Advertisement

Gelatin-Based Hydrogels

  • Taslim Ur Rashid
  • Sadia Sharmeen
  • Shanta Biswas
  • Tanvir Ahmed
  • Abul K. Mallik
  • Md. Shahruzzaman
  • Md. Nurus Sakib
  • Papia Haque
  • Mohammed Mizanur Rahman
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Hydrogels are crosslinked polymers that are able to absorb large amount of water, permit solutes within their swollen matrices, and provide sustained delivery of absorbed solutes. The use of various types of functional biopolymers as scaffold materials in hydrogels has become of great interest not only as an underutilized resource but also as a new functional material of high potential in various fields. Among them, gelatin has been considered as highly potential candidate to be utilized as hydrogel component because of its hydration properties such as swelling and solubility; gelling behavior such as gel formation, texturizing, thickening, and water-binding capacity; and surface behavior like emulsion and foam formation, stabilization, adhesion and cohesion, protective colloid function, and film-forming capacity. In addition, its properties of biocompatibility, low toxicity, antimicrobial activity, and biodegradability make it suitable for diversified biomedical applications. Many works have been reported in various scientifically reputable journals and publications worldwide that seem to have potential or satisfactory contribution of gelatin-based hydrogels. Numerous fields of application of gelatin hydrogels include, not limited to, usage as safer release system in agrochemicals, nutrient carriers for plants, drug and cell carrying devices, bioadhesives, wound healing, tissue engineering, etc. The purpose of this chapter is to compile the recent information on developments in gelatin-based hydrogel preparation, as well as new processing conditions and potential novel or improved applications.

Keywords

Gelatin Hydrogel Preparation Application 

References

  1. 1.
    Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods Phys Res, Sect B 151(1):56–64CrossRefGoogle Scholar
  2. 2.
    EL-Hafian EA, Elgannoudi ES, Mainal A, Yahaya AHB (2010) Characterization of chitosan in acetic acid: rheological and thermal studies. Turk J Chem 34(1):47–56Google Scholar
  3. 3.
    Khan A, Othman MBH, Razak KA, Akil HM (2013) Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. J Polym Res 20(10):273CrossRefGoogle Scholar
  4. 4.
    Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1):271–310CrossRefGoogle Scholar
  5. 5.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRefGoogle Scholar
  6. 6.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  8. 8.
    Patel A, Fine B, Sandig M, Mequanint K (2006) Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 71(1):40–49PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10(4):1646–1662PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Silva AKA, Richard C, Bessodes M, Scherman D, Merten O-W (2008) Growth factor delivery approaches in hydrogels. Biomacromolecules 10(1):9–18CrossRefGoogle Scholar
  12. 12.
    Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS (2015) Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8(1):1–14CrossRefGoogle Scholar
  13. 13.
    Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554CrossRefGoogle Scholar
  14. 14.
    Kabir MH, Ahmed K, Furukawa H (2017) A low cost sensor based agriculture monitoring system using polymeric hydrogel. J Electrochem Soc 164(5):B3107–B3112CrossRefGoogle Scholar
  15. 15.
    Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. Pharma Tutor 5(1):27–36Google Scholar
  16. 16.
    Shewan HM, Stokes JR (2013) Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J Food Eng 119(4):781–792CrossRefGoogle Scholar
  17. 17.
    Ramírez E, Burillo SG, Barrera-Díaz C, Roa G, Bilyeu B (2011) Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution. J Hazard Mater 192(2):432–439PubMedCrossRefGoogle Scholar
  18. 18.
    Djagny KB, Wang Z, Xu S (2001) Gelatin: a valuable protein for food and pharmaceutical industries. Crit Rev Food Sci Nut 41(6):481–492CrossRefGoogle Scholar
  19. 19.
    Mariod A, Abdelwahab S, Ibrahim M, Mohan S, Elgadir MA, Ain N (2011) Preparation and characterization of gelatins from two sudanese edible insects. J Food Sci Eng 1(1):45Google Scholar
  20. 20.
    Ferry JD (1948) Protein gels: interpretation of gelation as network formation. Adv Protein Chem 4:40–47Google Scholar
  21. 21.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Del Rev 64:18–23CrossRefGoogle Scholar
  22. 22.
    Hennink W, Van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Del Rev 64:223–236CrossRefGoogle Scholar
  23. 23.
    Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 8(1):E142–E146PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Einerson NJ, Stevens KR, Kao WJ (2003) Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 24(3):509–523PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Wang D, Liu B, Gao L (2004) Synthesis of a novel gelatin–carbon nanotubes hybrid hydrogel. Colloid Surf B Biointerf 33(2):85–88CrossRefGoogle Scholar
  26. 26.
    Klotz BJ, Gawlitta D, Rosenberg AJ, Malda J, Melchels FP (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453PubMedCrossRefGoogle Scholar
  28. 28.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Del Rev 53(3):321–339CrossRefGoogle Scholar
  29. 29.
    Patel A, Mequanint K (2011) Hydrogel biomaterials. In: Biomedical engineering-frontiers and challenges. InTech. Rijeka, CroatiaGoogle Scholar
  30. 30.
    Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim Y-J, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. In: Smart biomaterials. Springer, Tokyo, pp 9–65.  https://doi.org/10.1007/978-4-431-54400-5_2CrossRefGoogle Scholar
  31. 31.
    Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6CrossRefGoogle Scholar
  32. 32.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRefGoogle Scholar
  33. 33.
    Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kumar Giri T, Thakur D, Alexander A, Badwaik H, Krishna Tripathi D (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Del 9(6):539–555CrossRefGoogle Scholar
  35. 35.
    Rajbhandary A, Nilsson BL (2016) Self-assembling hydrogels. In: GELS HANDBOOK: fundamentals, properties and applications volume 1: fundamentals of hydrogels. World Scientific, New Jersey, pp 219–250CrossRefGoogle Scholar
  36. 36.
    Wang M, Li Y, Wu J, Xu F, Zuo Y, Jansen JA (2008) In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly (vinyl alcohol)/gelatin composite. J Biomed Mater Res A 85((2):418–426CrossRefGoogle Scholar
  37. 37.
    Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117Google Scholar
  38. 38.
    Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33(11):4291–4294CrossRefGoogle Scholar
  39. 39.
    Iwai K, Hanasaki K, Yamamoto M (2000) Fluorescence label studies of thermo-responsive poly (N-isopropylacrylamide) hydrogels. J Lumin 87:1289–1291CrossRefGoogle Scholar
  40. 40.
    Lu L, Yuan S, Wang J, Shen Y, Deng S, Xie L (2017) Yang Q (2017) the formation mechanism of hydrogels. Curr Stem Cell Res Ther.  https://doi.org/10.2174/1574888X12666170612102706
  41. 41.
    Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4(2):25–31Google Scholar
  42. 42.
    Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech. Rijeka, CroatiaGoogle Scholar
  43. 43.
    Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC (1999) Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Materials Res Part A 46(4):520–530CrossRefGoogle Scholar
  44. 44.
    Weber LM, Lopez CG, Anseth KS (2009) Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J Biomed Materials Res Part A 90((3):720–729CrossRefGoogle Scholar
  45. 45.
    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Grassi M, Sandolo C, Perin D, Coviello T, Lapasin R, Grassi G (2009) Structural characterization of calcium alginate matrices by means of mechanical and release tests. Molecules 14(8):3003–3017PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47(2):152–169PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bae YH, Huh KM, Kim Y, Park K-H (2000) Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. J Control Release 64(1):3–13PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Qu X, Wirsen A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41(12):4589–4598CrossRefGoogle Scholar
  50. 50.
    Kühbeck D, Mayr J, Häring M, Hofmann M, Quignard F, Díaz DD (2015) Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates. New J Chem 39(3):2306–2315CrossRefGoogle Scholar
  51. 51.
    Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S (2007) Synthesis of porous poly (N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104(2):842–850CrossRefGoogle Scholar
  52. 52.
    Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235(1):1–15PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, Li X, Luo F, Zhao X, Wei Y (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365(1):89–99PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Muniz EC, Geuskens G (2001) Polyacrylamide hydrogels and semi-interpenetrating networks (IPNs) with poly (N-isopropylacrylamide): mechanical properties by measure of compressive elastic modulus. J Mater Sci Mater Med 12(10):879–881PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Abraham GA, de Queiroz AA, San Román J (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22(14):1971–1985PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672CrossRefGoogle Scholar
  57. 57.
    Padhi JR (2015) Preparation and characterization of novel gelatin and Carrageenan based hydrogels for topical delivery. M.Sc thesis, National Institute of Technology, RourkelaGoogle Scholar
  58. 58.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  60. 60.
    Narjary B, Aggarwal° P, Kumar° S, Meena M (2013) Significance of hydrogel. Indian Farming 62(10):15–17Google Scholar
  61. 61.
    Gómez-Guillén M, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Technol 20(1):3–16CrossRefGoogle Scholar
  62. 62.
    Lim YP, Mohammad AW (2011) Physicochemical properties of mammalian gelatin in relation to membrane process requirement. Food Bioprocess Technol 4(2):304–311CrossRefGoogle Scholar
  63. 63.
    Karim AA, Bhat R (2009) Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll 23(3):563–576CrossRefGoogle Scholar
  64. 64.
    Gilsenan PM, Ross-Murphy SB (2000) Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocoll 14(3):191–195CrossRefGoogle Scholar
  65. 65.
    Muyonga JH, Cole CGB, Duodu KG (2004) Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem 85(1):81–89CrossRefGoogle Scholar
  66. 66.
    Rawdkuen S, Sai-Ut S, Benjakul S (2010) Properties of gelatin films from giant catfish skin and bovine bone: a comparative study. Eur Food Res Technol 231(6):907–916CrossRefGoogle Scholar
  67. 67.
    Jamilah B, Harvinder K (2002) Properties of gelatins from skins of fish – black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem 77(1):81–84CrossRefGoogle Scholar
  68. 68.
    Mariod AA, Fadul H (2013) Review: gelatin, source, extraction and industrial applications. Acta Sci Pol Technol Aliment 12(2):135–147Google Scholar
  69. 69.
    Choi SS, Regenstein JM (2000) Physicochemical and sensory characteristics of fish gelatin. J Food Sci 65(2):194–199CrossRefGoogle Scholar
  70. 70.
    Leuenberger BH (1991) Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocoll 5(4):353–361CrossRefGoogle Scholar
  71. 71.
    Ames WM (1952) The conversion of collagen to gelatin and their molecular structures. J Sci Food Agric 3(10):454–463CrossRefGoogle Scholar
  72. 72.
    Eastoe JE (1955) The amino acid composition of mammalian collagen and gelatin. Biochem J 61(4):589PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bender AE, Miller DS, Tunnah EJ (1953) The biological value of gelatin. Chem Ind 30:799Google Scholar
  74. 74.
    Bello J, Vinograd JR (1958) The biuret complex of gelatin and the mechanism of gelation. Nature 181(4604):273–274PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Vojdani F, Torres JA (1990) Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: effect of fatty acids. J Food Sci 55(3):841–846CrossRefGoogle Scholar
  76. 76.
    Alves M, Antonov YA, Gonçalves M (1999) The effect of structural features of gelatin on its thermodynamic compatibility with locust bean gum in aqueous media. Food Hydrocoll 13(2):157–166CrossRefGoogle Scholar
  77. 77.
    Pilar QG, Jaime MB, Quilez B (1996) Gelatin hydrolyzates as coadjuvant in treatment of calcium deficit. Chem Abstract Gal Subject Index 125: No.257239aGoogle Scholar
  78. 78.
    Hong L, Tabata Y, Miyamoto S, Yamamoto M, Yamada K, Hashimoto N, Ikada Y (2000) Bone regeneration at rabbit skull defects treated with transforming growth factor – β1 incorporated into hydrogels with different levels of biodegradability. J Neurosurg 92(2):315–325PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Herben VMM, Rosing H, ten Bokkel Huinink WW, Van Zomeren DM, Batchelor D, Doyle E, Beusenberg FD, Beijnen JH, Schellens JHM (1999) Oral topotecan: bioavailability and effect of food co-administration. Br J Cancer 80(9):1380PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yoshizato K, Yoshikawa E (1994) Development of bilayered gelatin substrate for bioskin: a new structural framework of the skin composed of porous dermal matrix and thin basement membrane. Mater Sci Eng C 1(2):95–105CrossRefGoogle Scholar
  81. 81.
    Zahraoui C, Sharrock P (1999) Influence of sterilization on injectable bone biomaterials. Bone 25(2):63S–65SPubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Park SY, Lee BI, Jung ST, Park HJ (2001) Biopolymer composite films based on ΰ-carrageenan and chitosan. Mater Res Bull 36(3):511–519CrossRefGoogle Scholar
  83. 83.
    Loessner D, Meinert C, Kaemmerer E, Martine L, Yue K, Levett PA, Klein TJ, Melchels FP, Khademhosseini A, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22(10):2027–2039PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, Dolatshahi-Pirouz A, Edalat F, Bae H, Yang Y (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33(35):9009–9018PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Tan G, Zhou L, Ning C, Tan Y, Ni G, Liao J, Yu P, Chen X (2013) Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels. Appl Surf Sci 279:293–299CrossRefGoogle Scholar
  89. 89.
    Salamon A, Van Vlierberghe S, Van Nieuwenhove I, Baudisch F, Graulus G-J, Benecke V, Alberti K, Neumann H-G, Rychly J, Martins JC (2014) Gelatin-based hydrogels promote chondrogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Materials 7(2):1342–1359PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Schacht EH (2004) Polymer chemistry and hydrogel systems. J Phys Conf Ser 3:22–28 IOP PublishingCrossRefGoogle Scholar
  91. 91.
    Visser J, Gawlitta D, Benders KEM, Toma SMH, Pouran B, van Weeren PR, Dhert WJA, Malda J (2015) Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials 37:174–182PubMedCrossRefGoogle Scholar
  92. 92.
    Sutter M, Siepmann J, Hennink WE, Jiskoot W (2007) Recombinant gelatin hydrogels for the sustained release of proteins. J Control Release 119(3):301–312PubMedCrossRefGoogle Scholar
  93. 93.
    Draye J-P, Delaey B, Van de Voorde A, Van Den Bulcke A, Bogdanov B, Schacht E (1998) In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19(1–3):99–107PubMedCrossRefGoogle Scholar
  94. 94.
    Schacht E, Bogdanov B, Van Den Bulcke A, De Rooze N (1997) Hydrogels prepared by crosslinking of gelatin with dextran dialdehyde. React Funct Polym 33(2–3):109–116CrossRefGoogle Scholar
  95. 95.
    Gómez-Estaca J, Gómez-Guillén M, Fernández-Martín F, Montero P (2011) Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin–chitosan films. Food Hydrocoll 25(6):1461–1469CrossRefGoogle Scholar
  96. 96.
    Gwon HJ, Lim YM, Chang HN, Nho YC (2010) Reduction of postsurgical adhesion formation with CM-chitosan hydrogel barriers prepared by using γ-irradiation. J Appl Polym Sci 116(6):3682–3687Google Scholar
  97. 97.
    Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C 33(8):4816–4824CrossRefGoogle Scholar
  98. 98.
    Rocasalbas G, Francesko A, Touriño S, Fernández-Francos X, Guebitz GM, Tzanov T (2013) Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydr Polym 92(2):989–996PubMedCrossRefGoogle Scholar
  99. 99.
    Cheng Y-H, Hung K-H, Tsai T-H, Lee C-J, Ku R-Y, Chiu AW-h, Chiou S-H, CJ-l L (2014) Sustained delivery of latanoprost by thermosensitive chitosan–gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater 10(10):4360–4366PubMedCrossRefGoogle Scholar
  100. 100.
    Cheng N-C, Lin W-J, Ling T-Y, Young T-H (2017) Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater 51:258–267PubMedCrossRefGoogle Scholar
  101. 101.
    Wang W-B, Huang D-J, Kang Y-R, Wang A-Q (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloid Surf B Biointerf 106:51–59CrossRefGoogle Scholar
  102. 102.
    Lim KS, Alves MH, Poole-Warren LA, Martens PJ (2013) Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials 34(29):7097–7105PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Hui B, Zhang Y, Ye L (2015) Structure of PVA/gelatin hydrogel beads and adsorption mechanism for advanced Pb (II) removal. Ind Eng Chem Res 21:868–876CrossRefGoogle Scholar
  104. 104.
    Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30(14):2724–2734PubMedCrossRefGoogle Scholar
  105. 105.
    Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R (2014) Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 10(8):3650–3663PubMedCrossRefGoogle Scholar
  106. 106.
    Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151PubMedCrossRefGoogle Scholar
  107. 107.
    Yuan L, Wu Y, Q-s G, El-Hamshary H, El-Newehy M, Mo X (2017) Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Int J Biol Macromol 96:569–577PubMedCrossRefGoogle Scholar
  108. 108.
    Haider S, Park S-Y, Saeed K, Farmer BL (2007) Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. Sensors Actuators B Chem 124(2):517–528CrossRefGoogle Scholar
  109. 109.
    Spizzirri UG, Hampel S, Cirillo G, Nicoletta FP, Hassan A, Vittorio O, Picci N, Iemma F (2013) Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. Int J Pharm 448(1):115–122PubMedCrossRefGoogle Scholar
  110. 110.
    Roy S, Banerjee A (2012) Functionalized single walled carbon nanotube containing amino acid based hydrogel: a hybrid nanomaterial. RSC Adv 2(5):2105–2111CrossRefGoogle Scholar
  111. 111.
    Shin SR, Bae H, Cha JM, Mun JY, Chen Y-C, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S (2011) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tabata Y, Ikada Y (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20(22):2169–2175PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Speer DP, Chvapil M, Eskelson C, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res Part A 14(6):753–764CrossRefGoogle Scholar
  114. 114.
    Wang C, Lau TT, Loh WL, Su K, Wang DA (2011) Cytocompatibility study of a natural biomaterial crosslinker—Genipin with therapeutic model cells. J Biomed Mater Res Part B: AppliBiomater 97((1):58–65CrossRefGoogle Scholar
  115. 115.
    Das S, Pati F, Choi Y-J, Rijal G, Shim J-H, Kim SW, Ray AR, Cho D-W, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA (2007) Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res Part A 83((4):1039–1046CrossRefGoogle Scholar
  117. 117.
    Yung CW, Bentley WE, Barbari TA (2010) Diffusion of interleukin-2 from cells overlaid with cytocompatible enzyme-crosslinked gelatin hydrogels. J Biomed Mater Res Part A 95((1):25–32CrossRefGoogle Scholar
  118. 118.
    Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24(17):2831–2841PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35(6):1845–1856PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Schuster M, Turecek C, Weigel G, Saf R, Stampfl J, Varga F, Liska R (2009) Gelatin-based photopolymers for bone replacement materials. J Polym Sci, Part A: Polym Chem 47(24):7078–7089CrossRefGoogle Scholar
  121. 121.
    Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Zhang T, Yan Y, Wang X, Xiong Z, Lin F, Wu R, Zhang R (2007) Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury. J Bioact Compat Polym 22(1):19–29CrossRefGoogle Scholar
  123. 123.
    Rücker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mülhaupt R, Gellrich N-C, Menger MD (2006) Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 27(29):5027–5038PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Li S, Xiong Z, Wang X, Yan Y, Liu H, Zhang R (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Compat Polym 24(3):249–265CrossRefGoogle Scholar
  125. 125.
    Li S, Yan Y, Xiong Z, Zhang CWR, Wang X (2009) Gradient hydrogel construct based on an improved cell assembling system. J Bioact Compat Polym 24(1_suppl):84–99CrossRefGoogle Scholar
  126. 126.
    Liu L, Xiong Z, Yan Y, Zhang R, Wang X, Jin L (2009) Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res Part B Appl Biomater 88((1):254–263CrossRefGoogle Scholar
  127. 127.
    Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRefGoogle Scholar
  130. 130.
    Yu H, Xiao C (2008) Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydr Polym 72(3):479–489CrossRefGoogle Scholar
  131. 131.
    Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 304(1):e397–e399CrossRefGoogle Scholar
  132. 132.
    Liu J, Lin S, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298(1):117–125PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Yang H, Kao WJ (2006) Thermoresponsive gelatin/monomethoxy poly (ethylene glycol)–poly (D, L-lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Pharm Res 23(1):205–214PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Amiji M, Tailor R, Ly M-K, Goreham J (1997) Gelatin-poly (ethylene oxide) semi-interpenetrating polymer network with pH-sensitive swelling and enzyme-degradable properties for oral drug delivery. Drug Dev Ind Pharm 23(6):575–582CrossRefGoogle Scholar
  135. 135.
    Pal K, Banthia A, Majumdar D (2007) Biomedical evaluation of polyvinyl alcohol–gelatin esterified hydrogel for wound dressing. J Mater Sci Mater Med 18(9):1889–1894PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Mukherjee D, Banthia AK (2006) Preparation of adrenochrome hydrogel patch, gel, ointment, and the comparison of their blood coagulating and wound healing capability. Mater Manuf Process 21(3):297–301CrossRefGoogle Scholar
  137. 137.
    Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9(10):1004–1015PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Wang T, Zhu X-K, Xue X-T, Wu D-Y (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88(1):75–83CrossRefGoogle Scholar
  139. 139.
    Mishra RK, Majeed ABA, Banthia AK (2011) Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol 15(1):82–95CrossRefGoogle Scholar
  140. 140.
    Kim B, La Flamme K, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89(6):1606–1613CrossRefGoogle Scholar
  141. 141.
    Kuijpers AJ, Engbers GHM, van Wachem PB, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (1998) Controlled delivery of antibacterial proteins from biodegradable matrices. J Control Release 53(1):235–247PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Kuijpers AJ, Van Wachem PB, Van Luyn MJA, Brouwer LA, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials 21(17):1763–1772PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Chen F-M, Zhao Y-M, Sun H-H, Jin T, Wang Q-T, Zhou W, Wu Z-F, Jin Y (2007) Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 118(1):65–77PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Control Release 161(2):680–692PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Gil ES, Frankowski DJ, Spontak RJ, Hudson SM (2005) Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 6(6):3079–3087PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Shu XZ, Liu Y, Palumbo F, Prestwich GD (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24(21):3825–3834PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12(1):77–88PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31(2):189–199CrossRefGoogle Scholar
  149. 149.
    Peattie RA, Pike DB, Yu B, Cai S, Shu XZ, Prestwich GD, Firpo MA, Fisher RJ (2008) Effect of gelatin on heparin regulation of cytokine release from hyaluronan-based hydrogels. Drug Deliv 15(6):389–397PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Hsu S-h, Lin C-H (2007) The properties of gelatin–poly (γ-glutamic acid) hydrogels as biological glues. Biorheology 44(1):17–28PubMedPubMedCentralGoogle Scholar
  151. 151.
    Feng Q, Wei K, Lin S, Xu Z, Sun Y, Shi P, Li G, Bian L (2016) Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 101:217–228PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Ghavamzadeh R, Haddadi-Asl V, Mirzadeh H (2004) Bioadhesion and biocompatibility evaluations of gelatin and polyacrylic acid as a crosslinked hydrogel in vitro. J Biomater Sci Polym Ed 15(8):1019–1031PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Taslim Ur Rashid
    • 1
  • Sadia Sharmeen
    • 1
  • Shanta Biswas
    • 1
  • Tanvir Ahmed
    • 1
  • Abul K. Mallik
    • 1
  • Md. Shahruzzaman
    • 1
  • Md. Nurus Sakib
    • 1
  • Papia Haque
    • 1
  • Mohammed Mizanur Rahman
    • 1
  1. 1.Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and TechnologyUniversity of DhakaDhakaBangladesh

Personalised recommendations