Advertisement

Chitosan-Based Polyelectrolyte Complex Hydrogels for Biomedical Applications

  • Silvia Vasiliu
  • Stefania Racovita
  • Marcel Popa
  • Lacramioara Ochiuz
  • Catalina Anisoara Peptu
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Chitosan is produced by deacetylation of chitin, a structural element in the exoskeleton of crustaceans and insects, which is the second most abundant natural biopolymer after cellulose. Chitosan has found applications in many primary industries such as: agriculture, paper, textiles, pharmacology, cosmetology, and wastewater treatment. There is a major interest in using chitosan for biomedical applications due to its generous properties including biocompatibility, low toxicity, hemostatic potential, good film-forming character, anti-infectional activity, and susceptibility to enzymatic degradation. The property of chitosan which will be in detail discussed in this chapter refers to its ability to form polyelectrolyte complexes due to the presence of amine groups in its repetitive unit. Therefore, chitosan in aqueous acid solution reacted with anionic polysaccharides such as: carboxymethylcellulose, xanthan, alginate, carrageenan, gellan, oxychitin and oxypullulan, chondroitin and hyaluronan, poly(galacturonic acid), poly(L-glutamic acid) as well as synthetic polyanions such as poly(acrylic acid) to give polyelectrolyte complexes. One major advantage of polyelectrolyte complexes for biomedical use is their superior biocompatibility in respect with other formulations which are using synthetic crosslinkers to obtain stable hydrogels. The aim of this chapter is to describe the process of chitosan complexation with other natural and synthetic polyanions, the factors that influence the formation and stability of these polyelectrolyte complexes and the potential applications in biomedical field.

Keywords

Polyelectrolyte complexes Hydrogel Chitosan Synthetic polyanions Natural polyanions Complexation Biomedical applications 

Notes

Acknowledgment

The authors thank for the financial support from the project PNII-PT-PCCA-2013-4-1570, financed by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI.

References

  1. 1.
    Ahn HJ, Kang EC, Jang CH, Song KW, Lee JO (2000) Complexation behavior of poly(acrylic acid) and poly(ethylene oxide) in water and water-methanol. JMS Pure Appl Chem A 37(6):573–590Google Scholar
  2. 2.
    Cohen Y, Prevysh V (1998) The structure of the interpolymer complex of poly(ethylene oxide) and poly(acrylic acid) in water-dioxane mixtures. Acta Polym 49(10–11):539–543CrossRefGoogle Scholar
  3. 3.
    Popa M, Alupei IC, Bucevschi MD (2001) Complexes interpolymeres a base de xanthane et gelatine. Eur Polym J 37(6):1239–1245CrossRefGoogle Scholar
  4. 4.
    Kabanov VA, Zezin AB (1984) A new class of complex water-soluble polyelectrolytes. Macromol Chem Phys Suppl 6:259–276CrossRefGoogle Scholar
  5. 5.
    Izumrudov VA, Savitskii AP, Bakeev KN, Zezin AB, Kabanov VA (1984) A fluorescence quenching study of interpolyelectrolyte reactions. Makromol Rapid Commun 5(11):709–714CrossRefGoogle Scholar
  6. 6.
    Kabanov VA, Zezin AB, Rogacheva VB, Grishina NV, Goethals EJ, Van de Velde M (1986) Properties of polyelectrolyte complexes containing poly(N-tert-butylaziride). Makromol Chem 187(5):1151–1158CrossRefGoogle Scholar
  7. 7.
    Izumrudov VA, Bronich TK, Saburova OS, Zezin AB, Kabanov VA (1988) The influence of chain length of a competitive polyanion and nature of monovalent counterions on the direction of the substitution reaction of polyelectrolyte complexes. Makromol Chem Rapid Commun 9(1):7–12CrossRefGoogle Scholar
  8. 8.
    Karibyants N, Dautzenberg H (1998) Preferential binding with regard to chain length and chemical structure in the reactions of formation of quasi-soluble polyelectrolyte complexes. Langmuir 14(16):4427–4434CrossRefGoogle Scholar
  9. 9.
    Firestone BA, Siegel RA (1991) Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J Appl Polym Sci 43(5):901–914CrossRefGoogle Scholar
  10. 10.
    Mohammadi A (2013) Electric-field induced response of a droplet embedded in a polyelectrolyte gel. Phys Fluids 25(8):082004.  https://doi.org/10.1063/1.4818430CrossRefGoogle Scholar
  11. 11.
    Nge TT, Yamaguchi M, Hori N, Takemura A, Ono H (2002) Synthesis and characterization of chitosan/poly(acrylic acid) polyelectrolyte complex. J Appl Polym Sci 83(5):1025–1035CrossRefGoogle Scholar
  12. 12.
    Torre PM, Torrado S, Torrado S (2003) Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24(8):1459–1468PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Sun TL, Kurokawa T, Kuroda S, Ihasan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12(10):932–937PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pafiti KS, Philippou Z, Loizou E, Porcar L, Patrickios CS (2011) End-linked poly[2(dimethylamino)ethyl methacrylate]-poly(methacrylic acid)polyampholyte conetworks: synthesis by sequential RAFT polymerization and swelling and SANS characterization. Macromolecules 44(13):5352–5362CrossRefGoogle Scholar
  15. 15.
    Thunemann AF, Muller M, Dautzenberg H, Joanny JF, Lowen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171CrossRefGoogle Scholar
  16. 16.
    Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Berger J, Reist M, Mayer JM, Felt O, Gurny R (2005) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52CrossRefGoogle Scholar
  18. 18.
    Croisier F, Jerome C (2013) Chitosan-based materials for tissue engineering. Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  19. 19.
    Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. J Macromol Sci Part A Pure Appl Chem 31(1):1–15CrossRefGoogle Scholar
  20. 20.
    Mi FL, Shyu SS, Wong TB, Jang SF, Lee ST, Lu KT (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Polym Sci 74(5):1093–1107CrossRefGoogle Scholar
  21. 21.
    Arguelles-Monal W, Hechavarria OL, Rodriguez L, Peniche C (1993) Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polym Bull 31(4):471–478CrossRefGoogle Scholar
  22. 22.
    Fukuda H, Kikuchi Y (1978) In vitro clot formation on the polyelectrolyte complexes of sodium dextran sulfate with chitosan. J Biomed Mater Res A 12(4):531–539CrossRefGoogle Scholar
  23. 23.
    Takahashi T, Takayama K, Machida Y, Nagai T (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61(1–2):35–41CrossRefGoogle Scholar
  24. 24.
    Ahmadi F, Oveisi Z, Mohammadi Samaru S, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41(1):5–11CrossRefGoogle Scholar
  26. 26.
    Etrych T, Leclercq L, Boustta M, Vert M (2005) Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: a model study related to the case of body fluids. Eur J Pharm Sci 2(4):281–288CrossRefGoogle Scholar
  27. 27.
    Verma A, Verma A (2013) Polyelectrolyte complex-an overview. Int J Pharm Sci Res 4 (5):1684–1691Google Scholar
  28. 28.
    Yao KD, Tu H, Cheng F, Zhang JW, Liu J (1997) pH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex. Macromol Mater Eng 245(1):63–72Google Scholar
  29. 29.
    Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia H (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complexes. J Biomed Mater Res A 51(1):107–116CrossRefGoogle Scholar
  30. 30.
    Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermolecular complexes. Adv Polym Sci 45:1–119CrossRefGoogle Scholar
  31. 31.
    Wielema TA, Engberts JBFN (1987) Zwitterionic polymers-I. Synthesis of a novel series of poly(vinylsulphobetaines). Effect of structure of polymer on solubility in water. Eur Polym J 23(12):947–950CrossRefGoogle Scholar
  32. 32.
    Barboiu V, Streba E, Luca C, Radu I, Grigoriu GE (1998) Reactions on polymers with amine groups. V. Addition of pyridine and imidazole groups with acetylnecarboxylic acids. J Polym Sci A: Polym Chem 36(10):1615–1623CrossRefGoogle Scholar
  33. 33.
    Luca C, Mihailescu S (2002) Polymers containing quaternary ammonium groups based on poly(N-vinylimidazole). Eur Polym J 38(8):1501–1507CrossRefGoogle Scholar
  34. 34.
    Luca C, Neagu V, Vasiliu S, Barboiu V (2005) Synthetic polybetaines. Synthesis and properties. In: Dragan ES (ed) Focus in ionic polymers. Research Singpost, Kerala, pp 117–153Google Scholar
  35. 35.
    Barboiu V, Streba E, Holerca MN, Luca C (1995) Reactions on polymers with amine groups II reactions of poly(N-vinylimidazole) and its model compound with unsaturated carboxylic acid. J Macromol Sci Pure Appl Chem A 32(8–9):1385–1396CrossRefGoogle Scholar
  36. 36.
    Grigoras A, Racovita S, Vasiliu S, Nistor NT, Dunca S, Barboiu V, Grigoras VC (2012) Dilute solution properties of some polycarboxybetaines with antibacterial activity. J Polym Res 19(11):art 8CrossRefGoogle Scholar
  37. 37.
    Chavasit V, Torres JA (1990) Chitosan-poly(acrylic acid): mechanism of complex formation and potential industrial applications. Biotechnol Prog 6(1):2–6PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kubota N, Kikuchi Y (1998) Macromolecular complexes of chitosan. In: Dumitriu S (ed) Polysaccharides, structural diversity and functional versatility. Marcel Dekker Inc, New York, pp 595–628Google Scholar
  39. 39.
    Alupei IC, Popa M, Bejenariu A, Vasiliu S, Alupei V (2006) Composite membranes based on gellan and poly(N-vinylmidazole). Synthesis and charactertization. Eur Polym J 42(4):908–916CrossRefGoogle Scholar
  40. 40.
    de Oliveira HCL, Fonseca JLC, Pereira EMR (2008) Chitosan poly(acrylic acid) polyelectrolyte complex membranes:preparation, characterization and permeability studies. J Biomater Sci Polym Ed 19(2):143–160PubMedCrossRefGoogle Scholar
  41. 41.
    Racovita S, Vasiliu S, Popa M (2012) Sorption isotherms and kinetics of cefotaxime sodium salt on chitosan-polybetaine complexes. Rev Roum Chim 57(2):115–120Google Scholar
  42. 42.
    Racovita S, Vasiliu S, Vlad CD (2010) New drug delivery systems based on polyelectrolyte complexes. Rev Roum Chim 55(10):659–666Google Scholar
  43. 43.
    Gisbert J, Torrado G, Toraddo S, Olivarea D, Pajares JM (2006) Clinical trial evaluating amoxicillin and clarithromycin hydrogel (chitosan-polyacrilic acid polyionic complexes) for H. Pylori eradication. J Clin Gastroenterol 40(7):618–622PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Giri TK, Thakeer A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2(5):439–449CrossRefGoogle Scholar
  45. 45.
    Yadav RSH, Satish CS, Shivakumar HG (2007) Preparation and evaluation of chitosan-poly(acrylic acid) hydrogels as stomach specific delivery for amoxicillin and metronidazole. Indian J Pharm Sci 69(1):91–95CrossRefGoogle Scholar
  46. 46.
    Rossi S, Sandri G, Ferrari F, Bonferoni MC, Caramella C (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrilic acid. Pharm Dev Technol 8(2):199–208PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS (2008) Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J Membr Sci 320(1–2):268–279CrossRefGoogle Scholar
  48. 48.
    Cho SM, Choi HK (2005) Preparation of muchoadhesive chitosan-poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method I. J Pharm Investig 35(2):95–99CrossRefGoogle Scholar
  49. 49.
    Cho SM, Choi HK (2005) Preparation of muchoadhesive chitosan-poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method II. Arch Pharm Res 28(5):612–618PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ahn JS, Choi HK, Chun MK, Ryu JM, Jung JH, Kim YU, Cho CS (2002) Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro. Biomaterials 23(6):1411–1416PubMedCrossRefGoogle Scholar
  51. 51.
    Torre PM, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24(8):1499–1506PubMedCrossRefGoogle Scholar
  52. 52.
    Varshosaz J, Tavakoli N, Maghaddam F, Ghassami E (2015) Polyelectrolyte complexes of chitosan for production of sustained release tablets of bupropion HCl. Farmacia 63(1):65–73Google Scholar
  53. 53.
    Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Moustafine RI, Kabanova TV, Kemenova VA, Van den Mooter G (2005) Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. J Control Release 103(1):191–198PubMedCrossRefGoogle Scholar
  55. 55.
    Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1998) Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release 52(1–2):109–118PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshizawa T, Shin-Ya Y, Hong KJ, Kajiuchi T (2005) pH and temperature-sensitive release behaviors from polyelectrolyte complex films composed of chitosan and PAOMA copolymer. Eur J Pharm Biopharm 59(2):307–313PubMedCrossRefGoogle Scholar
  57. 57.
    Mi FL, Shyu SS, Kuan CY, Lee ST, Lu KT, Jang SF (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer. J Appl Polym Sci 74(7):1868–1879CrossRefGoogle Scholar
  58. 58.
    Ma XL, Wang B, Guo HY, Zhang YH, Zhu GH, Duan YL, Yang J, Zhang DW, Jin L, Zhang R, Zhang L, Xie J, Wu MY (2010) Tolerability of 6-mercaptopurine in children with acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi 48(4):289–292PubMedGoogle Scholar
  59. 59.
    Korelitz BI (2013) Expert opinion: experience with 6-mercaptopurine in the treatment of inflammatory bowel disease. World J Gastroenterol 19(20):2979–2984PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zimoch-Korzycka A, Kulig D, Jarmoluk A, Marycz K, Matuszczak W (2016) Study of enzymatically treated alginate/chitosan hydrosols in sponges formation process. Polymers 8(1):8.  https://doi.org/10.3390/polym8010008CrossRefGoogle Scholar
  62. 62.
    Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24(9):1053–1061CrossRefGoogle Scholar
  63. 63.
    Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525PubMedCrossRefGoogle Scholar
  64. 64.
    Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579PubMedCrossRefGoogle Scholar
  65. 65.
    Lakkakula JR, Matshaya T, Werner R, Krause M (2017) Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mat Sci Eng C 70(Part 1):169–177CrossRefGoogle Scholar
  66. 66.
    Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312PubMedCrossRefGoogle Scholar
  67. 67.
    Shumilina EV, Shchipunov YA (2002) Chitosan–carrageenan gels. Coll J 64(3):372–378CrossRefGoogle Scholar
  68. 68.
    Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11PubMedCrossRefGoogle Scholar
  69. 69.
    Li C, Hein S, Wang K (2013) Chitosan-carrageenan polyelectrolyte complex for the delivery of protein drugs. ISRN Biomater 2013:1–6.  https://doi.org/10.5402/2013/629807CrossRefGoogle Scholar
  70. 70.
    Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mat Res A 92(4):1265–1272Google Scholar
  71. 71.
    Rodrigues S, Rosa da Costa AM, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89(1):282–289PubMedCrossRefGoogle Scholar
  72. 72.
    Devi N, Maji TK (2010) Genipin crosslinked chitosan-κ carrageenan polyelectrolyte nanocapsules for the controlled delivery of isoniazid. Int J Polym Mater Polym Biomater 59(10):828–841CrossRefGoogle Scholar
  73. 73.
    Sánchez-Sánchez MP, Martín-Illana A, Ruiz-Caro R, Bermejo P, Abad MJ, Carro R, Bedoya L-M, Tamayo A, Fernández-Ferreiro A, Otero-Espinar F, Rubio J, Veiga MD (2015) Chitosan and kappa-carrageenan vaginal acyclovir formulations for prevention of genital herpes. In vitro and Ex Vivo evaluation. Mar Drugs 13(9):5976–5992PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Volpi N, Maccari F (2006) Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B 834(1–2):1–13CrossRefGoogle Scholar
  75. 75.
    Bianchera A, Salomi E, Pezzanera M, Ruwet E, Bettini R, Elviri L (2014) Chitosan hydrogels for chondroitin sulphate controlled release: an analytical characterization. J Anal Meth Chem 808703:1–8CrossRefGoogle Scholar
  76. 76.
    Sui W, Huang L, Wang J, Bo Q (2008) Preparation and properties of chitosan chondroitin sulfate complex microcapsules. Colloids Surf B: Biointerfaces 65(1):69–73PubMedCrossRefGoogle Scholar
  77. 77.
    Daley ELH, Coleman RM, Stegemann JP (2015) Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy. J Mater Chem B 3(40):7920–7929PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hu CS, Chiang CH, Hong PD, Tang SL, Hosseinkhani H, Yeh MK (2014) Characterization and anti-tumor effects of chondroitin sulfate–chitosan nanoparticles delivery system. J Nanopart Res 16:2672.  https://doi.org/10.1007/s11051-014-2672-zCrossRefGoogle Scholar
  79. 79.
    Abdullah TA, Ibrahim NJ, Warsi MH (2016) Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: improved permeation, retention, and penetration. Int J Pharm Investig 6(2):96–105PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Anitha A, Deepagan VG, Rani DVV, Menon D, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 84(3):1158–1164CrossRefGoogle Scholar
  81. 81.
    Chaiyasan W, Srinivas SP, Tiyaboonchai W (2015) Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 21:1224–1234PubMedPubMedCentralGoogle Scholar
  82. 82.
    Gnanadhas DP, Thomas MB, Elango M, Raichur AM, Chakravortty D (2013) Chitosan–dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother 68(11):2576–2586PubMedCrossRefGoogle Scholar
  83. 83.
    Falco CY, Falkman P, Risbo J, Cárdenas M, Medronho B (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172:175–183CrossRefGoogle Scholar
  84. 84.
    Sabadini RC, Pawlicka A, Martins VCA (2015) Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 22(3):2045–2054CrossRefGoogle Scholar
  85. 85.
    Perez-Campos SJ, Chavarria-Hernandez N, Tecante A, Ramirez Gilly M, Rodriguez-Hernandez AI (2012) Gelation and microstructure of dilute gellan solutions with calcium ions. Food Hydrocoll 28(2):291–300CrossRefGoogle Scholar
  86. 86.
    Yang F, Xia S, Zhang X, Tan C (2013) Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur Food Res Technol 237(4):467–479CrossRefGoogle Scholar
  87. 87.
    Shaligram Mahajan H, Pramod Patil P (2017) In situ cross linked chitosan-gellan gum polyelectrolyte complex based nanogels containing curcumin for delivery to cancer cells. IJPER 51(2S):40–45CrossRefGoogle Scholar
  88. 88.
    Kumar S, Kaur P, Bernela M, Rani R, Thakur R (2016) Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int J Biol Macromol 93(Pt A):988–994PubMedCrossRefGoogle Scholar
  89. 89.
    Patil JS, Jadhav SM, Mandave SV, Vilegave KV, Dhadde SB (2016) Natural gellan gum (Phytagel®) based novel hydrogel beads of rifampicin for oral delivery with improved functionality. IJPER 50(2s):S159–S167CrossRefGoogle Scholar
  90. 90.
    Holzwarth G (1978) Molecular weight of xanthan polysaccharide. Carbohydr Res 66(1):173–186CrossRefGoogle Scholar
  91. 91.
    Chellat F, Tabrizian M, Dumitriu S, Chornet S, Rivard CH, Yahia L (2000) Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J Biomed Mater Res 53(5):592–599PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shchipunov Y, Sarin S, Kim I, Ha CS (2010) Hydrogels formed through regulated self-organization of gradually charging chitosan in solution of xanthan. Green Chem 12(7):1187–1195CrossRefGoogle Scholar
  93. 93.
    Popa N, Novac O, Profire L, Lupusoru CE, Popa MI (2010) Hydrogels based on chitosan–xanthan for controlled release of theophylline. J Mater Sci Mater Med 21(4):1241–1248PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM (2012) Liposomes coated with chitosan–xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 101(2):566–575PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lee SB, Lee YM, Song KW, Park MH (2003) Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behavior. J Appl Polym Sci 90(4):925–932CrossRefGoogle Scholar
  96. 96.
    Kim SJ, Shin SR, Lee KB, Park YD, Kim SI (2004) Synthesis and characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid. J Appl Polym Sci 91(5):2908–2913CrossRefGoogle Scholar
  97. 97.
    Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29(4):295–376CrossRefGoogle Scholar
  98. 98.
    RusuBalaita L, Desbrieres J, Rinaudo M (2003) Formation of a biocompatible polyelectrolyte complex: chitosan-hyaluronan complex stability. Polym Bull 50(1–2):91–98CrossRefGoogle Scholar
  99. 99.
    Vasiliu S, Popa M, Rinaudo M (2005) Polyelectrolyte capsules made of two biocompatible natural polymers. Eur Polym J 41(5):923–993CrossRefGoogle Scholar
  100. 100.
    Vasiliu S, Popa M, Luca C (2008) Evaluation of retention and release processes of two antibiotics from the biocompatible core-shell microparticles. Eur Polym J 44(11):3894–3898CrossRefGoogle Scholar
  101. 101.
    Li C, Newman RA, Wu QP, Ke S, Chen W, Hutto T, Kan Z, Brannan MD, Charnsangavej C, Wallace S (2000) Biodistribution of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in mice with ovarian OCa-1 tumor. Cancer Chemother Pharmacol 46(5):416–422PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Li J, Huang P, Chang L, Long X, Dong A, Liu J, Chu L, Hu F, Liu J, Dung L (2013) Tumor targeting and pH responsive polyelectrolyte complex nanoparticles based on hyaluronic acid-paclitaxel conjugates and chitosan for oral delivery of paclitaxel. Macromol Res 21(12):1331–1337CrossRefGoogle Scholar
  103. 103.
    Eisenhauer EA, Vermorken JB (1998) The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs 55(1):5–30PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Shabani Ravari N, Goodazzi N, Alvandifar F, Amini M, Souri E (2016) Fabrication and biological evaluation of chitosan coated hyaluronic acid-docetaxel conjugate nanoparticles in CD44+ cancer cells. DARU J Pharm Sci 24:21–33CrossRefGoogle Scholar
  105. 105.
    Luppi B, Bigucci F, Mercolini L, Musenga A, Sorrenti M, Catenacci L, Zecchi V (2009) Novel muchoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J Pharm Pharmacol 61(2):151–157PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Coimbra P, Ferreira P, Alves P, Gil MH (2014) Polysaccharide-based polyelectrolyte complexes and polyelectrolyte multilayers for biomedical applications. In: Gil MH (ed) Carbohydrates applications in medicine. Research Singpost, Kerala, pp 1–29Google Scholar
  107. 107.
    Lindborg BA, Brekke JH, Scott CM, Chai YW, Ulrich C, Sandquist L, Kokkoli E, O’Brien TD (2015) A chitosan-hyaluronan-based hydrogel-hydrocolloid supports. In vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A 21(11–12):1952–1962PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura SI (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26(6):611–619PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ma G, Liu Y, Fang D, Chen J, Peng C, Fei X, Nie J (2012) Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater Lett 74:78–80CrossRefGoogle Scholar
  110. 110.
    Engermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E, Baltzer AW (2006) Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther 13(17):1290–1299CrossRefGoogle Scholar
  111. 111.
    Nath SD, Abueva C, Kim B, Lee BT (2015) Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr Polym 115:160–169PubMedCrossRefGoogle Scholar
  112. 112.
    Vasile C, Pieptu D, Dumitriu RP, Panzariu A, Profire L (2013) Chitosan/hyaluronic acid polyelectrolyte complex hydrogels in the management of burn wounds. Rev Med Chir Soc Med Nat 117(2):565–571Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Vasiliu
    • 1
  • Stefania Racovita
    • 1
  • Marcel Popa
    • 2
    • 3
  • Lacramioara Ochiuz
    • 4
  • Catalina Anisoara Peptu
    • 2
    • 5
  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  2. 2.Department of Natural and Synthetic PolymersGheorghe Asachi Technical University of IasiIasiRomania
  3. 3.Academy of Romanian ScientistsBucharestRomania
  4. 4.Department of Pharmaceutical Technology“Grigore T. Popa” University of Medicine and PharmacyIasiRomania
  5. 5.Faculty of Materials Science and Ceramics, Department of Biomaterials and CompositesAGH University of Science and TechnologyKrakówPoland

Personalised recommendations