-linking Swelling Drying Morphology 



Dr. Diana E. Ciolacu acknowledges the financial support of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-0558.


  1. 1.
    Jeong KJ, Panitch A (2009) Interplay between covalent and physical interactions within environment sensitive hydrogels. Biomacromolecules 10(5):1090–1099PubMedCrossRefGoogle Scholar
  2. 2.
    Censi R, Fieten PJ, di Martino P, Hennink WE, Vermonden T (2010) In situ forming hydrogels by tandem thermal gelling and Michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 43(13):5771–5778CrossRefGoogle Scholar
  3. 3.
    Qin X, Lu A, Zhang L (2013) Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose 20:1669–1677CrossRefGoogle Scholar
  4. 4.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl 57:414–433PubMedCrossRefGoogle Scholar
  5. 5.
    Garnica-Palafox IM, Sánchez-Arévalo FM (2016) Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohyd Polym 151:1073–1081CrossRefGoogle Scholar
  6. 6.
    Gyles DA, Castro LD, Silva JOC Jr, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392CrossRefGoogle Scholar
  7. 7.
    Ambrosio L, Demitri C, Sannino A (2011) Superabsorbent cellulose-based hydrogels for biomedical applications. In: Rimmer S (ed) Biomedical hydrogels: biochemistry, manufacture and medical applications, Woodhead publishing series in biomaterials. Woodhead Publishing Limited/Elsevier, Cambridge, pp 25–50CrossRefGoogle Scholar
  8. 8.
    Buwalda S, Boere JK, Dijksra P, Fiejen J, Vermoden T, Hennink W (2014) Hydrogels in an historical perspective: from simple networks to smart materials. J Control Release 190:254–273PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Haque MDA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53(9):1805–1822CrossRefGoogle Scholar
  10. 10.
    Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008PubMedCrossRefGoogle Scholar
  11. 11.
    Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127CrossRefGoogle Scholar
  12. 12.
    Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253PubMedCrossRefGoogle Scholar
  14. 14.
    Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C Mater Biol Appl 33(5):3069–3076PubMedCrossRefGoogle Scholar
  15. 15.
    Buvanov AL, Hofman IV, Khripunov AK, Tkachenko AA, Ushakova EE (2013) High-strength biocompatible hydrogels based on poly(acrylamide) and cellulose: synthesis, mechanical properties and perspectives for use as artificial cartilage. Polym Sci Ser A Chem Phys 55(5):302–312CrossRefGoogle Scholar
  16. 16.
    Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R (2015) New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels 1:3–23CrossRefGoogle Scholar
  17. 17.
    Sklenar Z, Vitkova Z, Herdova P, Horackova K, Simunkova V (2012) Formulation and release of alaptide from cellulose-based hydrogels. Acta Vet Brno 81(3):301–306CrossRefGoogle Scholar
  18. 18.
    Bhattacharya SS, Shukla S, Banerjee S, Choudhary P, Chakraborty P (2013) Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym-Plast Technol Eng 52(8):795–805CrossRefGoogle Scholar
  19. 19.
    Treesuppharat W, Rojanapanthu P, Siangsanoh C, Manuspiya H, Ummartyotin S (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Rep 15:84–91CrossRefGoogle Scholar
  20. 20.
    Olyveira GM, Acasigua GA, Costa LM, Scher CR, Xavier Filho L, Pranke PH, Basmaji P (2013) Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine. J Biomed Nanotechnol 9(8):1370–1377PubMedCrossRefGoogle Scholar
  21. 21.
    Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24(1):253–267CrossRefGoogle Scholar
  22. 22.
    Sannino A, Madaghiele M, Demitri C, Scalera F, Esposito A, Esposito V, Maffezzoli A (2010) Development and characterization of cellulose-based hydrogels for use as dietary bulking agents. J Appl Polym Sci 115(3):1438–1444CrossRefGoogle Scholar
  23. 23.
    Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12PubMedCrossRefGoogle Scholar
  24. 24.
    Li Y, Jiang H, Zheng W, Gong N, Chen L, Jiang X, Yang G (2015) Bacterial cellulose–hyaluronan nanocomposite biomaterials as wound dressings for severe skin injury repair. J Mater Chem B 3:3498–3507CrossRefGoogle Scholar
  25. 25.
    Klemm D, Heubletin B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  26. 26.
    Bajpai JSK, Swarnkar MP (2014) New semi-IPN hydrogels based on cellulose for biomedical application. J Polym 2014:1–12. Article ID 376754CrossRefGoogle Scholar
  27. 27.
    Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20. Article ID 631013Google Scholar
  28. 28.
    Kyzas GZ, Lazaridis NK (2015) Chapter 24. Treatment of wastewaters with modified cellulose derivatives. In: Mondal IH (ed) Cellulose and cellulose derivatives – synthesis, modification and applications. Nova Science Publishers, New York, pp 497–516Google Scholar
  29. 29.
    Oliveira WD, Glasser WG (1996) Hydrogels from polysaccharides. 1. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRefGoogle Scholar
  30. 30.
    Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118(31):9507–9514PubMedCrossRefGoogle Scholar
  31. 31.
    Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  32. 32.
    Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohyd Polym 67(1):97–103CrossRefGoogle Scholar
  33. 33.
    Ostlund A, Lundberg D, Nordstierna L, Holmberg K, Nyden M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407PubMedCrossRefGoogle Scholar
  34. 34.
    Saito H, Sakurai A, Sakakibara M, Saga H (2003) Preparation and properties of transparent cellulose hydrogels. J Appl Polym Sci 90:3020–3025CrossRefGoogle Scholar
  35. 35.
    Li L, Lin ZB, Yang X, Wan ZZ, Cui SX (2009) A novel cellulose hydrogel prepared its ionic liquid solution. Chin Sci Bull 54:1622–1625CrossRefGoogle Scholar
  36. 36.
    Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537PubMedCrossRefGoogle Scholar
  37. 37.
    Kimura M, Shinohara Y, Takizawa J, Ren S, Sagisaka K, Lin Y, Hattori Y, Hinestroza JP (2015) Versatile molding process for tough cellulose hydrogel materials. Sci Rep 5(16266):1–8Google Scholar
  38. 38.
    Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperature. Macromolecules 41:9345–9351CrossRefGoogle Scholar
  39. 39.
    Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16(3):417–426CrossRefGoogle Scholar
  40. 40.
    Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45CrossRefGoogle Scholar
  41. 41.
    Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRefGoogle Scholar
  42. 42.
    Shokri J, Adibkia K (2013) Chapter 3. Application of cellulose and cellulose derivatives in pharmaceutical industries. In: van de Ven T, Godbout L (eds) Cellulose-medical, pharmaceutical and electronic applications. InTech, Rijeka, pp 48–66Google Scholar
  43. 43.
    Trombino S, Cassano R (2015) Chapter 11. Cellulose and its derivatives for pharmaceutical and biomedical applications. In: Mondal IM (ed) Cellulose and cellulose derivatives – synthesis, modification and applications. Nova Science Publishers, New York, pp 405–419Google Scholar
  44. 44.
    Akira I (2001) Chemical modification of cellulose. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 599–626Google Scholar
  45. 45.
    Watanabea J, Iwasakib Y, Ishiharaa K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152CrossRefGoogle Scholar
  46. 46.
    Nosé Y, Malchesky PS (2001) Therapeutic membrane plasmapheresis. Ther Apher Dial 4:3–9CrossRefGoogle Scholar
  47. 47.
    Khan S, Ul-Islam M, Ullah MW, Ikram M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2015) Engineered regenerated bacterial cellulose scaffolds for application in in vitro tissue regeneration. RSC Adv 5:84565–84573CrossRefGoogle Scholar
  48. 48.
    Ogbonna JDN, Kenechukwu FC, Chime SA, Attama AA (2016) Cellulose-based biopolymers: formulation and delivery applications. In: Mishra M (ed) Handbook of encapsulation and controlled release. CRC Press, Boca Raton, pp 535–576Google Scholar
  49. 49.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  50. 50.
    Saito T, Uematsu T, Kimura S, Enomaea T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRefGoogle Scholar
  51. 51.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84:40–53CrossRefGoogle Scholar
  53. 53.
    Navarra MA, Dal Bosco C, Moreno JS, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5:810–823PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53–75CrossRefGoogle Scholar
  55. 55.
    Zhou L, Xie F, Li H, Li W, Li WJ, Li YW (2017) Preparation and properties of regenerated cellulose hydrogels. In: 3rd international conference on advanced materials research and applications (AMRA 2016), IOP Publishing IOP Conference Series: Materials Science and Engineering, vol 170. Guangzhou, p 012038CrossRefGoogle Scholar
  56. 56.
    Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38:2–7CrossRefGoogle Scholar
  57. 57.
    Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72CrossRefGoogle Scholar
  58. 58.
    Song HZ, Niu YH, Wang ZG, Zhang J (2011) Liquid crystalline phase and gel–sol transitions for concentrated microcrystalline cellulose (MCC)/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions. Biomacromolecules 12:1087–1096PubMedCrossRefGoogle Scholar
  59. 59.
    Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: structure, properties and application for controlled release. Carbohyd Polym 151:392–400CrossRefGoogle Scholar
  60. 60.
    Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRefPubMedGoogle Scholar
  61. 61.
    Hubbe MA, Ayoub A, Daystar JS, Venditti RA, Pawlak JJ (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. Bioresources 8(4):6556–6629Google Scholar
  62. 62.
    Xia Z, Patchan M, Maranchi J, Trexler M (2015) Structure and relaxation in cellulose hydrogels. J Appl Polym Sci 132:1–5. app 42071Google Scholar
  63. 63.
    Buchtová N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595CrossRefGoogle Scholar
  64. 64.
    Johns MA, Bernardes A, De Azevêdo R, Guimarães FEG, Lowe JP, Gale EM, Polikarpov I, Scott JL, Sharma RI (2017) On the subtle tuneability of cellulose hydrogels: implications for binding of biomolecules demonstrated for CBM 1. J Mater Chem B 5:3879–3887CrossRefGoogle Scholar
  65. 65.
    Mao Y, Zhou JP, Cai J, Zhang LN (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255CrossRefGoogle Scholar
  66. 66.
    Liang SM, Zhang LN, Li YF, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208:594–602CrossRefGoogle Scholar
  67. 67.
    Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: A review. Polym-Plast Technol Eng 50(14):1475–1486CrossRefGoogle Scholar
  68. 68.
    Kono H, Fujita S, Oeda I (2013) Comparative study of homogeneous solvents for the esterification crosslinking of cellulose with 1,2,3,4-butanetetracarboxylic dianhydride and water absorbency of the reaction products. J Appl Polym Sci 127(1):478–486CrossRefGoogle Scholar
  69. 69.
    Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548PubMedCrossRefGoogle Scholar
  70. 70.
    Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 324:851–858CrossRefGoogle Scholar
  71. 71.
    Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide urea aqueous solutions. Cellulose 15:361–370CrossRefGoogle Scholar
  72. 72.
    Zhang S, Li FX, Yu JY, Hsieh YL (2010) Dissolution behaviour of cellulose in NaOH complex solution. Carbohyd Polym 81:668–674CrossRefGoogle Scholar
  73. 73.
    Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264PubMedCrossRefGoogle Scholar
  74. 74.
    Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anion. Green Chem 10:44–46CrossRefGoogle Scholar
  75. 75.
    Fajardo AR, Pereira AGB, Muniz EC (2015) Hydrogels nanocomposites based on crystals, whiskers and fibrils derived from biopolymers. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites. Springer, New Delhi, pp 43–71CrossRefGoogle Scholar
  76. 76.
    Ciolacu DE, Darie RN (2016) Nanocomposites based on cellulose, hemicelluloses, and lignin. In: Visakh PM, Morlanes MJM (eds) Nanomaterials and nanocomposites: zero- to three-dimensional materials and their composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 391–424CrossRefGoogle Scholar
  77. 77.
    Plackett DV, Letchford K, Jackson JK, Burt HMA (2014) Review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118CrossRefGoogle Scholar
  78. 78.
    Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998CrossRefGoogle Scholar
  79. 79.
    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRefGoogle Scholar
  80. 80.
    Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006CrossRefGoogle Scholar
  81. 81.
    Chau M, Sriskandha SE, Pichugin D, Thérien-Aubin H, Nykypanchuk D, Chauve G, Methot M, Bouchard J, Gang O, Kumacheva E (2015) Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16:2455–2462PubMedCrossRefGoogle Scholar
  82. 82.
    Beck-Candanedo S, Viet D, Gray DG (2007) Triphase equilibria in cellulose nanocrystal suspensions containing neutral and charged macromolecules. Macromolecules 40(9):3429–3436CrossRefGoogle Scholar
  83. 83.
    Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123PubMedCrossRefGoogle Scholar
  84. 84.
    Freire CSR, Fernandes SCM, Silvestre AJD, Neto CP (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung 67(6):603–612CrossRefGoogle Scholar
  85. 85.
    Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941PubMedCrossRefGoogle Scholar
  86. 86.
    Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9(6):1852–1863CrossRefGoogle Scholar
  87. 87.
    Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, Santoro G, Kvick M, Wittberg LP, Wågberg L, Söderberg LD (2014) Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 5:4018–4027PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lundahl MJ, Cunha AG, Rojo E, Papageorgiou AC, Rautkari L, Arboleda JC, Rojas OJ (2016) Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci Rep 6:30695–30707PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86:1417–1420CrossRefGoogle Scholar
  90. 90.
    Sunagawa N, Hosoda KTM, Kawano S, Kose R, Satoh Y, Yao M, Dairi T (2012) Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose 19:1989–2001CrossRefGoogle Scholar
  91. 91.
    Chen L, Hong F, Yang X-X, Han S-F (2012) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468PubMedCrossRefGoogle Scholar
  92. 92.
    Abeer MM, Amin MCIM, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061PubMedGoogle Scholar
  93. 93.
    Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strǿmme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631CrossRefGoogle Scholar
  94. 94.
    Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592PubMedCrossRefGoogle Scholar
  95. 95.
    Kakugo A, Gong J, Osada Y (2007) Bacterial cellulose based hydrogel for articular soft tissue. Cellul Commun 14:50–54Google Scholar
  96. 96.
    Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408PubMedCrossRefGoogle Scholar
  97. 97.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artifical blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  98. 98.
    Zhou D, Zhang L, Zhou J, Guo S (2004) Cellulose/chitin beads for absorption of heavy metals in aqueous solution. Water Res 38:2643–2650PubMedCrossRefGoogle Scholar
  99. 99.
    Li N, Bai R (2005) Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247CrossRefGoogle Scholar
  100. 100.
    Faroongsarng D, Sukonrat P (2008) Thermal behavior of water in the selected starch-and cellulose-based polymeric hydrogels. Int J Pharm 352:152–158PubMedCrossRefGoogle Scholar
  101. 101.
    Ciolacu D, Cazacu M (2011) Synthesis of new hydrogels based on xanthan and cellulose allomorphs. Cell Chem Technol 45(3–4):163–169Google Scholar
  102. 102.
    Ciolacu D, Oprea A, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng C Mater Biol Appl 32:452–463CrossRefGoogle Scholar
  103. 103.
    Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50:5467–5473CrossRefGoogle Scholar
  104. 104.
    Zhou D, Zhang L, Guo S (2005) Mechanism of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762PubMedCrossRefGoogle Scholar
  105. 105.
    Shih CM, Shieh YT, Twu YK (2009) Preparation of cellulose/chitosan blend films. Carbohyd Polym 78:169–174CrossRefGoogle Scholar
  106. 106.
    Ciolacu D, Doroftei F, Cazacu G, Cazacu M (2013) Morphological and surface aspects of cellulose-lignin hydrogels. Cellul Chem Technol 47(5–6):377–386Google Scholar
  107. 107.
    Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRefGoogle Scholar
  108. 108.
    Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystals-alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22(6):3725–3738CrossRefGoogle Scholar
  109. 109.
    Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystals-alginate hydrogel beads in packed columns. Carbohyd Polym 136:1194–1202CrossRefGoogle Scholar
  110. 110.
    Lin N, Gèze A, Wouessidjewe D, Huang J, Dufresne A (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs co-delivery. ACS Appl Mater Interfaces 8(11):6880–6889PubMedCrossRefGoogle Scholar
  111. 111.
    Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151PubMedCrossRefGoogle Scholar
  112. 112.
    Yin OS, Ahmad I, Amin MCIM (2015) Effect of cellulose nanocrystals content and ph on swelling behaviour of gelatin based hydrogel. Sains Malays 44(6):793–799CrossRefGoogle Scholar
  113. 113.
    Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crop Prod 93:227–234CrossRefGoogle Scholar
  114. 114.
    Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux JL, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13(3):850–856PubMedCrossRefGoogle Scholar
  115. 115.
    Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123PubMedCrossRefGoogle Scholar
  116. 116.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273CrossRefGoogle Scholar
  117. 117.
    Păduraru OM, Ciolacu D, Darie RN, Vasile C (2012) Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Mater Sci Eng C Mater Biol Appl 32(8):2508–2515CrossRefGoogle Scholar
  118. 118.
    Liang S, Wu J, Tian H, Zhang L, Xu J (2008) High-strength cellulose/poly(ethylene glycol). ChemSusChem 1:558–563PubMedCrossRefGoogle Scholar
  119. 119.
    Chang C, Han K, Zhang L (2009) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by IPN strategy. Polym Adv Technol 22:1329–1334Google Scholar
  120. 120.
    Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 79(2):245–253PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C Mater Biol Appl 34(1):54–61CrossRefPubMedGoogle Scholar
  122. 122.
    Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 7(6):2373–2379CrossRefGoogle Scholar
  123. 123.
    Han J, Lei T, Wu Q (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20:2947–2958CrossRefGoogle Scholar
  124. 124.
    Yue Y, Han J, Han G, French AD, Qi Y, Wu Q (2016) Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: core-shell structure formation and property characterization. Carbohyd Polym 147:155–164CrossRefGoogle Scholar
  125. 125.
    Larsson E, Boujemaoui A, Malmström E, Carlmark A (2015) Thermoresponsive cryogels reinforced with cellulose nanocrystals. RSC Adv 5(95):77643–77650CrossRefGoogle Scholar
  126. 126.
    Yang J, Zhao JJJ, Han CRR, Duan JFF, Xu F, Sun RCC (2014) Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG. Cellulose 21(1):541–551CrossRefGoogle Scholar
  127. 127.
    Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Yang J, Zhang X, Ma M, Xu F (2015) Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly(ethylene glycol). ACS Macro Lett 4:829–833CrossRefGoogle Scholar
  129. 129.
    Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277PubMedCrossRefGoogle Scholar
  130. 130.
    Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  131. 131.
    Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohyd Polym 83:1766–1774CrossRefGoogle Scholar
  132. 132.
    Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRefGoogle Scholar
  133. 133.
    Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408PubMedCrossRefGoogle Scholar
  134. 134.
    Drury JL Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMedCrossRefGoogle Scholar
  135. 135.
    Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lina F, Yue Z, Jin Z, Guang Y (2011) Bacterial cellulose for skin repair materials. In: Fazel R (ed) Biomedical engineering – frontiers and challenges. InTech, Rijeka, pp 249–274Google Scholar
  137. 137.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431PubMedCrossRefGoogle Scholar
  138. 138.
    de PRF SM, Saska S, Barud H, de Lima LR, da Conceição Amaro Martins V, de Guzzi Plepis AM, Lima Ribeiro SJ, Minarelli Gaspar AM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mat Res 19(1):106–116CrossRefGoogle Scholar
  139. 139.
    Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298CrossRefGoogle Scholar
  140. 140.
    Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4:165–188CrossRefGoogle Scholar
  141. 141.
    Patchan MW, Chae JJ, Lee JD, Calderon-Colon X, Maranchi JP, McCally RL, Schein OD, Elisseeff JH, Trexler MM (2015) Evaluation of the biocompatibility of regenerated cellulose hydrogels with high strength and transparency for ocular applications. J Biomater Appl 30(7):1049–1059PubMedCrossRefGoogle Scholar
  142. 142.
    Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-Lucea C, Sanz-Garcia A, Vuola J, Valtonen J, Tammela P, Mäkitie A, Luukko K, Yliperttula M, Kavola H (2016) Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 244B:292–301CrossRefGoogle Scholar
  143. 143.
    Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38(10–11):1415–1441CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Physical Chemistry of Polymers“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations