Smart Biopolymer Hydrogels Developments for Biotechnological Applications

  • Ahmed M. Omer
  • Tamer M. Tamer
  • Randa E. Khalifa
  • Samar A. Gaber
  • Mohamed S. Mohy EldinEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Natural-based polyelectrolytes, especially polysaccharides, have received increasing attention in biomedical and pharmaceutical fields due to biodegradability, biocompatibility, natural abundance, unique chemical structures and physicochemical/biological properties, and the ability to form hydrogels. A class of hydrogel which changes its shape, surface characteristics, and solubility or undergoes formation of an intricate molecular self-assembly or phase or conformational transition with external stimuli, such as pH, temperature, ionic strength, solvent composition, the presence of salt ions, light, or electric field, is considered to be a “smart” hydrogel (also referred to as stimuli-responsive hydrogel). These kinds of hydrogels have been proposed for biotechnological applications, such as the delivery of therapeutic agents, tissue engineering, flow control, sensors/diagnostic devices, and actuators. Among these hydrogels, alginate and chitosan biopolymers have been categorized as pH-sensitive, temperature-sensitive, as well as dual pH- and temperature-responsive hydrogels and were discussed in this chapter.


Biopolymer Smart hydrogel Alginate Chitosan pH sensitivity Temperature sensitivity 


  1. 1.
    Gulrez SKH, Al-Assaf S, Phillips GO (2003) Hydrogels: methods of preparation, characterization and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering from analysis and modeling to technology applications, vol 51, 2nd edn. In Tech, Rijeka, pp 117–150Google Scholar
  2. 2.
    Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  5. 5.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zhang Y, Won CY, Chu CC (1999) Synthesis and characterization of biodegradable network hydrogels having both hydrophobic and hydrophilic components with controlled swelling behavior. J Polym Sci A Polym Chem 37:4554–4569CrossRefGoogle Scholar
  7. 7.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  8. 8.
    Schacht EH (2004) Polymer chemistry and hydrogel systems. J Phys Conf Ser 3:22–28CrossRefGoogle Scholar
  9. 9.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules 10:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE (2002) Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28:957–974PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Stayton PS, El Sayed MEH, Hoffman AS (2005) Smart polymeric carriers for enhanced intracellular delivery of therapeutic macromolecules. Expert Opin Biol Ther 5:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lim F, Sun AM (1980) Microencapsulated islets as bio artificial endocrine pancreas. Science 210:908–910PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    You JO, Almeda D, Ye GJC, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biomech Eng 4:1–12Google Scholar
  19. 19.
    Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222CrossRefGoogle Scholar
  21. 21.
    Park SY, Bae YH (1999) Novel pH sensitive polymers containing sulfonamide groups. Macromol Rapid Commun 20:269–273CrossRefGoogle Scholar
  22. 22.
    Eldin MS, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AM (2011) Polyacrylamide-grafted carboxymethyl cellulose: smart PH-sensitive hydrogel for protein concentration. J Appl Polym Sci 122:469–479CrossRefGoogle Scholar
  23. 23.
    Bernkop A, Kast C, Richter M (2001) Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. J Control Release 71:277–285CrossRefGoogle Scholar
  24. 24.
    Smetana K (1993) Cell biology of hydrogels. Biomaterials 14:1046–1050PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Mano BJF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527CrossRefGoogle Scholar
  26. 26.
    Almeida H, Amaral MH, Lobão P, Almeida H, Amaral MH, Lobão P (2012) Temperature and pH stimuli-responsive polymers and their applications in controlled and self- regulated drug delivery. J Appl Pharm Sci 2:1–10Google Scholar
  27. 27.
    Hilmia B, Abdul Hamida ZA, Md. Akila H, Yahaya BH (2015) The characteristics of the smart polymers temperature or pH responsive hydrogel. Procedia Chem 19:406–409CrossRefGoogle Scholar
  28. 28.
    James HP, John R, Alex A, Anoop KRN (2014) Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B 4:120–127CrossRefGoogle Scholar
  29. 29.
    Abbaszad A, Mahkam M (2015) Preparation of magnetic pH-sensitive microcapsules with an alginate base as colon specific drug delivery systems through an entirely green route. RSC Adv 5:4628–4638CrossRefGoogle Scholar
  30. 30.
    Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD (2008) Thermoreversible gel – sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J Biomed Mater Res B Appl Biomater 84:165–175PubMedCrossRefGoogle Scholar
  31. 31.
    Aseyev VO, Françoise T, Winnik FM (2006) Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv Polym Sci 196:1–85CrossRefGoogle Scholar
  32. 32.
    Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly (ethylene oxide) and poly (2-oxazoline). Prog Polym Sci 37:686–714CrossRefGoogle Scholar
  33. 33.
    Chen S, Wu Y, Mi F, Lin Y, Yu L, Sung H (2004) A novel pH-sensitive hydrogel composed of N, O -carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300PubMedCrossRefGoogle Scholar
  34. 34.
    Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson BD, Beebe DJ, Crone WC (2004) Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices. Mater Sci Eng C 24:575–581CrossRefGoogle Scholar
  36. 36.
    Sun W, Kim J, Park H, Kim K, Chan I, Sung D (2006) Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly (e-caprolactone-co-lactide) -poly(ethylene glycol) -poly(e-caprolactone-co-lactide) block copolymer. Biomaterials 27:5178–5185CrossRefGoogle Scholar
  37. 37.
    Satarkar NS, Hilt JZ (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 4:11–16PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    MLutolf MP, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. PANS 100:5413–5418CrossRefGoogle Scholar
  39. 39.
    Doria-Serrano MC, Ruiz-Trevino FA, Rios-Arciga C, Hernandez-Esparza M, Santiago P (2001) Physical characteristics of poly (vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge. Biomacromolecules 2:568–574PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Serizawa T, Wakita K, Akashi M (2002) Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules 35:10–12CrossRefGoogle Scholar
  41. 41.
    Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356PubMedCrossRefGoogle Scholar
  42. 42.
    Lo CL, Lin KM, Hsiue GH (2005) Preparation and characterization of intelligent core-shell nanoparticles based on poly (d,l-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid). J Control Release 104:477–488PubMedCrossRefGoogle Scholar
  43. 43.
    Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide). Polymer 42:6851–6857CrossRefGoogle Scholar
  44. 44.
    Serres A, Baudys M, Kim SW (1996) Temperature and pH sensitive polymers for human calcitonin delivery. Pharm Res 13:196–201PubMedCrossRefGoogle Scholar
  45. 45.
    Ramkissoon-Ganorkar C, Liu F, Baudys M, Kim SW (1999) Effect of molecular weight and polydispersity on kinetics of dissolution and release from pH/temperature-sensitive polymers. J Biomater Sci Polym 10:1149–1161CrossRefGoogle Scholar
  46. 46.
    Kim YH, Bae YH, Kim SW (1994) pH/temperature-sensitive polymers for macromolecular drug loading and release. J Control Release 28:143–152CrossRefGoogle Scholar
  47. 47.
    George M, Abraham T (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Release 114:1–14PubMedCrossRefGoogle Scholar
  48. 48.
    Garcia-Cruz CH, Foggetti U, Da Silva AN (2008) Bacterial alginate: technological aspects, characteristics and production. Quim Nova 31:1800–1806CrossRefGoogle Scholar
  49. 49.
    Bhat SD, Aminabhavi TM (2006) Novel sodium alginate-Na+ MMT hybrid composite membranes for pervaporation dehydration of isopropanol, 1,4-dioxane and Tetrahydrofuran. Sep Purif Technol 51:85–94CrossRefGoogle Scholar
  50. 50.
    Mohy Eldin MS, Hashem AE, Tamer TM, Omer AM, Yossuf ME, Sabet MM (2017) Development of cross linked chitosan/alginate polyelectrolyte proton exchanger membranes for fuel cell applications. Int J Electrochem Sci 12:3840–3858CrossRefGoogle Scholar
  51. 51.
    Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285PubMedCrossRefGoogle Scholar
  52. 52.
    Pasparakis G, Bouropoulos N (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 323:34–42PubMedCrossRefGoogle Scholar
  53. 53.
    Kim CK, Lee EJ (1992) The controlled release of blue dextran from alginate beads. Int J Pharm 79:11–19CrossRefGoogle Scholar
  54. 54.
    Mohy Eldin MS, Omer AM, Wassel MA, Tamer TM, Abd-Elmonem MS, Ibrahim SA (2015) Novel smart pH sensitive chitosan grafted alginate hydrogel microcapsules for oral protein delivery: II. Evaluation of the swelling behavior. Int J Pharm Sci 7:331–337Google Scholar
  55. 55.
    Mohy Eldin MS, Omer AM, Wassel MA, Tamer TM, Abd-Elmonem MS, Ibrahim SA (2015) Novel smart pH sensitive chitosan grafted alginate hydrogel microcapsules for oral protein delivery: I. Preparation and characterization. Int J Pharm Pharm Sci 7:320–326Google Scholar
  56. 56.
    Omer AM, Tamer TM, Hassan MA, Rychter P, Mohy Eldin MS, Koseva N (2016) Development of amphoteric alginate/aminated chitosan coated microbeads for oral protein delivery. Int J Biol Macromol 92:362–370PubMedCrossRefGoogle Scholar
  57. 57.
    Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036CrossRefGoogle Scholar
  58. 58.
    Hua S, Ma H, Li X, Yang H, Wang A (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 46:517–523PubMedCrossRefGoogle Scholar
  59. 59.
    George M, Abraham TE (2007) pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129PubMedCrossRefGoogle Scholar
  60. 60.
    Sarkar N, Sahoo G, Das R, Prusty G, Swain SK (2017) Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. Eur J Pharm Sci 15(109):359–371PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Manatungaa DC, Silvaa RM, Silvaab KMN, Silvab N, Bhandaric S, Yapc YK, Costha NP (2017) pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles. Eur J Pharm Biopharm 117:29–38CrossRefGoogle Scholar
  62. 62.
    Chen K, Yu G, He F, Zhou Q, Xiao D, Li J, Feng Y (2017) A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohydr Polym 176:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Amiria M, Niasaria MS, Pardakhtyb A, Ahmadic M, Akbari A (2017) Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater Sci Eng C 76:1085–1093CrossRefGoogle Scholar
  64. 64.
    Mohy Eldin MS, Kamoun EL, Sofan SA, Elbayomi M (2015) Arginine grafted alginate hydrogel beads: a novel pH-sensitive system for specific protein delivery. Arab J Chem 8:355–365CrossRefGoogle Scholar
  65. 65.
    Moura MR, Guilherme MR, Campese GM (2005) Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: interrelationship between compressive stress and pore morphology. Eur Polym J 41:2845–2852CrossRefGoogle Scholar
  66. 66.
    Guilherme MR, De Moura MR, Radovanovic E (2005) Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly(N-isopropylacrylamide). Polymer 46:2668–2674CrossRefGoogle Scholar
  67. 67.
    Guilherme R, Toledo EA, Rubira AF, Muniz EC (2002) Water affinity and permeability in membranes of alginate-Ca2+ containing poly(n-isopropylacrylamide). J Membr Sci 210(1):129–136CrossRefGoogle Scholar
  68. 68.
    Wittaya-Areekul S, Kruenate J, Prahsarn C (2006) Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. Int J Pharm 312:113–118PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Dent Mater 6(4):1285–1309Google Scholar
  70. 70.
    Kim MH, Kim J-C, Lee HY (2005) Release property of temperature-sensitive alginate beads containing poly(N-isopropylacrylamide). Colloid Surf B Biointerfaces 46:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  72. 72.
    Bergera MJ, Reista JM, Mayera O, Feltb NA, Peppas R (2004) Gurny, structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34CrossRefGoogle Scholar
  73. 73.
    De Queiroz AA, Ferraz HG, Abraham GA, Fernández DM, Bravo AL, Román JS (2003) Development of new hydroactive dressings based on chitosan membranes: characterization and in vivo behavior. J Biomed Mater Res 6:147–154CrossRefGoogle Scholar
  74. 74.
    Sahoo D, Sahoo S, Mohanty P, Sasmal S, Nayak PL (2009) Chitosan: a new versatile biopolymer for various applications. Des Monomers Polym 12:377–404CrossRefGoogle Scholar
  75. 75.
    Mohy Eldin MS, Soliman EA, Hashem AI, Tamer TM (2008) Antibacterial activity of chitosan chemically modified with new technique. Trends Biomater Artif Organs 22:125–137Google Scholar
  76. 76.
    Cha J, Lee WB, Park CR, Cho YW, Ahn CH, Kwon IC (2006) Preparation and characterization of cisplatin-incorporated chitosan hydrogels, microparticles, and nanoparticles. Macromol Res 14:573–578CrossRefGoogle Scholar
  77. 77.
    Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 243:23–54CrossRefGoogle Scholar
  78. 78.
    Pahwa R, Bisht S, Kumar V, Kohli K (2013) Recent advances in gastric floating drug delivery technology: a review. Curr Drug Deliv 10:286–298PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Imoto T, Kida T, Matsusaki M, Akashi M (2010) Preparation and unique pH-responsive properties of novel biodegradable nanocapsules composed of poly(gamma-glutamic acid) and chitosan as weak polyelectrolytes. Macromol Biosci 10:271–277PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gaserod O, Smidsrod O, Braek GS (1994) Microcapsules of alginate-chitosan-I: a quantitative study of the interaction between alginate and chitosan. Biomaterials 19:1815–1825CrossRefGoogle Scholar
  81. 81.
    Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92:719–725PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45:619–629PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Shu S, Zhang X, Wu Z, Wang Z, Li C (2011) Delivery of protein drugs using nanoparticles self-assembled from dextran sulfate and quaternized chitosan. J Control Release 152:170–172CrossRefGoogle Scholar
  84. 84.
    Mi FL, Shyu SS, Chen CT, Schoung JY (1999) Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen–adsorbed microsphere and in vitro release. Biomaterials 20:1603–1612PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Song Y, Onishi H, Machida Y (1992) Synthesis and drug release characteristics of the conjugates of mitomycin c with N-succinyl-chitosan and carboxymethyl chitin. Chem Pharm Bull 40:2822–2825PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Onishi H, Takahashi T, Yoshiyasu M, Machida Y (2001) Preparation and in vitro properties of N-succinyl chitosan or carboxymethyl chitin-mitomycin-c conjugates microparticles with specified size. Drug Dev Ind Pharm 27:659–667PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Onishi H, Nagai T, Machida Y (1997) Applications of chitin and chitosan. In: Goosen MFA (ed) Application of chitin, chitosan and their derivatives to drug carriers for microparticulated or conjugated drug delivery system. Technomic Publishing Co., Lancaster, p 205Google Scholar
  88. 88.
    Onishi H, Takahashi H, Yoshiyasu M, Machida Y, Nagai T (1994) Macromolecular prodrugs of cytarabine and mmitomycin-c with chitosan, N-succinylchitosan and 6-O-carboxymethylchitin as drug carriers. In: Karnicki LS, Brzeski MM, Bykowski PJ, Wojtasz AP (eds) Chitin world. Wirtchaftsverlag, Bremerhaven, p 301Google Scholar
  89. 89.
    Sato M, Onishi H, Machida M, Nagai T (1996) Preparation and drug release characteristics of the conjugates of mitomycin c with glycol-chitosan and N-succinyl chitosan. Biol Pharm Bull 19:241–245PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kato Y, Onishi H, Machida M (2000) A novel water-soluble N-succinyl chitosan-mitomycin-c conjugate prepared by direct carbodiimide coupling: physicochemical properties, antitumor characteristics and systemic retention. STP Pharm Sci 10:133–142Google Scholar
  91. 91.
    Wu J, Wei W, Wang LY, Su ZG, Ma GH (2007) A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28:2220–2232PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Gariepy ER, Leclair G, Hildgen P, Gupta A, Loroux JC (2002) Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 82(2):373–383CrossRefGoogle Scholar
  93. 93.
    Lorenzo CA, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102:629–641CrossRefGoogle Scholar
  94. 94.
    Yuk SH, Bae YH (1999) Phase-transition polymers for drug delivery. Crit Rev Ther Drug Carrier Syst 16:385–423PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Shi J, Alves NM, Mano JF (2006) Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi-IPN beads. Macromol Biosci 6:358–363PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ding ZL, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer-enzyme switches. Proc Natl Acad Sci 99:16592–16596PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kim B, La Flamme K, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89:1606–1613CrossRefGoogle Scholar
  100. 100.
    Shi J, Alves NM, Mano JF (2007) Chitosan coated alginate beads containing poly (N-isopropylacrylamide) for dual-stimuli-responsive drug release. J Biomed Mater Res B Appl Biomater 84B:595–603CrossRefGoogle Scholar
  101. 101.
    Nonaka T, Hashimoto K, Kurihara S (1997) Preparation of thermosensitive cellophane-graft-N-isopropylacrylamide copolymer membranes and permeation of solutes through the membranes. J Appl Polym Sci 66:209–216CrossRefGoogle Scholar
  102. 102.
    Goni I, Gurruchaga M, Valero M, Guzman GM (1983) Graft polymerization of acrylic monomers onto starch fractions. I. Effect of reaction time on grafting methyl methacrylate onto amylase. J Polym Sci A Polym Chem 21:2573–2580CrossRefGoogle Scholar
  103. 103.
    Chung HJ, Bae JW, Park HD, Lee JW, Park KD (2005) Thermosensitive chitosans as novel injectable biomaterials. Macromol Symp 224:275–286CrossRefGoogle Scholar
  104. 104.
    Lee JW, Jung MC, Park HD, Park KD, Ryu GH (2004) Synthesis and characterization of thermosensitive chitosan copolymer as a novel biomaterial. J Biomater Sci Polym Ed 15:1065–1079PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kim SY, Cho SM, Lee YM, Kim SJ (2000) Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78:1381–1391CrossRefGoogle Scholar
  106. 106.
    Lee CF, Wen CJ, Lin CL, Chiu WY (2004) Morphology and temperature responsiveness-swelling relationship of poly(N-iso-propylamide- chitosan)copolymer and their application to drug release. J Polym Sci A Polym Chem 42:3029–3037CrossRefGoogle Scholar
  107. 107.
    Verestiuc L, Ivanov C, Barbu E, Tsibouklis J (2004) Dual-stimuli-responsive hydrogels based on poly(N-isopropylacrylamide)/chitosan semi-interpenetrating networks. Int J Pharm 296:185–194CrossRefGoogle Scholar
  108. 108.
    Wang M, Fang Y, Hu D (2001) Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. React Funct Polym 48:215–221CrossRefGoogle Scholar
  109. 109.
    Don TM, Chen HR (2005) Synthesis and characterization of AB-cross-linked graft copolymers based on maleilated chitosan and N-isopropylacrylamide. Carbohydr Polym 61:334–347CrossRefGoogle Scholar
  110. 110.
    Kim IY, Kim SJ, Shin MS, Lee YM, Shin DI, Kim SI (2002) pH- and thermal characteristics of graft hydrogels based on chitosan and ploy(dimethylsiloxane). J Appl Polym Sci 85:2661–2666CrossRefGoogle Scholar
  111. 111.
    Sang BL, Sung MS, Youn ML, Seong KC, Young ML, Young CN (2004) Preparation of a hydrophobized chitosan oligosaccharide for application as an efficient gene carrier. Macromol Res 12(6):573–580CrossRefGoogle Scholar
  112. 112.
    Jianqin L, Maolin Z, Hongfei H (1999) Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiat Phys Chem 55:55–59CrossRefGoogle Scholar
  113. 113.
    Kubota H, Shiobara N (1998) Photografting of N-isopropylacrylamide on cellulose and temperature-responsive character of the resulting grafted celluloses. React Funct Polym 37:219–224CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed M. Omer
    • 1
  • Tamer M. Tamer
    • 1
  • Randa E. Khalifa
    • 1
  • Samar A. Gaber
    • 1
  • Mohamed S. Mohy Eldin
    • 1
    Email author
  1. 1.Polymer Materials Research DepartmentAdvanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City)AlexandriaEgypt

Personalised recommendations