Protein-Based Hydrogels

  • Reza PanahiEmail author
  • Mahsa Baghban-Salehi
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogels have the capability to absorb large amounts of water or biological fluids into their three-dimensional hydrophilic polymer networks. These attractive materials are used to develop food additives, superabsorbents, wound dressing compounds, pharmaceuticals, and biomedical implants and also applied in tissue engineering, regenerative medicines, and controlled-release process. Hydrogels can be obtained from synthetic and/or natural resources. Synthetic hydrogels exhibit high water absorption capacities and proper mechanical strength, although their applications are being limited because of low biocompatibility and biodegradability as well as the toxicity arisen from unreacted monomers remained in the gel structure. Natural hydrogels are often derived from polysaccharides and proteins. Protein-based hydrogels have substantial advantages such as biocompatibility, biodegradability, tunable mechanical properties, molecular binding abilities, and intelligent responses to external stimuli such as pH, ionic strength, and temperature. Therefore, this kind of hydrogels is known as smart biomaterials for controlled release, tissue engineering, regenerative medicine, and other applications. Protein can be converted to hydrogel using physical, chemical, or enzymatic treatments. To improve their mechanical properties, hybrid hydrogels are synthesized by combining natural polymers with synthetic ones. The main approach to obtain hybrid hydrogels is grafting natural polymers with synthetic one and vice versa. This chapter intends to look over protein-based hydrogels. After brief introduction of protein and its structure, the properties of proteins and peptides used to develop hydrogels, as well as their preparation methods are discussed. The potential applications of these polypeptide-based hydrogels in the fields of superabsorbent development, tissue engineering, and controlled release are reported. Characterization methods for protein-based hydrogels are covered in the final section to determine rheological properties, morphology, and thermal stability.


Hydrogels Protein and peptide Superabsorbent Controlled release Tissue engineering Characterization Rheological behavior 


  1. 1.
    Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-sadrabadi MM, Ebrahimi M, Baharvand H (2017) Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol 35(11):1074–1087PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  3. 3.
    Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12):1379–1408PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  5. 5.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477Google Scholar
  6. 6.
    Fisher SA, Baker AE, Shoichet MS (2017) Designing peptide and protein modified hydrogels: selecting the optimal conjugation strategy. J Am Chem Soc 139(22):7416–7427PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19(23):2101–2127PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis applications and biodegradation of hydrazide derivatives. J Control Release 53(1):93–103PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Silva NH, Vilela C, Marrucho IM, Freire CS, Neto CP, Silvestre AJ (2014) Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B 2(24):3715–3740CrossRefGoogle Scholar
  10. 10.
    Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Water retention and dye adsorption behavior of gg-cl-poly (acrylic acid-aniline) based conductive hydrogels. Geoderma 232:45–55CrossRefGoogle Scholar
  11. 11.
    Echalier C, Jebors S, Laconde G, Brunel L, Verdié P, Causse L, Bethry A, Legrand B, Van den Berghe H, Garric X, Noël D, Martinez J, Mehdi A, Subra G (2017) Sol–gel synthesis of collagen-inspired peptide hydrogel. Mater Today 20(2):59–66CrossRefGoogle Scholar
  12. 12.
    Jabbari E, Leijten J, Xu Q, Khademhosseini A (2016) The matrix reloaded: the evolution of regenerative hydrogels. Mater Today 19:191–196CrossRefGoogle Scholar
  13. 13.
    Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M (2009) Protein-and homo poly (amino acid)-based hydrogels with super-swelling properties. Polym Advan Technol 20(8):655–671CrossRefGoogle Scholar
  14. 14.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRefGoogle Scholar
  15. 15.
    Hwang DC, Damodaran S (1996) Chemical modification strategies for synthesis of protein-based hydrogel. J Agric Food Chem 44(3):751–758CrossRefGoogle Scholar
  16. 16.
    Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180CrossRefGoogle Scholar
  17. 17.
    Singhal R, Gupta K (2016) A review: tailor-made hydrogel structures (classifications and synthesis parameters). Polym Plast Technol Eng 55(1):54–70CrossRefGoogle Scholar
  18. 18.
    Whitford D (2005) Proteins: structure and function. Wiley, ChichesterGoogle Scholar
  19. 19.
    Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327CrossRefGoogle Scholar
  20. 20.
    Lake JA (1983) Ribosome evolution: the structural bases of protein synthesis in archaebacteria eubacteria and eukaryotes. Prog Nucleic Acid Res Mol Biol 30:163–194PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes eucaryotes and organelles. Microbiol Rev 47(1):1PubMedPubMedCentralGoogle Scholar
  22. 22.
    Rossmann MG, Argos P (1981) Protein folding. Annu Rev Biochem 50(1):497–532PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lehninger AL, Nelson DL, Cox MM (2004) Lehninger principles of biochemistry. W.H. Freeman and Company, New YorkGoogle Scholar
  24. 24.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  25. 25.
    Silva R, Fabry B, Boccaccini AR (2014) Fibrous protein-based hydrogels for cell encapsulation. Biomaterials 35(25):6727–6738PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Le XT, Rioux LE, Turgeon SL (2017) Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv Colloid Interf Sci 239:127–135CrossRefGoogle Scholar
  27. 27.
    Totosaus A, Montejano JG, Salazar JA, Guerrero I (2002) A review of physical and chemical protein-gel induction international. J Food Sci Technol 37(6):589–601CrossRefGoogle Scholar
  28. 28.
    Rutz AL, Shah RN (2016) Protein-based hydrogels. In: Kalia S (ed) Polymeric hydrogels as smart biomaterials. Springer, SwitzerlandGoogle Scholar
  29. 29.
    Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution reaction with proteins and application to enzyme crosslinking. BioTechniques 37:790–802PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M (2008) PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  32. 32.
    Sosnik A, Sefton MV (2005) Semi-synthetic collagen/poloxamine matrices for tissue engineering. Biomaterials 26(35):7425–7435PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51(1):271–310CrossRefGoogle Scholar
  34. 34.
    Gyles DA, Castro LD, Júnior JOCS, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392CrossRefGoogle Scholar
  35. 35.
    Wang N, Lin W, Mu C (2006) Progress in extraction and purification of collagen from animal skin. Leat Sci Eng 16(2):42–47Google Scholar
  36. 36.
    Jonker AM, Lowik DW, van Hest JC (2012) Peptide-and protein-based hydrogels. Chem Mater 24(5):759–773CrossRefGoogle Scholar
  37. 37.
    Aigner T, Stöve J (2003) Collagens-major component of the physiological cartilage matrix major target of cartilage degeneration major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cen L, Liu WEI, Cui LEI, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediat Res 63(5):492–496PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chattopadhyay S, Raines RT (2014) Collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gómez-Guillén MC, Giménez B, López-Caballero MA, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25(8):1813–1827CrossRefGoogle Scholar
  41. 41.
    Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interf 11(100):20140817CrossRefGoogle Scholar
  42. 42.
    Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11(3):225–243PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ni N, Dumont M (2017) Protein-based hydrogels derived from industrial byproducts containing collagen keratin zein and soy. Waste Biomass Valorization 8:285–300CrossRefGoogle Scholar
  45. 45.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics structure and transport. Tissue Eng Part B Rev 20(6):683–696PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chen Z, Du T, Tang X, Liu C, Li R, Xu C, Tian F, Du Z, Wu J (2016) Comparison of the properties of collagen-chitosan scaffolds after gamma-ray irradiation and carbodiimide crosslinking. J Biomater Sci Polym Ed 27:937–953PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trends Biotechnol 29(10):490–498PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Santin M, Ambrosio L (2008) Soybean-based biomaterials: preparation properties and tissue regeneration potential. Expert Rev Med Devices 5(3):349–358PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chien KB, Chung EJ, Shah RN (2014) Investigation of soy protein hydrogels for biomedical applications: materials characterization drug release and biocompatibility. J Biomater Appl 28(7):1085–1096PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ma L, Yang Y, Yao J, Shao Z, Huang Y, Chen X (2015) Selective chemical modification of soy protein for a tough and applicable plant protein-based material. J Mater Chem B 3(26):5241–5248CrossRefGoogle Scholar
  52. 52.
    Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B (2002) Adhesives and plastics based on soy protein products. Ind Crop Prod 16(3):155–172CrossRefGoogle Scholar
  53. 53.
    Chien KB, Shah RN (2012) Novel soy protein scaffolds for tissue regeneration: material characterization and interaction with human mesenchymal stem cells. Acta Biomater 8(2):694–703PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Su JF, Yuan XY, Huang Z, Wang XY, Lu XZ, Zhang LD, Wang SB (2012) Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color transparency and heat-sealing ability. Mater Sci Eng C 32(1):40–46CrossRefGoogle Scholar
  55. 55.
    Caillard R, Remondetto GE, Mateescu MA, Subirade M (2008) Characterization of amino cross-linked soy protein hydrogels. J Food Sci 73(5):283–291CrossRefGoogle Scholar
  56. 56.
    Caillard R, Remondetto GE, Subirade M (2009) Physicochemical properties and microstructure of soy protein hydrogels co-induced by Maillard type cross-linking and salts. Food Res Int 42(1):98–106CrossRefGoogle Scholar
  57. 57.
    Meikle ST, Standen G, Salvage J, De Santis R, Nicolais L, Ambrosio L, Santin M (2012) Synthesis and characterization of soybean-based hydrogels with an intrinsic activity on cell differentiation. Tissue Eng Part A 18:1932–1939PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kunz RI, Brancalhão RMC, Ribeiro LFC, Natali MRM (2016) Silkworm sericin: properties and biomedical applications. Biomed Res Int 2016:8175701PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014) Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci 39(2):251–267CrossRefGoogle Scholar
  61. 61.
    Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hu X (2011) Synthesis and properties of silk sericin-g-poly(acrylicacid-co-acrylamide) superabsorbent hydrogel. Polym Bull 66:447–462CrossRefGoogle Scholar
  63. 63.
    Craig CL, Hsu M, Kaplan D, Pierce NE (1999) A comparison of the composition of silk proteins produced by spiders and insects international. Int J Biol Macromol 24(2):109–118PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kundu B, Kurland NE, Yadavalli VK, Kundu SC (2014) Isolation and processing of silk proteins for biomedical applications. Int J Biol Macromol 70:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418(6899):741–741PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, Kaplan DL (2006) Mechanisms of silk fibroin sol− gel transitions. J Phys Chem B 110(43):21630–21638PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Anderson TJ, Buddhi P, Lamsal BP (2011) Zein extraction from corn corn products and coproducts and modifications for various applications: a review. Cereal Chem 88(2):159–173CrossRefGoogle Scholar
  71. 71.
    Labib G (2018) Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering. Expert Opin Drug Deliv 15(1):65–75PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Luo Y, Wang Q (2014) Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci 131(16):40696CrossRefGoogle Scholar
  73. 73.
    Paliwal R, Palakurthi S (2014) Zein in controlled drug delivery and tissue engineering. J Control Release 189:108–122PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13(3):171–192CrossRefGoogle Scholar
  75. 75.
    Bräuer S, Meister F, Gottlöber RP, Nechwatal A (2007) Preparation and thermoplastic processing of modified plant proteins. Macromol Mater Eng 292(2):176–183CrossRefGoogle Scholar
  76. 76.
    Sousa FFO, Luzardo-Álvarez A, Blanco-Méndez J, Martín-Pastor M (2012) NMR techniques in drug delivery: application to zein protein complexes. Int J Pharm 439(1):41–48PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Huang GP, Yang XQ (2005) Studies on zein as delayed-release skeleton material of aspirin. Chem Bioeng 9:48–50Google Scholar
  78. 78.
    Hurtado-Lopez P, Murdan S (2005) Formulation and characterisation of zein microspheres as delivery vehicles. J Drug Deliv Sci Technol 15(4):267–272CrossRefGoogle Scholar
  79. 79.
    Ni N, Duquette D, Dumont MJ (2017) Synthesis and characterization of zein-based cryogels and their potential as diesel fuel absorbent. Eur Polym J 91:420–428CrossRefGoogle Scholar
  80. 80.
    Cao X, Geng J, Su S, Zhang L, Xu Q, Zhang L, Xie Y, Wu S, Sun Y, Gao Z (2012) Doxorubicin-loaded zein in situ gel for interstitial chemotherapy. Chem Pharm Bull (Tokyo) 60:1227–1233CrossRefGoogle Scholar
  81. 81.
    Shavandi A, Silva TH, Bekhit AA, Bekhit AEDA (2017) Keratin: dissolution extraction and biomedical application. Biomater Sci 5:1699–1735PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wattie B, Dumont MJ, Lefsrud M (2017) Synthesis and properties of feather keratin-based superabsorbent hydrogels. Waste Biomass Valoriz. (In press)
  83. 83.
    Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shi W, Dumont MJ (2014) Bio-based films from zein keratin pea and rapeseed protein feedstocks. J Mater Sci 49(5):1915–1930CrossRefGoogle Scholar
  85. 85.
    Karthikeyan R, Balaji S, Sehgal PK (2007) Industrial applications of keratins–a review. J Sci Ind Res 66(9):710–715Google Scholar
  86. 86.
    Lee H, Noh K, Lee SC, Kwon IK, Han DW, Lee IS, Hwang YS (2014) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med 11(4):255–265CrossRefGoogle Scholar
  87. 87.
    Arai KM, Takahashi R, Yokote Y, Akahane K (1983) Amino-acid sequence of feather keratin from fowl. Eur J Biochem 132(3):501–507PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation healing effect and biocompatibility evaluation. Colloids and Surf B 149:341–350CrossRefGoogle Scholar
  89. 89.
    Cardamone JM, Tunick MH, Onwulata C (2013) Keratin sponge/hydrogel: I. Fabrication and characterization. Text Res J 83(7):661–670CrossRefGoogle Scholar
  90. 90.
    Spizzirri UG, Cirillo G, Parisi OI, Iemma F (2012) Synthesis of protein-based hydrogel for pharmaceutical and biomedical applications. In: Câmara FV, Ferreira LJ (eds) Hydrogels synthesis characterization and applications. Nova Science Publishers Inc, New YorkGoogle Scholar
  91. 91.
    Songa F, Zhang L-M, Yang C, Yan L (2009) Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm 373:41–47CrossRefGoogle Scholar
  92. 92.
    Raja ST, Thiruselvi T, Mandal AB, Gnanamani A (2015) pH and redox sensitive albumin hydrogel: a self-derived biomaterial. Sci Rep 5:15977PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Navarra G, Peres C, Contardi M, Picone P, San Biagio PL, Di Carlo M, Giacomazza D, Militello V (2016) Heat- and pH-induced BSA conformational changes hydrogel formation and application as 3D cell scaffold. Arch Biochem Biophys 606:134–142PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ribeiro AJAM, Gomes AC, Cavaco-Paulo AM (2012) Developing scaffolds for tissue engineering using the Ca2-induced cold gelation by an experimental design approach. J Biomed Mater Res B Appl Biomater 100b(8):2269–2278CrossRefGoogle Scholar
  95. 95.
    Zhou X, He Z, Huang H (2017) Secondary structure transitions of bovine serum albumin induced by temperature variation. Vib Spectrosc 92:273–279CrossRefGoogle Scholar
  96. 96.
    Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F (2009) Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Nettles DL, Chilkoti A, Setton LA (2010) Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 62:1479–1485PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules 8:1463PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Tamburro AM, Panariello S, Santopietro V, Bracalello A, Bochicchio B, Pepe A (2010) Molecular and supramolecular structural studies on significant repetitive sequences of resilin. Chem BioChem 11(1):83–93Google Scholar
  100. 100.
    Li L, Tong Z, Jia X, Kiick K (2013) Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter 9:665–673PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Renner JN, Cherry KM, Su RSC, Liu JC (2012) Characterization of resilin-based materials for tissue engineering applications. Biomacromolecules 13(11):3678–3685PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kowalczyk T, Hnatuszko-Konka K, Gerszberg A, Kononowicz AK (2014) Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J Microbiol Biotechnol 30(8):2141–2152PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yan H, Saiani A, Gough JE, Miller AF (2006) Thermoreversible protein hydrogel as cell scaffold. Biomacromolecules 7(10):2776–2782PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yan H, Nykanen A, Ruokolainen J, Farrar D, Gough JE, Saiani A, Miller AF (2008) Thermo-reversible protein fibrillar hydrogels as cell scaffolds. Faraday Discuss 139:71–84PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Collier JH, Segura T (2011) Evolving the use of peptides as components of biomaterials. Biomaterials 32(18):4198–4204PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Vega-Chacón J, Arbeláez MIA, Jorge JH, Marques RFC, Jr MJ (2017) pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications. Mater Sci Eng C 77:366–373CrossRefGoogle Scholar
  107. 107.
    Zhang C, Wan LY, Wu S, Wu D, Qin X, Ko F (2015) A reversible colorimetric chemosensor for naked-eye detection of copper ions using poly (aspartic acid) nanofibrous hydrogel. Dyes Pigments 123:380–385CrossRefGoogle Scholar
  108. 108.
    Sharma S, Dua A, Malik A (2014) Polyaspartic acid based superabsorbent polymers. Eur Polym J 59:363–376CrossRefGoogle Scholar
  109. 109.
    Gyarmati B, Mészár EZ, Kiss L, Deli MA, László K, Szilágyi A (2015) Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels. Acta Biomater 22:32–38PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    El-Rehim HAA (2006) Characterization and possible agricultural application of polyacrylamide/sodium alginate crosslinked hydrogels prepared by ionizing radiation. J Appl Polym Sci 101:3572–3580CrossRefGoogle Scholar
  111. 111.
    Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971CrossRefGoogle Scholar
  112. 112.
    Zhang B, Cui Y, Yin G, Li X, You Y (2010) Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. International J Polym Mater 59(12):1018–1032CrossRefGoogle Scholar
  113. 113.
    Sannino A, Maffezzoli A, Nicolais L (2003) Introduction of molecular spacers between the crosslinks of a cellulose-based superabsorbent hydrogel: effects on the equilibrium sorption properties. J Appl Polym Sci 90(1):168–174CrossRefGoogle Scholar
  114. 114.
    Samaha SH, Nasr HE, Hebeish A (2005) Synthesis and characterization of starch-poly (vinyl acetate) graft copolymers and their saponified form. J Polym Res 12(5):343–353CrossRefGoogle Scholar
  115. 115.
    Huacai G, Wan P, Dengke L (2006) Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. Carbohydr Polym 66(3):372–378CrossRefGoogle Scholar
  116. 116.
    Pourjavadi A, Kurdtabar M, Mahdavinia GR, Hosseinzadeh H (2006) Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym Bull 57(6):813–824CrossRefGoogle Scholar
  117. 117.
    Pourjavadi A, Salimi H, Kurdtabar M (2007) Hydrolyzed collagen-based hydrogel with salt and pH-responsiveness properties. J Appl Polym Sci 106(4):2371–2379CrossRefGoogle Scholar
  118. 118.
    Pourjavadi A, Salimi H, Amini-Fazl MS, Kurdtabar M, Amini-Fazl AR (2006) Optimization of synthetic conditions of a novel collagen-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. J Appl Polym Sci 102(5):4878–4885CrossRefGoogle Scholar
  119. 119.
    Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44:1209–1216CrossRefGoogle Scholar
  120. 120.
    Bagheri Marandi G, Mahdavinia GR, Ghafary S (2011) Swelling behavior of novel protein-based superabsorbent nanocomposite. J Appl Polym Sci 120:1170–1179CrossRefGoogle Scholar
  121. 121.
    Rezanejade Bardajee G, Pourjavadi A, Soleyman R (2011) Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J Polym Res 18:337–346CrossRefGoogle Scholar
  122. 122.
    Soleyman R, Rezanejade Bardajee G, Pourjavadi A, Varamesh A, Davoodi AA (2015) Hydrolyzed salep/gelatin-g-polyacrylamide as a novel micro/nano-porous superabsorbent hydrogel: synthesis optimization and investigation on swelling behavior. Sci Iran C 22(3):883–893Google Scholar
  123. 123.
    Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Kaya MGA, Meltzer V (2017) Network structure studies on gamma-irradiated collagen-PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59CrossRefGoogle Scholar
  124. 124.
    Zheng Y, Zhu Y, Wang F, Wang A (2015) Gelatin-grafted granular composite hydrogel for selective removal of malachite green. Water Air Soil Pollut 226:354CrossRefGoogle Scholar
  125. 125.
    Saber-Samandari S, Saber-Samandari S, Yekta H, Mohseni M (2017) Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chem Eng J 308:1133–1144CrossRefGoogle Scholar
  126. 126.
    Tian H, Wu W, Guo G, Gaolun B, Jia Q, Xiang A (2012) Microstructure and properties of glycerol plasticized soy protein plastics containing castor oil. J Food Eng 109(3):496–500CrossRefGoogle Scholar
  127. 127.
    Fernández-Espada L, Bengoechea C, Cordobés F, Guerrero A (2016) Protein/glycerol blends and injection-molded bioplastic matrices: soybean versus egg albumen. J Appl Polym Sci 133(6):42980CrossRefGoogle Scholar
  128. 128.
    Felix M, Martín-Alfonso JE, Romero A, Guerrero A (2014) Development of albumen/soy biobased plastic materials processed by injection molding. J Food Eng 125:7–16CrossRefGoogle Scholar
  129. 129.
    Stern T, Lamas MC, Benita S (2002) Design and characterization of protein-based microcapsules as a novel catamenial absorbent system. Int J Pharm 242(1):185–190PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Song W, Xin J, Zhang J (2017) One-pot synthesis of soy protein (SP)-poly (acrylic acid)(PAA) superabsorbent hydrogels via facile preparation of SP macromonomer. Ind Crop Prod 100:117–125CrossRefGoogle Scholar
  131. 131.
    Hwang DC, Damodaran S (1996) Equilibrium swelling properties of a novel ethylenediaminetetraacetic dianhydride (EDTAD)-modified soy protein hydrogel. J Appl Polym Sci 62(8):1285–1293CrossRefGoogle Scholar
  132. 132.
    Yoshimura T, Yoshimura R, Seki C, Fujioka R (2006) Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr Polym 64(2):345CrossRefGoogle Scholar
  133. 133.
    Cuadri AA, Romero A, Bengoechea C, Guerrero A (2017) Natural superabsorbent plastic materials based on a functionalized soy protein. Polym Test 58:126–134CrossRefGoogle Scholar
  134. 134.
    Hu X, Deng Y (2015) Synthesis and swelling properties of silk sericin-g-poly(acrylic acid/attapulgite) composite superabsorbent. Polym Bull 72:487–501CrossRefGoogle Scholar
  135. 135.
    Castilhos NDB, Sampaio NMFM, da Silva BC, Riegel-Vidotti IC, Grassi MT, Silva BJG (2017) Physical-chemical characteristics and potential use of a novel alginate/zein hydrogel as the sorption phase for polar organic compounds. Carbohydr Polym 174:507–516PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    de Kruif CG (Kees), Anema SG, Zhu C, Havea P, Coker C (2015) Water holding capacity and swelling of casein hydrogels. Food Hydrocoll 44:372–379CrossRefGoogle Scholar
  137. 137.
    Bajpai A, Saini R (2005) Preparation and characterization of spongy cryogels of poly(vinyl alcohol)–casein system: water sorption and blood compatibility study. Polym Int 54:796–806CrossRefGoogle Scholar
  138. 138.
    Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2007) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Kou S, Yang Z, Sun F (2017) Protein hydrogel microbeads for selective uranium mining from seawater. ACS Appl Mater Interfaces 9(3):2035–2039PubMedCrossRefGoogle Scholar
  140. 140.
    Rathna GVN, Damodaran S (2001) Swelling behavior of protein-based superabsorbent hydrogels treated with ethanol. J Appl Polym Sci 81(9):2190–2196CrossRefGoogle Scholar
  141. 141.
    Hwang DC, Damodaran S (1997) Synthesis and properties of fish protein-based hydrogel. J Am Oil Chem Soc 74(9):1165–1171CrossRefGoogle Scholar
  142. 142.
    Zhang B, Cui Y, Yin G, Li X (2012) Adsorption of copper (II) and lead (II) ions onto cottonseed protein-PAA hydrogel composite polymer-plastics. Technol Eng 51(6):612–619Google Scholar
  143. 143.
    Chang CJ, Swift G (1999) Poly (aspartic acid) hydrogel J. Macromol Sci Pure Appl Chem 36(7-8):963–970CrossRefGoogle Scholar
  144. 144.
    Min SK, Kim JH, Chung DJ (2001) Swelling behavior of biodegradable crosslinked gel based on poly (aspartic acid) and PEG-diepoxide. Korea Polym J 9(3):143–149Google Scholar
  145. 145.
    Yang J, Fang L, Tan T (2006) Synthesis and characterization of superabsorbent hydrogels composites based on polysuccinimide. J Appl Polym Sci 102(1):550–557CrossRefGoogle Scholar
  146. 146.
    Umeda S, Nakade H, Kakuchi T (2011) Preparation of superabsorbent hydrogels from poly(aspartic acid) by chemical crosslinking. Polym Bull 67:1285–1292CrossRefGoogle Scholar
  147. 147.
    Vakili MR, Rahneshin N (2013) Synthesis and characterization of novel stimuli-responsive hydrogelsbased on starch and L-aspartic acid. Carbohydr Polym 98(2):1624–1630PubMedCrossRefGoogle Scholar
  148. 148.
    Kunioka M (2004) Biodegradable water absorbent synthesized from bacterial poly(amino acid)s. Macromol Biosci 4:324–329PubMedCrossRefGoogle Scholar
  149. 149.
    Shimokuri T, Kaneko T, Akashi M (2004) Specific thermosensitive volume change of biopolymer gels derived from propylated poly(γ-glutamate)s. J Polym Sci Part A Polym Chem 42: 4492–4501CrossRefGoogle Scholar
  150. 150.
    Li Z, He G, Hua J, Wu M, Guo W, Gong J, Zhang J, Qiao C (2017) Preparation of g-PGA hydrogels and swelling behaviors in salt solutions with different ionic valence numbers. RSC Adv 7:11085–11093CrossRefGoogle Scholar
  151. 151.
    Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647PubMedCrossRefGoogle Scholar
  152. 152.
    Li S, Nih LR, Bachman H, Fei P, Li Y, Nam E, Dimatteo R, Carmichael ST, Barker TH, Segura T (2017) Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat Mater 16:953–961PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Joosten EAJ, Veldhuis WB, Hamers FPT (2004) Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury. J Neurosci Res 77:127–142PubMedCrossRefGoogle Scholar
  154. 154.
    DeLustro F, Condell RA, Nguyen MA, McPherson JM (1986) A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen. J Biomed Mater Res 20:109–120PubMedCrossRefGoogle Scholar
  155. 155.
    Taylor PM, Cass AEG, Yacoub MH (2006) Extracellular matrix scaffolds for tissue engineering heart valves. Prog Pediatr Cardiol 21(2):219–225CrossRefGoogle Scholar
  156. 156.
    Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S (2006) Properties of collagen/chitosan scaffolds for skin tissue engineering fabrication of collagen/chitosan scaffolds. J Miner Met Mater Eng 16:37–44Google Scholar
  157. 157.
    Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M (2013) Transforming growth factor beta-releasing scaffolds for cartilage tissue engineering. Tissue Eng Part B Rev 20(2):106–125PubMedCrossRefGoogle Scholar
  158. 158.
    Calabrese G, Forte S, Gulino R, Cefalì F, Figallo E, Salvatorelli L, Maniscalchi ET, Angelico G, Parenti R, Gulisano M, Memeo L, Giuffrida R (2017) Combination of collagen-based scaffold and bioactive factors induces adipose-derived mesenchymal stem cells chondrogenic differentiation in vitro. Front Physiol 8:50PubMedPubMedCentralGoogle Scholar
  159. 159.
    Calabrese G, Giuffrida R, Forte S, Salvatorelli L, Fabbi C, Figallo E, Gulisano M, Parenti R, Magro G, Colarossi C, Memeo L, Gulino R (2016) Bone augmentation after ectopic implantation of a cell-free collagen-hydroxyapatite scaffold in the mouse. Sci Rep 6(36399):1–10Google Scholar
  160. 160.
    Calabrese G, Giuffrida R, Fabbi C, Figallo E, Furno D, Lo Gulino R, Colarossi C, Fullone F, Giuffrida R, Parenti R, Memeo L, Forte S (2016) Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro. PLoS One 11(3):e0151181PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Butler DL (2006) Effects of mechanical stimulation on the biomechanics and histology of stem cell–collagen sponge constructs for rabbit patellar tendon repair. J Tissue Eng 12(8):2291–2300CrossRefGoogle Scholar
  162. 162.
    Doillon CJ, Drouin R, Cote MF, Dallaire N, Pageau JF, Laroche G (1997) Chemical inactivators as sterilization agents for bovine collagen materials. J Biomed Mater Res 37(2):212–221PubMedCrossRefGoogle Scholar
  163. 163.
    Pinkas O, Goder D, Noyvirt R, Peleg S, Kahlon M, Zilberman M (2017) Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism. J Biomed Mater Res 51:125–137Google Scholar
  164. 164.
    Chen DC, Lai YL, Lee SY, Hung SL, Chen HL (2007) Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking. J Biomed Mater Res A 80(2):399–409PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Sahiner M, Alpaslan D, Bitlisli BO (2014) Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym Bull 71(11):3017–3033CrossRefGoogle Scholar
  166. 166.
    Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J (2014) The preparation characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Zheng W, Zhang W, Jiang X (2010) Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12(9):B451–B466CrossRefGoogle Scholar
  168. 168.
    Wheeler TS, Sbravati ND, Janorkar AV (2013) Mechanical cell culture properties of elastin-like polypeptide collagen bioglass and carbon nanosphere composites. Ann Biomed Eng 41(10):2042–2055PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    David L, Dulong V, Coquerel B, Le Cerf D, Cazin L, Lamacz M, Vannier JP (2008) Collagens stromal cell-derived factor-1α and basic fibroblast growth factor increase cancer cell invasiveness in a hyaluronan hydrogel. Cell Prolif 41(2):348–364PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Radhakrishnan J, Krishnan UM, Sethuraman S (2014) Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 32(2):449–461PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Toh WS, Loh XJ (2014) Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C 45:690–697CrossRefGoogle Scholar
  172. 172.
    Yang G, Xiao Z, Ren X, Long H, Qian H, Ma K, Guo Y (2016) Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4:e2497PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Shin SR, Aghaei-Ghareh-Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Khademhosseini A (2013) Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater 25(44):6385–6391PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Khademhosseini A (2011) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12):2252–2258PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Luo Y, Lode A, Akkineni AR, Gelinsky M (2015) Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv 5(54):43480–43488CrossRefGoogle Scholar
  177. 177.
    Gan Y, Li S, Li P, Xu Y, Wang L, Zhao C, Luo X (2016) A controlled release codelivery system of MSCs encapsulated in dextran/gelatin hydrogel with TGF-β3-loaded nanoparticles for nucleus pulposus regeneration. Stem Cells Int 2016:9042019PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Tondera C, Hauser S, Krüger-Genge A, Jung F, Neffe AT, Lendlein A, Pietzsch J (2016) Gelatin-based hydrogel degradation and tissue interaction in vivo: insights from multimodal preclinical imaging in immunocompetent nude mice. Theranostics 6(12):2114–2128PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Masuda T, Furue M, Matsuda T (2004) Photocured styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor insulin and insulin-like growth factor I. J Tissue Eng 10(3-4):523–535CrossRefGoogle Scholar
  180. 180.
    Wood AT, Everett D, Budhwani KI, Dickinson B, Thomas V (2016) Wet-laid soy fiber reinforced hydrogel scaffold: fabrication mechano-morphological and cell studies. Mater Sci Eng C 63:308–316CrossRefGoogle Scholar
  181. 181.
    Aoki H, Tomita N, Morita Y, Hattori K, Harada Y, Sonobe M, Tamada Y (2003) Culture of chondrocytes in fibroin–hydrogel sponge. Biomed Mater Eng 13(4):309–316PubMedPubMedCentralGoogle Scholar
  182. 182.
    Fini M, Motta A, Torricelli P, Giavaresi G, Aldini NN, Tschon M, Migliaresi C (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26(17):3527–3536PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Ming J, Jiang Z, Wang P, Bie S, Zuo B (2015) Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth materials. Mater Sci Eng C 51:287–293CrossRefGoogle Scholar
  184. 184.
    Gotoh Y, Tsukada M, Minoura N (1998) Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells. J Biomed Mater Res A 39(3):351–357CrossRefGoogle Scholar
  185. 185.
    Inouye K, Kurokawa M, Nishikawa S, Tsukada M (1998) Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J Biochem Biophys Methods 37(3):159–164PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Minoura N, Aiba SI, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res A 29(10):1215–1221CrossRefGoogle Scholar
  187. 187.
    Passipieri JA, Baker HB, Siriwardane M, Ellenburg MD, Vadhavkar M, Saul JM, Tomblyn S, Burnett L, Christ GJ (2017) Keratin hydrogel enhances in vivo skeletal muscle function in a rat model of volumetric muscle loss. Tissue Eng Part A 23(11–12):556–571PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Fathi A, Mithieux SM, Wei H, Chrzanowski W, Valtchev P, Weiss AS, Dehghani F (2014) Elastin based cell-laden injectable hydrogels with tunable gelation mechanical and biodegradation properties. Biomaterials 35:5425–5435PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Zhang YN, Avery RK, Vallmajo-Martin Q, Assmann A, Vegh A, Memic A, Olsen BD, Annabi N, Khademhosseini A (2015) A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv Funct Mater 25:4814–4826PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    McHale MK, Lori MS, Setton A, Chilkoti A (2005) Synthesis and in vivo evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 11:1768–1779PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    McGann CL, Levenson EA, Kiick KL (2013) Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules 214:203–213PubMedPubMedCentralGoogle Scholar
  192. 192.
    Banta S, Wheeldon IR, Blenner M (2010) Protein engineering in the development of functional hydrogels. Annu Rev Biomed Eng 12:167–186PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Fischer SE, Liu XY, Mao HQ, Harden JL (2007) Controlling cell adhesion to surfaces via associating bioactive triblock proteins. Biomaterials 28:3325–3337PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Jia J, Coyle RC, Richards DJ, Berry CL, Barrs RW, Biggs J, James Chou C, Trusk TC, Mei Y (2016) Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater 45:110–120PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Wan S, Borland S, Richardson SM, Merry CL, Saiani A, Gough JE (2016) Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater 46:29–40PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Chatzistavrou X, Rao RR, Caldwell DJ, Peterson AW, McAlpin B, Wang YY, Papagerakis P (2016) Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry. J Non-Cryst Solids 432:143–149CrossRefGoogle Scholar
  197. 197.
    Lovett ML, Wang X, Yucel T, York L, Keirstead M, Haggerty L, Kaplan DL (2015) Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. Eur J Pharm Biopharm 95:271–278PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Mandal BB, Kapoor S, Kundu SC (2009) Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials 30(14):2826–2836PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Price R, Poursaid A, Cappello J, Ghandehari H (2015) In vivo evaluation of matrix metalloproteinase responsive silk–elastinlike protein polymers for cancer gene therapy. J Control Release 213:96–102PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Megeed Z, Haider M, Li D, O’malley BW, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 94(2):433–445PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Gao Z, Ding P, Zhang L, Shi J, Yuan S, Wei J, Chen D (2007) Study of a pingyangmycin delivery system: zein/zein-SAIB in situ gels. Int J Pharm 328:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17:225–236PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Bajpai SK (1999) Casein cross-linked polyacrylamide hydrogels: study of swelling and drug release behavior. Iran Polym J 8:231–239Google Scholar
  204. 204.
    Li NN, Fu CP, Zhang LM (2014) Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater Sci Eng C 36:287–293CrossRefGoogle Scholar
  205. 205.
    El-Sherif H, El-Masry M, Abou Taleb MF (2010) pH-sensitive hydrogels based on bovine serum albumin for anticancer drug delivery. J Appl Polym Sci 115:2050–2059CrossRefGoogle Scholar
  206. 206.
    Chronopoulou L, Toumia Y, Cerroni B, Pandolfi D, Paradossi G, Palocci C (2017) Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen. New Biotechnol 37:138–143CrossRefGoogle Scholar
  207. 207.
    Li X, Fu M, Wu J, Zhang C, Deng X, Dhinakar A, Huang W, Qian H, Ge L (2017) pH-Sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater 51:294–303PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Yanovsky YG (2012) Polymer rheology: theory and practice. Springer, SwitzerlandGoogle Scholar
  209. 209.
    Osswald TA, Rudolph N (2015) Polymer rheology: fundamentals and applications. Hanser Publications, CincinnatiGoogle Scholar
  210. 210.
    Song F, Zhang LM (2008) Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel. J Phys Chem B 112(44):13749–13755PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Sathaye S, Mbi A, Sonmez C, Chen Y, Blair DL, Schneider JP, Pochan DJ (2015) Rheology of peptide-and protein-based physical hydrogels: are everyday measurements just scratching the surface? Wiley Interdiscip rev Nanomed. Nanobiotechnol 7(1):34–68CrossRefGoogle Scholar
  212. 212.
    Peng Z, She Y, Chen L (2015) Synthesis of poly (glutamic acid)-tyramine hydrogel by enzyme-mediated gelation for controlled release of proteins. J Biomater Sci Polym Ed 26(2):111–127PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Kim BJ, Oh DX, Kim S, Seo JH, Hwang DS, Masic A, Cha HJ (2014) Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15(5):1579–1585PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Shaw MT (2012) Introduction to polymer rheology. Wiley, HobokenGoogle Scholar
  215. 215.
    Gaudet ID, Shreiber DI (2012) Characterization of methacrylated type-I collagen as a dynamic photoactive hydrogel. Biointerphases 7(1-4):25PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Xu X, Xu Z, Yang X, He Y, Lin R (2017) Construction and characterization of a pure protein hydrogel for drug delivery application international. Int J Biol Macromol Int 95:294–298CrossRefGoogle Scholar
  217. 217.
    Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L (2016) Rheological study of in-situ cross-linkable hydrogels based on hyaluronanic acid collagen and sericin. Mater Sci Eng C 69:388–397CrossRefGoogle Scholar
  218. 218.
    Wheeldon IR, Calabrese Barton S, Banta S (2007) Bioactive proteinaceous hydrogels from designed bifunctional building blocks. Biomacromolecules 8(10):2990–2994PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Derkach SR, Ilyin SO, Maklakova AA, Kulichikhin VG, Malkin AY (2015) The rheology of gelatin hydrogels modified by κ-carrageenan. LWT Food Sci Technol 63(1):612–619CrossRefGoogle Scholar
  220. 220.
    Guan D, Ramirez M, Shao L, Jacobsen D, Barrera I, Lutkenhaus J, Chen Z (2013) Two-component protein hydrogels assembled using an engineered disulfide-forming protein–ligand pair. Biomacromolecules 14(8):2909–2916PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Su D, Jiang L, Chen X, Dong J, Shao Z (2016) Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces 8(15):9619–9628PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Seidler C, Ng DYW, Weil T (2017) Native protein hydrogels by dynamic boronic acid chemistry. Tetrahedron 73(33):4979–4987CrossRefGoogle Scholar
  223. 223.
    Kim M, Tang S, Olsen BD (2013) Physics of engineered protein hydrogels. J Polym Sci B Polym Phys 51(7):587–601CrossRefGoogle Scholar
  224. 224.
    Roy SG, Kumar A, De P (2016) Amino acid containing cross-linked co-polymer gels: pH thermo and salt responsiveness. Polym J 85:1–9CrossRefGoogle Scholar
  225. 225.
    Kremer F, Ritchtering W (2013) Progress in colloid and polymer science: intelligent hydrogel, vol 140. Springer International Publishing, SwitzerlandGoogle Scholar
  226. 226.
    DeSimone E, Schacht K, Scheibel T (2016) Cations influence the cross-linking of hydrogels made of recombinant, polyanionic spider silk proteins. Mater Lett 183:101–104CrossRefGoogle Scholar
  227. 227.
    Ma J, Lee J, Han SS, Oh KH, Nam KT, Sun JY (2016) Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl Mater Interfaces 8(43):29220–29226PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry and Chemical Engineering Research Center of Iran (CCERCI)Shahrak-e Pajoohesh, TehranIran

Personalised recommendations